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Abstract 

Many industries use dynamic pricing on an operational level to maximize revenue from selling a fixed capacity 

over a finite horizon. Classical risk-neutral approaches do not accommodate the risk aversion often encountered 

in practice. When risk aversion is considered, time-consistency becomes an important issue. In this paper, we 

use a dynamic coherent risk-measure to ensure that decisions are actually implemented and only depend on 

states that may realize in the future. In particular, we use the risk measure Conditional Value-at-Risk (CVaR), 

which recently became popular in areas like finance, energy or supply chain management.  

A result is that the risk-averse dynamic pricing problem can be transformed to a classical, risk-neutral problem. 

To do so, a surprisingly simple modification of the selling probabilities suffices. Thus, all structural properties 

carry over. Moreover, we show that the risk-averse and the risk-neutral solution of the original problem are 

proportional under certain conditions, that is, their optimal decision variable and objective values are propor-

tional, respectively. In a small numerical study, we evaluate the risk vs. revenue trade-off and compare the new 

approach with existing approaches from literature. 

This has straightforward implications for practice. On the one hand, it shows that existing dynamic pricing algo-

rithms and systems can be kept in place and easily incorporate risk aversion. On the other hand, our results help 

to understand many risk-averse decision makers who often use “conservative” estimates of selling probabilities 

or discount optimal prices. 

Keywords: Revenue Management, Dynamic Pricing, Risk aversion, Conditional Value-at-Risk 
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1 Introduction 

Two decades ago, product prices in the retail and service industry were rarely adjusted. The reasons 

for this were mainly associated with the high costs of price changes. The now ubiquitous use of the 

Internet as a major sales channel, digital price tags, as well as the continued development of IT soft-

ware and hardware have fundamentally changed this situation (see, e.g., Talluri and van Ryzin 2004, 

Chap. 5.1.2 or Gönsch et al. 2013). The costs of price changes have been reduced to a minimum and 

sellers are now able to implement automated pricing mechanisms. This dynamic pricing aims at max-

imizing profits by repeatedly adjusting prices throughout the selling horizon based on the current de-

mand and capacity situation.  

In the first industries using dynamic pricing, the high repetition of events justified risk neutrality, and, 

thus, maximizing expected profit or revenue. This allowed to use well established tools to model dy-

namic decision processes in an uncertain environment, especially risk-neutral Markov decision pro-

cesses/dynamic programming. However, the assumption of risk neutrality is not always appropriate, 

for example, when the selling process is rarely repeated (see, e.g., Feng and Xiao 1999) or a steady 

revenue stream is desired (see, e.g., Lancaster 2003).  

1.1 Risk aversion in a static setting 

Thus, the consideration of risk aversion emerged and constitutes a comparably new stream of litera-

ture. Amongst the various approaches to model risk aversion in stochastic optimization, the axiomatic 

approach of risk measures (respectively acceptability measures) is a prominent avenue. A risk meas-

ure 𝜌 is a function from a set of random variables to ℝ. Especially the subclass of coherent risk 

measures has received considerable attention since the pioneering work by Artzner et al. (1999). 

These risk measures exhibit four properties (translation equivariance, convexity, monotonicity, and 

positive homogeneity) that guarantee consistency with intuition about rational risk-averse decision 

making. In the context of revenues, roughly speaking, translation equivariance means that adding a 

certain amount to the random variable equally increases the risk measure. For example, increasing 

future revenues for all possible states of the world by $ 1000 would increase the risk measure by 

$ 1000. Note that this implies that risk is measured in the same unit as the underlying random varia-

bles. Convexity (or subadditivity) ensures that diversifying is never bad. Monotonicity is intuitive: if 
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revenue 𝑅𝐴 ≥ 𝑅𝐵 for all states of the world, we have 𝜌(𝑅𝐴) ≥ 𝜌(𝑅𝐴). Likewise, positive homogeneity 

refers to scaling: 𝜌(𝜆𝑅) = 𝜆𝜌(𝑅) ∀𝜆 ≥ 0. 

This paper is based on the most prominent coherent risk measure, the Conditional Value-at-Risk 

(CVaR). For continuous distributions, CVaR to the probability level 𝛼 is simply the conditional ex-

pectation below the 𝛼-quantile and, thus, represents the expected value of the 𝛼 ⋅ 100 % worst out-

comes. A main feature is the fact that risk is measured in monetary units resulting in an intuitive and 

easily accessible interpretation of risk influenced only by the parameter 𝛼. Therefore, CVaR is easy to 

communicate to senior management or, more generally, to people with a scarce background in proba-

bility (see, e.g., Luciano et al. 2003 or Koenig and Meissner 2015b). 

To ease the presentation, this paper largely focusses on CVaR as the risk-measure, in line with a mul-

titude of papers using CVaR in risk-averse operations management. Examples include diverse areas 

such as the newsvendor problem (Chen et al. 2009, Cheng et al. 2009, Xue et al. 2015) and supply 

chains with returns (Hsieh and Lu 2010, Caliskan-Demirag et al. 2011). However, we also consider 

weighted combinations of CVaR and expected value. There, the weight allows the decision maker to 

express his risk aversion even finer than with CVaR alone. In the operations management literature, 

this combination has been used, for example, in the context of electricity production (e.g. Pousinho et 

al. 2012) or inventory/newsvendor problems (e.g. Ahmed et al. 2007, Gotoh and Takano 2007).  

1.2 Risk aversion in a dynamic setting and time consistency 

While there seems to be a general agreement in the literature on how to incorporate coherent risk 

measures into static models, this is not the case for the more involved dynamic models. When deci-

sions are made dynamically and interdependently, new questions arise. How should new information 

be processed? How do decisions implemented and planned relate at different points in time and with a 

different information status? These questions are captured by the notion of time consistency. Various 

perspectives on time consistency have been developed in the literature so far, mainly during the last 

decade. They can be broadly classified into approaches focusing on risk measures and on optimal 

policies (see, e.g., Rudloff et al. 2014 and the references therein).  

 The first approach focuses on risk-measures. A risk measure is deemed time consistent if the fol-

lowing statement holds: If some random revenue 𝑅𝐴 is always (i.e. for every state of the system) 

riskier than another random revenue 𝑅𝐵 conditioned to a given time period, then 𝑅𝐴 is also riskier 
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than 𝑅𝐵 conditioned to the preceding time period. This approach to time consistency underlies 

Cheridito et al. (2006) and Ruszczyński (2010) and, thus, is equivalent to (1). It is the standard 

perspective for multi-period risk measures and shared by many authors, e.g., Weber (2006), Ko-

vacevic and Pflug (2009), Riedel (2004), or the textbook by Pflug and Pichler (2014). An equiva-

lent statement is that knowing the value of the risk measure for all conditional distributions is suf-

ficient to calculate its unconditional value (Artzner et al. 2007). 

 The second approach is standard for dynamic decision problems. Analogous to Bellman’s Princi-

ple of Optimality (Bellman 1957), it states that a multi-stage stochastic decision problem is time-

consistent if resolving the problem at later stages, the original solutions remain optimal. Thus, it 

provides the basis for deriving meaningful dynamic programming equations. For example, Bam-

berg and Krapp (2016), Pflug and Pichler (2016) stress this perspective on time consistency. Rud-

loff et al. (2014) summarize it as “a policy is time consistent if and only if the future planned deci-

sions are actually going to be implemented”. They discourage using time inconsistent models by 

arguing that the resulting policies are sub-optimal and propose a method to calculate the associated 

sub-optimality gap. Recently, Shapiro and Ugurlu (2016) showed that even with a time consistent 

risk-measure, multiple optimal solutions can exist, of which some might not be time-consistent. 

However, by recursively calculating the optimal solution, we ensure to always find a time-

consistent optimal solution. 

 The last approach was defined by Shapiro (2009). For optimal policies, time consistency is 

achieved when decisions in a given time period do not depend on future scenarios that are already 

known to be impossible at that point in time. 

1.3 Dynamic risk measures 

For a dynamic decision problem like dynamic pricing, a dynamic risk measure is necessary. Riedel 

(2004) introduced the concept of dynamic coherent risk measures and describes an approach that ex-

tends static, one-period coherent risk-measures to the dynamic framework. Ruszczyński (2010) de-

scribes the concept for general Markov decision processes. Please note that we index time backwards, 

as usual in dynamic pricing. Given a random sequence of revenues (𝑅𝑇 , 𝑅𝑇−1, … , 𝑅1) that is adapted 

to the filtration {∅, Ω} = ℱ𝑇 ⊂ ℱ𝑇−1 ⊂ ⋯ ⊂ ℱ1 ⊂ ℱ, a dynamic risk measure is defined to be an ℱ𝑡-

measurable sequence of conditional risk measures {𝜌𝑡,1}, 𝑡 = 𝑇, 𝑇 − 1, … , 1. Given a dynamic risk 

measure 𝜌𝑡,1(𝑅𝑡, 𝑅𝑡−1, … , 𝑅1), we can derive a corresponding single-period risk measure using 
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𝜌𝑡(𝑅𝑡) = 𝜌𝑡,1(𝑅𝑡 , 0, … , 0). Moreover, Ruszczyński (2010), Theorem 1, shows that any time-

consistent dynamic risk measure can be constructed by nesting single-period risk measures 𝜌𝑡: 

 𝜌𝑡,1(𝑅𝑡 , 𝑅𝑡−1, … , 𝑅1) = 𝜌𝑡 (𝑅𝑡 + 𝜌𝑡−1(𝑅𝑡−1 +  … + 𝜌2(𝑅2 + 𝜌1(𝑅1)) … ))                 (1) 

and every composition of translation equivariant risk measures is time-consistent. We call (1) a nested 

risk measure.  

The risk 𝜌𝑡,1(𝑅𝑡, 𝑅𝑡−1, … , 𝑅1) is often interpreted as a certainty equivalent of the uncertain future 

payment stream 𝑅𝑡 , 𝑅𝑡−1, … , 𝑅1. In terms of costs, Ruszczyński (2010), p. 239, considers 𝜌𝑡,1 the “fair 

one-time ℱ𝑡-measurable charge we would be willing to incur at time 𝑡, instead of the sequence of 

random future costs 𝑅𝑡 , 𝑅𝑡−1, … , 𝑅1. In a similar way, Riedel (2004) interprets 𝜌𝑡,1(𝑅𝑡 , 𝑅𝑡−1, … , 𝑅1) as 

the minimum amount of money one has to add to the position yielding 𝑅𝑡 , 𝑅𝑡−1, … , 𝑅1 to make it ac-

ceptable. 

As we use identical single-period risk measures 𝜌𝑡 = 𝐶𝑉𝑎𝑅𝛼 ∀𝑡, equation (1) is directly amenable to 

a dynamic programming formulation and can be optimized stage-wise (see Ruszczyński and Shapiro 

2006). This ensures time consistency in the sense of the three popular and intuitively desirable proper-

ties described in Section 1.2.  

In the context of minimizing costs, Shapiro et al. (2013) motivate nested CVaR as an approach that 

penalizes extreme costs above a certain upper limit. This limit is not fixed but adapted, i.e. depends on 

the conditional distribution of future total costs given the current history. Now, the optimal decisions 

obtained with the (1 − 𝛼)-quantile of the conditional distribution as the upper limit and a penalty 

factor of 1/𝛼 equal those for 𝐶𝑉𝑎𝑅𝛼 at that point in time. Rudloff et al. (2014) provide a different 

economic interpretation. They prove that “the objective function is the certainty equivalent w.r.t. the 

time consistent dynamic utility generated by one-period preference functionals”. They illustrate this 

with an investor who is willing to forgo the uncertain future value of his portfolio and sell it now for a 

certain amount of money, the certainty equivalent. Thus, they can interpret the optimal certainty 

equivalent as the portfolio value. In dynamic pricing, the certainty equivalent is the value the firm 

assigns to continuing the sales process throughout the selling horizon based on the current demand 

and capacity situation. Or, in other words, it is the deterministic amount of money the firm needs to be 

offered to stop selling. Street (2010) analyzes CVaR’s preference functional in detail. 
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Nonetheless, one may wish for a more intuitive interpretation. For example, it may be desirable to 

optimize a well-known risk measure over the entire selling horizon by repeatedly applying it in the 

stage-wise optimization. However, this is unfortunately not possible for coherent risk measures other 

than the expectation and the essential infimum. One has to accept one of the following three (see, e.g., 

Pflug and Pichler (2014), Chapter 5) downsides: (1) change the optimality criterion at later stages, 

and, thus, the actual criterion used may depend on the random variable. This approach is time-

inconsistent according to Shapiro (2009) and followed by Gönsch et al. (2018) to optimize CVaR over 

the entire selling horizon by dynamically adjusting the risk level 𝛼. (2) when resolving the problem at 

later stages the original solutions are no longer optimal, or work with the changed decisions right from 

the beginning, although they are suboptimal for the unconditional problem. Again, this is by definition 

not time-consistent and can be realized using the algorithms of Gönsch et al. (2018) if the policy is 

reevaluated later with the initial risk level. Finally, (3) we can construct a time-consistent dynamic 

risk measure via nesting as in equation (1), albeit the measure we obtain is difficult to interpret. This 

is what we do in this paper. 

Likewise, a nested objective function is widely used in the literature to ensure time-consistency and to 

incorporate risk measures into dynamic programs. For example, Shapiro (2011), Shapiro et al. (2013), 

and Philpott et al. (2013) focus on solution methods with nested CVaR or nested coherent measures of 

risk in general in the context of stochastic dual dynamic programming. Collado et al. (2012) consider 

decomposition of multistage stochastic programming problems. Nested risk measures are also com-

mon in operations management applications (see, e.g., Ahmed et al. 2007 for a multi-period newsven-

dor problem or Philpott and Matos 2012 as well as Maceira et al. 2015 for hydrothermal scheduling in 

New Zealand and Brasil, respectively).  

1.4 Contribution 

The basis for our paper is the dual representation theorem established in Artzner et al. (1999). It states 

that coherent risk measures can be computed by an expectation with an adjusted probability distribu-

tion. This approach is also referred to as change of probability distribution or change de numéraire. 

However, determining the adjusted probability distribution for calculation of CVaR at each stage usu-

ally requires the solution of an optimization problem. By contrast, we show that the problem structure 

is largely retained in dynamic pricing because the adjusted distribution is static in the sense that it 
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depends only on the original distribution and the level of risk aversion and, thus, can be computed 

offline in advance. 

A result of this paper is that the risk-averse dynamic pricing problem can be transformed into a classi-

cal, risk-neutral dynamic pricing problem with modified selling probabilities. This transformed prob-

lem has the same objective value and the same optimal solution, although a straightforward transfor-

mation for a boundary solution is necessary. Thus, all structural properties known from risk-neutral 

dynamic pricing carry over and new, risk-related properties are shown. Moreover, we show that the 

risk-averse and the risk-neutral solution of the original problem are proportional under certain condi-

tions, that is, their optimal decision variable and objective values are proportional, respectively.  

1.5 Outline 

The remainder of the paper is structured as follows. Relevant literature is reviewed in Section 2. In 

Section 3, the risk-neutral and risk-averse dynamic pricing problems are formally stated. Based on 

this, structural results are presented in Section 4. Section 5 contains a numerical study that analyses 

the risk vs. revenue trade-off and compares the new approach to existing ones from literature. Section 

6 concludes with managerial implications and an outlook on possible future research. The proofs are 

contained in the appendix. 

2 Literature review 

In the following, we review related literature. We start with methodological work on time consistency, 

then we discuss prior research on risk-averse dynamic pricing. 

2.1 Dynamic risk measures, time consistency and multistage optimization 

The literature on solving multistage stochastic programs with coherent risk measures is relevant and, 

especially in the area of scenario-based stochastic dual dynamic programming (SDDP), related results 

exist (see, e.g., Shapiro et al. 2009 (Chapter 6), Shapiro 2011, and Shapiro et al. 2013). Shapiro 

(2011) builds on a formulation of CVaR described in Pflug (2000) and Rockafellar and Uryasev 

(2000) which calculates CVaR at each stage by optimizing an additional decision variable that corre-

sponds to VaR in the optimum. Philpott and Matos (2012) demonstrate that although this approach 

uses one additional decision variable per stage, it solves large-scale stochastic programming prob-

lems. In their Sample Average Approximation problem, Shapiro et al. (2013) circumvent the addi-
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tional decision variable and calculate the VaR at each stage by ordering the scenarios. Philpott et al. 

(2013) build on the idea of ordering the scenarios. However, they use CVaR’s dual representation due 

to Artzner et al. (1999) and order events according to their objective value to calculate the adapted 

probability measure at each stage. This idea is applicable to any coherent risk measure and allows 

optimizing an expected value. Our results are in line with this. However, there is an important differ-

ence between the settings. Philpott et al. (2013) separately optimize the stochastic outcomes (and, 

thus, the expected value) because the probability distribution is exogenous. By contrast, we consider 

an endogenous probability distribution (the selling probability depends on the price) and optimize by 

affecting the outcomes as well as the probabilities. In addition, our transformation of the probability 

distribution is static in the sense that it is carried out offline in advance and we obtain the same, albeit 

risk-neutral problem. 

2.2 Risk-averse dynamic pricing 

The field of dynamic pricing emerged about 30 years ago from the study of intertemporal price dis-

crimination (see, e.g., Stokey 1979, Landsberger and Meilijson 1985, and Wilson 1988). The onset of 

modern-day research in this field can be attributed to the seminal paper by Gallego and van Ryzin 

(1994), who considered optimal dynamic pricing of a single product with stochastic demand over a 

finite selling horizon. Since the publication of this paper, research on dynamic pricing has increased 

significantly with the publication of hundreds of follow-up papers. Several review articles (e.g., Bitran 

and Caldentey 2003, Chiang et al. 2007, and, with a special focus, Gönsch et al. 2013 and den Boer 

2015) as well as textbooks (e.g. Talluri and van Ryzin 2004 (Chapter 5) and Phillips 2005 (Chapter 

10)) have structured and summarized this research. 

Whereas there is a large body of literature on risk-neutral dynamic pricing, the consideration of risk 

aversion constitutes a rather new field. Relevant literature is summarized in a survey on risk aversion 

in revenue management and dynamic pricing by Gönsch (2017). We review the most relevant papers 

here. Feng and Xiao (1999) were the first to introduce risk aversion in a dynamic pricing framework. 

Choosing from a pair of pre-determined prices, the decision maker maximizes expected revenue with 

an additional penalty term for revenue variance that takes business risk into account. Levin et al. 

(2008) follow a target-criterion of the satisficing type, i.e., a fixed minimum revenue has to be at-

tained with at least a given probability. Several authors capture the decision maker’s risk aversion via 

utility functions based on the expected utility theory of von Neumann and Morgenstern (1944). Lim 
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and Shanthikumar (2007) connect risk-averse dynamic pricing to robust optimization by showing the 

equivalence of risk-averse, single-product dynamic pricing with an exponential utility function and 

robust dynamic pricing which takes demand model errors into account. When using additive general 

utility and atemporal exponential utility functions, the well-known monotonicities from risk-neutral 

dynamic pricing are preserved under risk aversion, which was shown by Li and Zhuang (2009). They 

also show that the optimal price decreases in risk aversion, i.e., more risk-averse decision makers tend 

to set lower prices. Schlosser (2015) includes the decision about the advertising intensity, which, just 

as the sales price, influences sales and derives optimal closed-form policies for exponential utility 

functions.    

To the best of our knowledge, Gönsch et al. (2018) is the only paper that uses coherent risk measures 

as a target criterion in a dynamic pricing framework. The authors recursively maximize CVaR of 

overall revenue over the whole time horizon, following Pflug and Pichler (2016). Although intuitive, 

this target criterion is not time consistent in the sense of Section 1.2 and the resulting decisions can 

depend on scenarios that already became impossible. In contrast, we ensure time consistency and 

work with a nested objective function resulting from the recursive application of one-period CVaR 

following Shapiro (2009). In addition to that, CVaR has been used by Koenig and Meissner (2010) to 

evaluate (but not to optimize) dynamic pricing policies. 

Finally, note that risk aversion has also been considered in capacity control, where product availabil-

ity instead of price is the decision variable (see, e.g., Barz and Waldmann 2007, Gönsch and Hassler 

2014, Huang and Chang 2011, Koch et al. 2016, Koenig and Meissner 2016 as well as the survey by 

Gönsch 2017 and the references therein). 

3 Problem definition 

In this section, we formally define the problem considered. We first introduce the setting and notation 

and restate the risk-neutral dynamic pricing problem. Then, CVaR is formally introduced. Based on 

this, we state the risk-averse dynamic pricing problem with nested CVaR. 

3.1 Setting and notation 

We consider the standard setting of dynamic pricing. A firm optimizes its revenue from selling an 

initial stock of 𝐶 ∈ ℕ units of a single product during a selling horizon of length 𝑇 ∈ ℕ through price 
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variations. The selling horizon is discretized and indexed backwards in time, i.e., periods 𝑇 and 0 

mark the beginning and the end of the horizon. Any capacity remaining afterwards is worthless. We 

assume that exactly one customer arrives in each time period. More specifically, at the beginning of 

each time period 𝑡 ∈ {𝑇, … ,1}, the firm knows the remaining capacity 𝑐 and sets a price 𝑝. To simplify 

notation, we assume that exactly one customer arrives after this. Her willingness-to-pay (WTP) 𝑋𝑡 is a 

continuous random variable with probability density function 𝑓𝑡(𝑥𝑡) and cumulative distribution func-

tion 𝐹𝑡(𝑥𝑡) that is independent between periods. She buys the product if and only if the price 𝑝 does 

not exceed her WTP 𝑋𝑡. To ease notation, we write 𝑑𝑡(𝑝) = 1 − 𝐹𝑡(𝑝) to denote the probability that a 

sale takes place at price 𝑝. If we had assumed that at most one customer arrives in a period, 𝑑𝑡(𝑝) 

would contain the arrival probability in addition to 1 − 𝐹𝑡(𝑝). This would be technically equivalent as 

there is still at most one sale with probability 𝑑𝑡(𝑝). Obviously, it is not necessary to set prices above 

the maximum WTP and we can restrict the set of allowable prices to 𝒫𝑡 = [0, 𝑝𝑡
∞], where the null 

price 𝑝𝑡
∞ denotes the smallest price (possibly +∞) with lim

𝑝→𝑝𝑡
∞

𝑑𝑡(𝑝) ⋅ 𝑝 = 0. The existence of a null 

price is a standard assumption in dynamic pricing since this allows to model the out-of-stock condi-

tion (see, e.g., Gallego and van Ryzin 1994). 

Moreover, we assume that standard assumptions from literature hold (see, e.g., Ziya et al. 2004 or 

Talluri and van Ryzin 2004 (p. 317)). In particular, Ziya et al. (2004) structure widely used assump-

tions regarding demand functions, albeit in a static setting, on which we will focus in the following. 

More precisely, we assume that the selling probability is twice continuously differentiable, strictly 

decreases in price (𝑑′𝑡(𝑝) < 0 ∀ 𝑡 ∈ {1, 2, … , 𝑇}, 𝑝 ∈ (0, 𝑝𝑡
∞)) and that any one of the following two 

standard assumptions holds:  

 −
𝑑𝑡

′′(𝑝)

𝑑𝑡
′(𝑝)

< −2
𝑑𝑡

′(𝑝)

𝑑𝑡(𝑝)
  ∀ 𝑡 ∈ {1, 2, … , 𝑇}, 𝑝 ∈ (0, 𝑝𝑡

∞) 

 −
𝑑𝑡

′′(𝑝)

𝑑𝑡
′(𝑝)

< −
𝑑𝑡

′(𝑝)

𝑑𝑡(𝑝)
+

1

𝑝
 ∀ 𝑡 ∈ {1, 2, … , 𝑇}, 𝑝 ∈ (0, 𝑝𝑡

∞) 

Our first assumption is equivalent to their assumption A1/C1 and has the interpretation that the reve-

nue function is strictly concave in demand. Our second assumption is equivalent to their assumption 

A3/C3 and means that the WTP distribution 𝐹𝑡(𝑥𝑡) has a strictly increasing generalized failure rate. 

They also show that the assumptions are not equivalent. Hempenius (1970) considers a profit function 

that involves a cost term and shows that any of these assumptions ensures that the solution to the first-
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order condition of the profit function with respect to price is an optimal solution if the cost function is 

convex in demand. The link from the static setting to our dynamic setting is as follows. Even though 

there is no direct cost associated with selling a unit in the dynamic setting, there is an indirect cost 

because capacity may be scarce and each unit sold today cannot be sold in the future. This indirect 

cost is usually referred to as opportunity cost and will be formally defined in Section 4.1. Regarding 

the determination of the optimal price at a given point in time, the only difference between the static 

and dynamic setting is that in the dynamic setting there is an (opportunity) cost, which is linear in 

demand. Thus, the assumptions ensure that the problem is well behaved, that is, it suffices to consider 

the f.o.c to obtain an optimal solution.  

These regularity conditions are met by many distributions, e.g. the uniform and the exponential distri-

bution. The first assumption is widely-used in the literature on (dynamic) pricing (e.g. Feichtinger and 

Hartl 1985, Li 1988, Gallego and van Ryzin 1994, Paschalidis and Tsitsiklis 2000, Bitran and Mond-

schein 1997, Cachon and Lariviere 2001). The second assumption is used, for example, by Lariviere 

and Porteus (2001). 

To reduce notation, we usually omit the domain of variables and parameters whenever the corre-

sponding standard domain is meant. In particular, where not otherwise stated it holds that 𝑡 ∈

{1, 2, … , 𝑇}, 𝑐 ∈ {1, 2, … , 𝐶}, 𝛼 ∈ (0,1] and 𝑝 ∈ 𝒫𝑡. 

3.2 Risk-neutral dynamic pricing 

In traditional dynamic pricing, a risk-neutral firm maximizes the total expected revenue over the re-

maining periods 𝑡 of the selling horizon with a stock of 𝑐 units to sell. This is captured by the follow-

ing Bellman equation: 

 𝑉𝑡
1(𝑐) = max

𝑝∈𝒫𝑡

𝔼[1{𝑋𝑡≥𝑝} ⋅ 𝑝 + 𝑉𝑡−1
1 (𝑐 − 1{𝑋𝑡≥𝑝})]   (2) 

where 1{𝑥} is the indicator function that equals one if and only if 𝑥 is true. Here, 𝑉𝑡
1(𝑐) denotes the 

optimal expected revenue-to-go from period 𝑡 onwards. The price 𝑝 is set to maximize the expected 

sum of immediate revenue (obtained if the current customer’s WTP 𝑋𝑡 is at least 𝑝) and the revenue 

to go from the next period onwards with the remaining capacity. Obviously, the expectation captures 

two possible events: A sale occurs with probability 𝑑𝑡(𝑝) and the firm immediately obtains a revenue 

of 𝑝 and additionally expects a revenue of 𝑉𝑡−1
1 (𝑐 − 1) with a reduced stock of 𝑐 − 1 units from the 
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next period onwards. No sale occurs with probability 1 − 𝑑𝑡(𝑝). In this case, the firm expects a reve-

nue of 𝑉𝑡−1
1 (𝑐) from stock 𝑐. This leads to the more common formulation 

 𝑉𝑡
1(𝑐) = max

𝑝∈𝒫𝑡

𝑑𝑡(𝑝) ⋅ (𝑝 + 𝑉𝑡−1
1 (𝑐 − 1)) + (1 − 𝑑𝑡(𝑝)) ⋅ 𝑉𝑡−1

1 (𝑐)  (3) 

We denote the optimal risk-neutral price selected in a state (𝑡, 𝑐) by 𝑝𝑡,𝑐
1 . In (2) and (3), boundary 

conditions ensure termination of the recursion and the sale of at most 𝐶 items: 𝑉0
1(𝑐) = 0 for 𝑐 ≥ 0 

and 𝑉𝑡
1(𝑐) = −∞ for 𝑐 < 0. 

3.3 Representations of CVaR 

Given a probability level 𝛼 ∈ (0,1] and a random variable 𝑅 denoting a profit with distribution func-

tion 𝐹𝑅(𝑦), CVaR is given by its well-known dual representation (Artzner et al. 1999): 

 CVaR𝛼(𝑅) = inf
𝑍

{𝔼[𝑅𝑍]: 𝔼[𝑍] = 1,  0 ≤ 𝑍 ≤ 1/𝛼}     (4) 

In (4), the infimum is over all nonnegative random variables 𝑍 ≥ 0 with expectation 𝔼[𝑍] = 1, which 

satisfy the additional truncation constraint 𝑍 ≤ 1/𝛼. For continuous distributions, CVaR can be intui-

tively defined using the Value-at-Risk (VaR), which is simply the 𝛼-quantile (VaR𝛼(𝑅) = 𝐹𝑅
−1(𝛼)). 

Then, CVaR𝛼 equals the expectation below VaR𝛼 or the 𝛼-quantile: CVaR𝛼(𝑅) = 𝔼[𝑅: 𝑅 ≤ 𝐹𝑅
−1(𝛼)].  

3.4 Nested CVaR in dynamic pricing 

A dynamic pricing formulation optimizing nested CVaR can now be obtained as follows. On an intui-

tive level, the expectation in (2) is simply replaced with CVaR. More formally, we maximize (1) with 

𝜌𝑡 = 𝐶𝑉𝑎𝑅𝛼 ∀𝑡 and we obtain the following dynamic programming equation (see, e.g., Ruszczyński 

and Shapiro 2006 for a detailed derivation of dynamic programming equations for nested risk 

measures): 

 𝑉𝑡
𝛼(𝑐) = max

𝑝∈𝒫𝑡

CVaR𝛼 (1{𝑋𝑡≥𝑝} ⋅ 𝑝 + 𝑉𝑡−1
𝛼 (𝑐 − 1{𝑋𝑡≥𝑝}))               (5) 

Analogous to (2), the expectation inherent in CVaR (see equation (4)) is over two events: a sale with 

probability 𝑑𝑡(𝑝) and no sale with probability 1 − 𝑑𝑡(𝑝). Thus, using (4), equation (5) can be rewrit-

ten as follows: 

𝑉𝑡
𝛼(𝑐) = max

𝑝∈𝒫𝑡

inf
𝑍

{𝔼[𝑅𝑍]: 𝔼[𝑍] = 1,  0 ≤ 𝑍 ≤ 1/𝛼} with 𝑅 = 1{𝑋𝑡≥𝑝} ⋅ 𝑝 + 𝑉𝑡−1
𝛼 (𝑐 − 1{𝑋𝑡≥𝑝})   (6) 
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Since the sample space consists of only two elements indicating if a sale occurs or not, denote by 

𝑧𝑡−1,𝑐−1 and 𝑧𝑡−1,𝑐 the respective value of the random variable 𝑍. Then the optimization problem in 

equation (5) can explicitly be written as follows: 

𝑉𝑡
𝛼(𝑐) = max

𝑝∈𝒫𝑡

min
𝑧𝑡−1,𝑐−1,

𝑧𝑡−1,𝑐

(1 − 𝑑𝑡(𝑝)) ⋅ 𝑧𝑡−1,𝑐 ⋅ 𝑉𝑡−1
𝛼 (𝑐)  + 𝑑𝑡(𝑝) ⋅ 𝑧𝑡−1,𝑐−1 ⋅ (𝑝 + 𝑉𝑡−1

𝛼 (𝑐 − 1))  (7) 

subject to 

 1 = (1 − 𝑑𝑡(𝑝)) ⋅ 𝑧𝑡−1,𝑐 + 𝑑𝑡(𝑝) ⋅ 𝑧𝑡−1,𝑐−1   

 0 ≤ 𝑧𝑡−1,𝑐 ≤
1

𝛼
   

 0 ≤ 𝑧𝑡−1,𝑐−1 ≤
1

𝛼
   

with the boundary conditions 𝑉𝑡
𝛼(𝑐) = −∞ for 𝑐 < 0, 𝑉0

𝛼(𝑐) = 0 for 𝑐 ≥ 0 applying to (5), (6), and 

(7). Here, 𝑧𝑡−1,𝑐−1 and 𝑧𝑡−1,𝑐 are the values of the random variable 𝑍 (see equation (4)) in case of the 

two events sale and no sale, respectively. The optimal price selected in state (𝑡, 𝑐) is denoted by 𝑝𝑡,𝑐
𝛼 . 

4 Structural results 

This section presents several structural results. We first show that the risk-averse dynamic pricing 

problem (7) described in Section 3.4 can be transformed to an equivalent, risk-neutral standard dy-

namic pricing problem with modified selling probability, but identical objective value and solution 

(Section 4.1) and state well-known and new monotonicities (Section 4.2). In Section 4.3, we focus a 

combination of CVaR and expected value. We then focus on time-homogeneous demand and show 

that the optimal prices and objective values of a risk-averse and a risk-neutral decision maker are pro-

portional if the distribution of WTP satisfies a certain condition (Section 4.4). Finally, we illustrate 

this using uniformly (𝑈[0,1]) distributed WTPs (Section 4.5). 

4.1 Transformation to risk-neutral dynamic pricing problem 

In this section, we consider arbitrary demand. The only requirement is that 𝑑𝑡(𝑝) satisfies the regular-

ity conditions (see Section 3.1) in every period 𝑡.  

Now consider a standard, risk-neutral dynamic pricing problem with the transformed selling probabil-

ity �̃�𝑡
𝛼(𝑝) = 1 − (1 − 𝑑t(𝑝)) α⁄  ∀𝑝 ∈ �̃�t. The corresponding null price 𝑝

𝑡
𝛼,∞ is chosen such that  

𝑑𝑡(𝑝𝑡
𝛼,∞) = 1 − α. Accordingly, we have 𝑝𝑡,𝑐

𝛼 ∈ �̃�t = [0, 𝑝
𝑡
𝛼,∞], �̃�𝑡

𝛼(𝑝) ≥ 0 and the Bellman equation  
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 �̃�𝑡
𝛼(𝑐) = max

𝑝∈�̃�𝑡

�̃�𝑡
𝛼(𝑝) ⋅ (𝑝 + �̃�𝑡−1

𝛼 (𝑐 − 1)) + (1 − �̃�𝑡
𝛼(𝑝)) ⋅ �̃�𝑡−1

𝛼 (𝑐)  (8) 

with the boundary conditions �̃�0
𝛼(𝑐) = 0 for 𝑐 ≥ 0 and �̃�𝑡

𝛼(𝑐) = −∞ for 𝑐 < 0. We denote the opti-

mal risk-neutral price selected in a state (𝑡, 𝑐) by 𝑝𝑡,𝑐
𝛼 . Now, the following theorem presents our main 

result and relates the risk-neutral problem (8) to the risk-averse dynamic pricing problem (7). 

Theorem 1   For the risk-averse dynamic pricing problem (7) with objective 𝑉𝑡
𝛼(𝑐), a corresponding 

risk-neutral dynamic pricing problem (8) with objective �̃�𝑡
𝛼(𝑐), transformed selling probability 

�̃�𝑡
𝛼(𝑝), and null price 𝑝

𝑡
𝛼,∞ exists, and the following holds: 

a) The objective values of both problems are equal: 𝑉𝑡
𝛼(𝑐) = �̃�𝑡

𝛼(𝑐) ∀ 𝑡, 𝑐. 

b) The optimal risk-averse price 𝑝𝑡,𝑐
𝛼  in all states (𝑡, 𝑐) is given by the transformed risk-neutral 

problem (and vice versa): 

     𝑝𝑡,𝑐
𝛼 = {

𝑝𝑡,𝑐
𝛼 , 𝑝𝑡,𝑐

𝛼 ∈ [0, 𝑝
𝑡
𝛼,∞)

𝑝
𝑡
∞, 𝑝𝑡,𝑐

𝛼 = 𝑝𝑡
𝛼,∞    ∀ 𝑡, 𝑐    

Proof: The proof of this theorem is given in Appendix A.1. 

Lemma 1  The transformation of the selling probability described in Theorem 1 preserves all stand-

ard assumptions (see Section 3.1). Thus, the corresponding optimal price 𝑝𝑡,𝑐
𝛼  is well defined. 

Proof: The proof of this lemma is given in Appendix A.1. 

Lemma 2  Let ∆𝑡,𝑐
𝛼 = 𝑉𝑡−1

𝛼 (𝑐) − 𝑉𝑡−1
𝛼 (𝑐 − 1). If 𝑑𝑡(∆𝑡,𝑐

𝛼 ) > 1 − 𝛼, the optimal solution 𝑝𝑡,𝑐
𝛼  of the risk-

averse problem is an element of the non-empty interval (∆𝑡,𝑐
𝛼 , 𝑝𝑡

𝛼,∞). Otherwise, 𝑝𝑡,𝑐
𝛼 = 𝑝𝑡

∞. 

Proof: The proof of this lemma is given in Appendix A.2. 

Theorem 1 can be explained as follows using Lemma 2. CVaR is the conditional expected value tak-

ing the 𝛼-worst outcomes into account. Moreover, selling (as opposed to not selling) is always the 

better outcome, given that a price above opportunity costs is set. This is the case because by contra-

diction, we see that setting a price lower than the opportunity cost makes no sense because then, sell-

ing would be the undesired event. A higher price (up to the opportunity cost) would simultaneously 

decrease the probability of this undesired event and improve its outcome. Thus, setting a price lower 

than the opportunity costs cannot be optimal. Now, the theorem can be illustrated by distinguishing 

two cases according to Lemma 2. Remember that 𝑑𝑡(𝑝) decreases in 𝑝. 
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In the first case, we have 𝑑𝑡(∆𝑡,𝑐
α ) > 1 − α. Thus, prices exceeding opportunity cost whose selling 

probability exceeds 1 − 𝛼 exist. Hence, the event of selling can be partly included in CVaR’s expecta-

tion stretching over the 𝛼-worst outcomes (Figure 1). To see this, first, consider the upper part of Fig-

ure 1. Blocks visualize the two possible events, selling and not selling. The height of a block visual-

izes the value the firm obtains if the corresponding event occurs. The width of a block denotes the 

event’s probability. The left block stands for not selling with value 𝑉𝑡−1
α (𝑐) and probability 1 −

𝑑𝑡(𝑝𝑡,𝑐
𝛼  ). The right block represents the event of selling with a probability (width) of 𝑑𝑡(𝑝𝑡,𝑐

𝛼  ). It 

consists of two stacked rectangles because its value is the sum of the price 𝑝𝑡,𝑐
𝛼  obtained for the unit 

sold and the value 𝑉𝑡−1
𝛼 (𝑐 − 1) obtained in the future with one unit of capacity less. Their horizontal 

order represents the structure of the solution of CVaR’s dual representation, that is, the values of 

𝑧𝑡−1,𝑐 and 𝑧𝑡−1,𝑐−1 (for not selling and selling, respectively) the inner maximization in (7) that calcu-

lates CVaR chooses. Now, if a price exceeding opportunity cost is chosen, the value for selling is 

higher than the value for not selling. Thus, it is obvious from the objective (7) and the equality con-

straint that in an optimal solution of the calculation of CVaR we have 𝑧𝑡−1,𝑐−1 > 0 if and only if 

𝑧𝑡−1,𝑐 = 1/𝛼. We now interpret 𝛼 ⋅ 𝑧𝑡−1,⋅ as the proportion of an event’s inclusion in CVaR’s expec-

tation, for example, 𝑧𝑡−1,𝑐−1 = 0 means that selling does not contribute, 𝑧𝑡−1,𝑐−1 =
1

2𝛼
 means it is half 

included, and  𝑧𝑡−1,𝑐−1 =
1

𝛼
 means that it is fully included. Additionally denoting the level 𝛼 on the 

vertical axis now allows us to graphically solve CVaR’s minimization. To do this, the 𝑧𝑡−1,⋅ must 

simply reflect the proportion of a block covered by 𝛼. In the figure, not selling is fully included 

(𝑧𝑡−1,𝑐 =
1

𝛼
), whereas selling is only partly included with one third (𝑧𝑡−1,𝑐−1 =

1

3𝛼
). 

Second, consider the lower part of Figure 1. By changing 𝑑𝑡(𝑝) to �̃�𝑡
𝛼(𝑝), we get the conditional 

probability function given the 𝛼-worst outcomes. We then use this probability function to technically 

calculate an expected value as in the risk-neutral problem, which enables the transformation of the 

risk-averse to a risk-neutral dynamic pricing problem. From Lemma 2, we know that the optimal price 

is an inner solution, i.e. 𝑝𝑡,𝑐
α ∈ (∆𝑡,𝑐

α , 𝑝
𝑡
α,∞). 
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Figure 1: Illustration of case 1 

In the second case, we have 𝑑𝑡(∆𝑡,𝑐
α ) ≤ 1 − α, and the time period is skipped in the sense that the firm 

does not take a sale into account and waits for better time periods with higher selling probabilities in 

the future. Now, all prices exceeding opportunity cost have a selling probability less than 1 − 𝛼. Thus, 

the event of selling is not considered in CVaR’s expectation because the 𝛼-worst outcomes include 

only the event of not selling with its probability exceeding 𝛼 (Figure 2) and value 𝑉𝑡−1
𝛼 (𝑐). For 𝑝 =

∆𝑡,𝑐
𝛼 , both outcomes have the same value: 𝑉𝑡−1

𝛼 (𝑐) = ∆𝑡,𝑐
𝛼 + 𝑉𝑡−1

𝛼 (𝑐 − 1). Moreover, this value is also 

obtained for the price with selling probability zero (𝑝 = 𝑝𝑡
∞). Thus, we have CVaR𝛼 = 𝑉𝑡−1

𝛼 (𝑐)  ∀ 𝑝 

with ∆𝑡,𝑐
𝛼 ≤ 𝑝 ≤ 𝑝

𝑡
∞ (or 𝑝 = 𝑝𝑡

∞ if the interval [∆𝑡,𝑐
𝛼 , 𝑝𝑡

∞] is empty) and all these prices are optimal. In 

Theorem 1b) we set 𝑝𝑡,𝑐
𝛼 = 𝑝𝑡

∞—the price at which the selling probability becomes zero—because the 

interval may be empty and because 𝑝
𝑡
∞ is independent of ∆𝑡,𝑐

𝛼  and, thus, can be easily calculated in 

advance. Note that it is not possible to choose the price at which the selling probability in the trans-

formed, risk-neutral problem becomes zero (𝑝𝑡,𝑐
𝛼 = 𝑝𝑡

𝛼,∞
), because this can be below ∆𝑡,𝑐

𝛼  and selling 

would then be strictly worse than not selling, leading to a lower CVaR than pricing at 𝑝
𝑡
∞. 

𝑉𝑡 −1
𝛼 (𝑐) 𝑉𝑡 −1

𝛼 𝑐 − 1     

𝑝𝑡,𝑐
𝛼

va
lu

e

probability

10
1 − 𝑑𝑡 (𝑝𝑡,𝑐

𝛼 ) 𝑑𝑡 (𝑝𝑡,𝑐
𝛼 )

𝛼

𝑉𝑡 −1
𝛼 (𝑐) 𝑉𝑡−1

𝛼

𝑐 − 1

𝑝𝑡,𝑐
𝛼

va
lu

e

10
1 − 𝑑𝑡 (𝑝𝑡,𝑐

𝛼 ) 

𝛼
1 −

1 − 𝑑𝑡 (𝑝𝑡,𝑐
𝛼 ) 

𝛼

probability

⋅
1

𝛼
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Figure 2: Illustration of case 2 

Lemma 3  With time-homogeneous demand, 𝑑𝑡(∆𝑡,𝑐
𝛼 ) > 1 − 𝛼 holds for all 𝑐, 𝑡. 

Proof: The proof of this lemma is given in Appendix A.3. 

Together with Lemma 2, Lemma 3 implies that with time-homogeneous demand, a price with pur-

chase probability zero is never optimal and the optimal price lies in the interval (∆𝑡,𝑐
𝛼 , 𝑝𝑡

𝛼,∞). Other-

wise, a counterexample can easily be derived by using different domains for the distributions of reser-

vation prices such that Case 2 of Lemma 2 applies. Thus, there are no worthless time periods where 

selling is not considered. 

4.2 Monotonicities 

Theorem 1 shows how to transform the risk-averse dynamic pricing problem into a classical risk-

neutral one. This transformation has a huge impact on the solvability of the problem. Over the years, 

the literature on dynamic pricing has tackled many issues such as stating properties of the optimal 

objective values as well as the optimal solutions and developing (approximate) solution methods. 

Using the results of Theorem 1, the existing theory and solution methods for risk-neutral dynamic 

pricing can immediately be applied to risk-averse dynamic pricing. For example, the well-known 

monotonicities regarding time and capacity carry over: 

Proposition 1  The marginal value of capacity is increasing in 𝑡 and decreasing in 𝑐, i.e., ∆𝑡,𝑐
𝛼 ≥

∆𝑡−1,𝑐
𝛼  and ∆𝑡,𝑐

𝛼 ≤ ∆𝑡,𝑐−1
𝛼  for all 𝑐, 𝑡. Consequently, the optimal price 𝑝𝑡,𝑐

𝛼  is increasing in 𝑡 and de-

creasing in 𝑐, i.e., 𝑝𝑡,𝑐
𝛼 ≥ 𝑝𝑡−1,𝑐

𝛼  and 𝑝𝑡,𝑐
𝛼 ≤ 𝑝𝑡,𝑐−1

𝛼  for all 𝑐, 𝑡. 

Proof  Proposition 1 directly follows from Theorem 1, as the results are well-known to hold in risk-

neutral dynamic pricing (see, e.g., Talluri and van Ryzin 2004, pp. 188 and 203–204). 

Finally, a monotonicity regarding the new parameter 𝛼 arises. 

𝑉𝑡−1
𝛼 (𝑐) 𝑉𝑡−1

𝛼

𝑐 − 1

𝑝𝑡,𝑐
𝛼

va
lu

e

probability

10
1 − 𝑑𝑡(𝑝𝑡,𝑐

𝛼 ) 𝑑𝑡(𝑝𝑡,𝑐
𝛼 )

𝛼
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Proposition 2  The optimal objective value 𝑉𝑡
𝛼(𝑐) increases in the risk level 𝛼. 

Proof  The proof can be outlined as follows. Consider the transformed problems for two risk levels 

𝛼′ < 𝛼′′. From the assumptions in Section 3.1 follows that the optimal policy defined by the optimal 

prices 𝑝𝑡,𝑐
𝛼′  ∀(𝑡, 𝑐) for 𝛼′ implies a selling rate 𝑑𝑡

𝛼′
(𝑝𝑡,𝑐

𝛼′ ) for each state (𝑡, 𝑐). We now construct a poli-

cy defined by prices 𝑝𝑡,𝑐
𝛼′′ ∀(𝑡, 𝑐) for 𝛼′′ such that the selling rates in the problem with 𝛼′′ match the 

rates in the former problem, i.e. �̃�𝑡
𝛼′

(𝑝𝑡,𝑐
𝛼′ ) = �̃�𝑡

𝛼′′
(𝑝𝑡,𝑐

𝛼′′) ∀(𝑡, 𝑐). Note that 𝑝𝑡,𝑐
𝛼′′ is not required to be 

optimal but is only chosen to mirror the given selling rates �̃�𝑡
𝛼′

(𝑝𝑡,𝑐
𝛼′ ). With the definition of 𝑑𝑡(𝑝) and 

continuously distributed willingness-to-pays, there is a unique set of prices 𝑝𝑡,𝑐
𝛼′′ that fulfills this re-

quirement. Moreover, it holds that 𝑝𝑡,𝑐
𝛼′ < 𝑝𝑡,𝑐

𝛼′′ ∀(𝑡, 𝑐) as �̃�𝑡
𝛼′

(𝑝𝑡,𝑐
𝛼′ ) = �̃�𝑡

𝛼′′
(𝑝𝑡,𝑐

𝛼′′) ⇔

(1 − 𝑑𝑡(𝑝𝑡,𝑐
𝛼′ )) α′⁄ = (1 − 𝑑𝑡(𝑝𝑡,𝑐

𝛼′′)) α′′⁄  and with 𝛼′ < 𝛼′′ it follows that 𝑑𝑡(𝑝𝑡,𝑐
𝛼′′) < 𝑑𝑡(𝑝𝑡,𝑐

𝛼′ ). This 

obviously requires higher prices for 𝛼′′. The important issue is now that both problems are equivalent 

regarding the (stochastic) evolution of the selling process. That is, the probability of each possible 

evolution of the selling process is the same, while revenues are strictly higher for 𝛼′′. Thus, the objec-

tive value resulting from the optimal policy of the lower risk level 𝛼′ is less than the objective value 

resulting from the (not even necessarily optimal) policy we constructed for the higher risk level 𝛼′′, 

which completes the proof of Proposition 2. 

The meaning of Proposition 2 is straightforward. As CvaR𝛼 monotonically increases in 𝛼, the objec-

tive value, which is a recursive calculation of CvaR𝛼, also increases in 𝛼. 

4.3 Combination of expected value and CVaR 

To ease notation, we focused on CVaR only so far. However, it is possible to adapt Theorem 1 to the 

following coherent risk measure: 

 𝜌𝑡 = (1 − 𝜆)𝔼[𝑅𝑡] + 𝜆CVaR𝛼(𝑅𝑡)    (9) 

The parameter 𝜆 ∈ [0,1) can be tuned for a compromise between optimizing on average and consider-

ing risk aversion. This generalization still allows coming up with modified selling probabilities. 

Theorem 2   The risk-averse dynamic pricing problem 𝑉𝑡
𝛼,𝜆(𝑐) optimizing a combination of expected 

value and CVaR (9) can be transformed to a risk-neutral dynamic pricing problem �̃�𝑡
𝛼,𝜆(𝑐) according 
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to (3) with prices 𝑝𝑡
𝛼,𝛾

∈ 𝒫𝑡 = [0, 𝑝𝑡
∞] and a modified selling probability that distinguishes two cases 

depending on whether the event of selling is considered in CVaR’s expectation: 

 �̃�𝑡
𝛼,𝛾(𝑝)  = {

(1 − 𝜆) ⋅ 𝑑𝑡(𝑝) + 𝜆(1 − (1 − 𝑑𝑡(𝑝)) α⁄ ) , 𝑑𝑡(𝑝) ≥ 1 − 𝛼

(1 − 𝜆) ⋅ 𝑑(𝑝)                      , 0 ≤ 𝑑𝑡(𝑝) < 1 − 𝛼
   ∀ 𝑡  (10) 

Then, the following holds: 

a) The objective values of both problems are equal: 𝑉𝑡
𝛼,𝜆(𝑐) = �̃�𝑡

𝛼,𝜆(𝑐) ∀ 𝑡, 𝑐. 

b) The optimal risk-averse price 𝑝𝑡,𝑐
𝛼,𝜆

 in all states (𝑡, 𝑐) is given by the risk-neutral problem with 

�̃�𝑡
𝛼,𝜆(𝑝) (and vice versa):𝑝𝑡,𝑐

𝛼,𝜆 = 𝑝𝑡
𝛼,𝜆   ∀ 𝑡, 𝑐    

 

Proof: The proof of this theorem is given in Appendix A.4. 

Lemma 4  The transformation of the selling probability described in Theorem 2 preserves the first 

standard assumption, that is, −
�̃�𝑡

′′(𝑝)

�̃�𝑡
′(𝑝)

< −2
�̃�𝑡

′(𝑝)

�̃�𝑡(𝑝)
 ∀ 𝑡 ∈ {1, 2, … , 𝑇}, 𝑝 ∈ (0, 𝑝𝑡

∞) (see Section 3.1). 

Thus, the corresponding optimal price 𝑝𝑡,𝑐
𝛼,𝜆

 is well defined. 

Proof: It is necessary to show that the assumption is preserved for all 𝑝, i.e. that the revenue function 

is concave in demand. It is easy to see that it is preserved in the second case. The proof for the first 

case is based on the fact that the modified selling probability is a weighted sum of the original proba-

bility (for which the assumption holds) and the probability modified according to Theorem 1 (for 

which we know from Lemma 1 that the assumption holds). Thus, the resulting revenue function is the 

sum of two concave functions, which again is concave. 

This shows how to transform a risk-averse dynamic pricing problem considering a combination of 

CVaR and expected value into a classical risk-neutral one. Although the modification of the selling 

probability now distinguishes two cases, it is important to recognize that the transformation is still 

static in the sense that it can be done offline in advance. The transformed selling probability is a 

(time-dependent) function of the original selling probability only. It does not depend on the state or 

the solution process. Thus, we still obtain a standard dynamic pricing problem, although with slightly 

more complicated modified selling probabilities, which might render the usage of existing algorithms 

more difficult. Nonetheless, all standard structural results including the monotonicities discussed in 

the previous subsection carry over. 
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4.4 Relation of risk-averse and risk-neutral solution 

In this section, we again focus on CVaR only and compare a risk-averse and a risk-neutral decision 

maker who solve problem (7) and (3), respectively. Note that in both problems, the original selling 

probabilities 𝑑𝑡(𝑝) are used. The transformed problem described in Section 4.1 and the modified sell-

ing probabilities are not considered here. In particular, we show that the risk-averse and the risk-

neutral solution are proportional under certain conditions.  

Proposition 3  If the distribution of the willingness-to-pay 𝐹𝑡(𝑝) and its density 𝑓𝑡(𝑝) satisfy the fol-

lowing conditions for a given risk level 𝛼, for all 𝑡, for all 𝑝 ∈ 𝒫𝑡, and ∃𝑦 ∈ ℝ such that 

a) 𝐹𝑡(𝛼𝑦𝑝) = 𝛼 ⋅ 𝐹𝑡(𝑝) and 

b) 𝑓𝑡(𝛼𝑦𝑝) = 𝛼1−𝑦 ⋅ 𝑓𝑡(𝑝),  

then it holds that 𝑝𝑡,𝑐
𝛼 = 𝛼𝑦 ⋅ 𝑝𝑡,𝑐

1  and 𝑉𝑡
𝛼(𝑐) = 𝛼𝑦 ⋅ 𝑉𝑡

1(𝑐) for all 𝑐, 𝑡. 

Proof: The proof of this proposition is given in Appendix A.4. 

Remark 1  Proposition 3 implies that the optimal price 𝑝𝑡,𝑐
α  increases in the probability level 𝛼. 

Proposition 3 shows a surprisingly straightforward connection between the optimal policies and ob-

jective values. The optimal price 𝑝𝑡,𝑐
α  a risk-averse firm sets is linear in the price 𝑝𝑡,𝑐

1  a risk-neutral 

firm sets with a proportionality factor of 𝛼𝑦, where 𝛼 is the given risk level and 𝑦 follows from the 

structure of the distribution of the willingness-to-pay 𝐹𝑡(𝑝). The same relation holds for the objective 

values. This is especially remarkable in the context of literature that suggests risk-averse decision 

makers to heuristically consider risk by discounting. For example, Huang and Chang (2011) and 

Koenig and Meissner (2015b) propose capacity control approaches based on discounting opportunity 

cost. Different to this literature, we provide the optimal discount factor, i.e., 𝛼𝑦 together with a sound 

theoretical foundation. 

Several distributions satisfy the conditions of Proposition 3. One example is the uniform distribution. 

Then, we have 𝑦 = 1 and obtain the linear transformation 𝑝𝑡,𝑐
α = 𝛼 ⋅ 𝑝𝑡,𝑐

1  and 𝑉𝑡
α(𝑐) = 𝛼 ⋅ 𝑉𝑡

1(c). 

Thus, the optimal price 𝑝𝑡,𝑐
α  and the value of the objective function 𝑉𝑡

α(𝑐) are calculated by simply 

discounting 𝑝𝑡,𝑐
1  and 𝑉𝑡

1(𝑐) with the discount factor (aka risk level) 𝛼, respectively. Two more exam-

ples are the distribution functions 𝐹(𝑝) = 𝑝2 (𝑦 = 1/2) and 𝐹(𝑝) = √𝑝 (𝑦 = 2) with 𝑝 normalized to 

[0, 1]. We obtain 𝑝𝑡,𝑐
α = √𝛼 ⋅ 𝑝𝑡,𝑐

1  and 𝑝𝑡,𝑐
α = 𝛼2 ⋅ 𝑝𝑡,𝑐

1 , respectively. Among others, every distribution 
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function with the structure 𝐹(𝑝) = 𝑏0 ⋅ 𝑝𝑏1 (𝑏0, 𝑏1 > 0) fulfills the conditions of Proposition 3 and the 

corresponding linear transformation is given by 𝑝𝑡,𝑐
α = 𝛼

1

𝑏1 ⋅ 𝑝𝑡,𝑐
1 . 

Remark 2  Robust dynamic pricing assumes that the WTP distribution is not exactly known. For ex-

ample, Lim and Shantikumar (2007) use relative entropy, a distance measure for distributions, to de-

scribe uncertainty and maximize worst-case expected revenue. Theorem 1 and Proposition 3 can also 

be interpreted in the context of robust dynamic pricing with a maximin objective. The probability 

measure ℚ is not exactly known, but belongs to an uncertainty set around a (forecasted) measure ℙ. 

This connection can be seen by writing CVaR’s dual representation (4) as inf
ℚ∈𝒰

{𝔼ℚ[𝑅]} with 𝒰 =

{ℚ ∈ 𝔓|ℚ = 𝑍ℙ, 𝔼[𝑍] = 1,  0 ≤ 𝑍 ≤
1

𝛼
}. Then, our objective can be interpreted as an adversarial 

nature choosing the worst measure ℚ from the uncertainty set 𝒰.  

4.5 Example: U[0,1] distributed reservation prices 

In this section, we consider a time-homogeneous uniform distribution of the willingness-to-pay on the 

interval [0, 1]. Obviously, all properties described in Sections 4.1 and 4.2 apply. The optimization 

problem becomes 

𝑉𝑡
𝛼(𝑐) = max

𝑝∈[0,1]
min

𝑧𝑡−1,𝑐−1,𝑧𝑡−1,𝑐

(1 − 𝑝) ⋅ 𝑧𝑡−1,𝑐−1 ⋅ (𝑝 + 𝑉𝑡−1
𝛼 (𝑐 − 1)) + 𝑝 ⋅ 𝑧𝑡−1,𝑐 ⋅ 𝑉𝑡−1

𝛼 (𝑐) 

subject to 

 1 = 𝑝 ⋅ 𝑧𝑡−1,𝑐 + (1 − 𝑝) ⋅ 𝑧𝑡−1,𝑐−1   

 0 ≤ 𝑧𝑡−1,𝑐 ≤
1

𝛼
,   0 ≤ 𝑧𝑡−1,𝑐−1 ≤

1

𝛼
   

To solve this optimization problem, we can either use Theorem 1 or Proposition 3. Following Theo-

rem 1, we have �̃�𝑡
𝛼(𝑝) = 1 −

𝑝

𝛼
 and 𝒫𝑡 = [0, 𝛼]. Thus, we solve  

 �̃�𝑡
𝛼(𝑐) = max

𝑝∈[0,𝛼]
(1 −

𝑝

𝛼
) ⋅ (𝑝 + �̃�𝑡−1

𝛼 (𝑐 − 1)) +
𝑝

𝛼
⋅ �̃�𝑡−1

𝛼 (𝑐). 

The optimal solution must obey the necessary and sufficient f.o.c., i.e.,   

1 −
𝑝

𝛼
−

1

𝛼
⋅ (𝑝 + 𝑉𝑡−1

𝛼 (𝑐 − 1)) +
1

𝛼
⋅ 𝑉𝑡−1

𝛼 (𝑐) = 0. After rearranging, the formula can be written as 

𝑝𝑡,𝑐
𝛼 =

1

2
⋅ (𝛼 + 𝑉𝑡−1

𝛼 (𝑐) − 𝑉𝑡−1
𝛼 (𝑐 − 1)).  
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Following Proposition 3, we need to calculate 𝑝𝑡,𝑐
𝛼 = 𝛼 ⋅ 𝑝𝑡,𝑐

1  and 𝑉𝑡
𝛼(𝑐) = 𝛼 ⋅ 𝑉𝑡

1(𝑐). Thus, we first 

solve  𝑉𝑡
1(𝑐) = max

𝑝∈[0,1]
(1 − 𝑝) ⋅ (𝑝 + 𝑉𝑡−1

1 (𝑐 − 1)) + 𝑝 ⋅ 𝑉𝑡−1
1 (𝑐). Again, the optimal solutions must 

satisfy the f.o.c.: 1 − 𝑝 − (𝑝 + 𝑉𝑡−1
1 (𝑐 − 1)) + 𝑉𝑡−1

1 (𝑐) = 0. After rearranging, the formula can be 

written as 𝑝𝑡,𝑐
1 =

1

2
⋅ (1 + 𝑉𝑡−1

1 (𝑐) − 𝑉𝑡−1
1 (𝑐 − 1)).  

Now using the results of Proposition 3, we obtain that 𝑝𝑡,𝑐
𝛼 = 𝛼 ⋅ 𝑝𝑡,𝑐

1 =
1

2
⋅ (𝛼 + 𝛼 ⋅ 𝑉𝑡−1

1 (𝑐) − 𝛼 ⋅

𝑉𝑡−1
1 (𝑐 − 1)) =

1

2
⋅ (𝛼 + 𝑉𝑡−1

𝛼 (𝑐) − 𝑉𝑡−1
𝛼 (𝑐 − 1)) and both approaches provide the same optimal solu-

tion. 

To summarize, we state: The solution of the risk-averse problem (7) with 𝑈[0,1] distributed WTP is 

given by 𝑝𝑡,𝑐
𝛼 =

1

2
⋅ (𝛼 + ∆𝑡−1,𝑐

𝛼 ). The corresponding optimal objective value is 𝑉𝑡
𝛼(𝑐) = 𝑉𝑡−1

𝛼 (𝑐 −

1) +
1

𝛼
⋅ (𝑝𝑡,𝑐

𝛼 )
2
. 

5 Numerical studies 

In this section, we consider a company (think of an airline) that sells a fixed capacity during a given 

selling horizon. We numerically compare the results of our approach to two common risk-averse ap-

proaches from literature. We compare the mechanisms by evaluating the results of the policies in 

terms of expected value and standard deviation. By varying their parameters, we are able to analyze 

the tradeoff between risk aversion and maximizing expected revenue. In Subsection 5.1, we stick to 

the standard setting of dynamic pricing and allow selling 𝐶 units at most. We then extend the studies 

with a change in the setting, now allowing overbooking, as is common for example in the airline in-

dustry (Subsection 5.2). In particular, we investigate: 

 CVaR is the approach we proposed in model (7).  

 DiscOC is a heuristic mechanism derived from the risk-neutral dynamic program by taking 

opportunity costs only partially into account when determining the price to set. This mecha-

nism was developed by Huang and Chang (2011) and investigated by Koenig and Meissner 

(2015a) in the context of capacity control and can easily be adapted to dynamic pricing. The 

risk-neutral dynamic program (3) is changed to  

𝑉𝑡
𝛽

(𝑐) = 𝑑𝑡 (𝑝𝑡,𝑐
𝛽

) ⋅ (𝑝𝑡,𝑐
𝛽

+ 𝑉𝑡−1
𝛽 (𝑐 − 1)) + (1 − 𝑑𝑡 (𝑝𝑡,𝑐

𝛽
)) ⋅ 𝑉𝑡−1

𝛽 (𝑐) with 𝑝𝑡,𝑐
𝛽

=
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argmax
𝑝∈𝒫𝑡

𝑑𝑡(𝑝) ⋅ (𝑝 − 𝛽 ⋅ (𝑉𝑡
𝛽(𝑐) − 𝑉𝑡

𝛽(𝑐 − 1))) and the discounting factor 𝛽 ∈ [0, 1]. Prices 

are lower than in a risk-neutral setting, i.e. for 𝛽 = 1, and thus leading to a higher selling 

probability. 

 ExpUt is a mechanism that maximizes the utility of total revenue 𝑅 given by the exponential 

utility function −𝑒−𝛾𝑅 with 𝛾 ∈ [0, ∞). Among others, Barz and Waldmann (2007) and Li 

and Zhuang (2009) used this popular approach to risk aversion (see also Gönsch 2017 for 

more references). The dynamic program is given by 𝑉𝑡
𝛾(𝑐) = max

𝑝∈𝒫𝑡

 (1 − 𝑑𝑡(𝑝)) ⋅ 𝑉𝑡−1
𝛾 (𝑐) +

𝑑𝑡(𝑝) ⋅ (𝑒−𝛾𝑝 ⋅ 𝑉𝑡−1
𝛾 (𝑐 − 1)) with boundary conditions 𝑉0

𝛾(𝑐) = −1 for 𝑐 ≥ 0 and 𝑉𝑡
𝛾(𝑐) =

−∞ for 𝑐 < 0. It can be shown that for 𝛾 → 0 this approach approximates a maximization of 

𝔼[𝑅] −
𝛾

2
𝑉𝑎𝑟(𝑅), and, thus a risk-neutral objective in the limit; for 𝛾 → ∞ it reduces to a 

worst-case optimization (see Barz and Waldmann 2007). 

Every mechanism produces a policy containing (optimal) selling prices for every possible state. We 

generated 10,000 customer streams in advance and applied the policies obtained from the mecha-

nisms to the same streams. A simulation run of one customer stream mirrors a whole sales process 

with a price stated in each period according to the policy of the investigated mechanism and observing 

the arriving costumer’s decision before moving on to the next period. Finally, the 10,000 outcomes 

for one policy provide the basis for estimating its expected revenue and standard deviation. 

Although not every evaluation is shown in the following, we analyzed 𝑇 = 10 and 𝐶 = 1, … , 10 using 

U[0,1] distributed WTP. We generated several policies with every mechanism by varying the parame-

ter that describes the degree of risk aversion. Particularly, we choose 𝛼 = 0.01, 0.02, … , 1 for CVaR, 

the same values as discount factor 𝛽 for DiscOC and 𝛾 = 0.05, 0.1, … , 1, 1.25, … , 20 for ExpUt. 

5.1 Tradeoff between risk and revenue without overbooking 

As mentioned, every evaluation of a policy results in 10,000 revenues that can be used to estimate the 

expected value and the standard deviation resulting from the underlying policy. These values are 

shown in the following figure. By varying the risk parameter (𝛼, 𝛽, and 𝛾), we generate multiple poli-

cies for every mechanism. We evaluate the policies and connect the data points resulting from the 

same mechanism using consecutive parameter values to a curve in Figure 3. 
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Figure 3: Tradeoff between expected value and standard deviation with 𝑇 = 10 and 𝐶 = 1 (upper left), 𝐶 = 4 

(upper right), 𝐶 = 7 (lower left) and 𝐶 = 10 (lower right) 

For every mechanism, a higher degree of risk aversion, i.e. a lower 𝛼, a lower 𝛽, or a higher 𝛾, leads 

to a lower standard deviation and a lower expected value (except DiscOC for 𝐶 = 10). The amount of 

capacity has an impact on the performance of the mechanisms. While CVaR has an overall competi-

tive performance, ExpUt is (weakly) dominated most of the time by CVaR (and partially by DiscOC). 

DiscOC excels in the case of a high scarcity (𝐶 = 1). However, the usability of DiscOC vanishes 

around 𝐶 ≥ 7 as can be seen in Figure 3 where DiscOC only attains a very small interval of standard 

deviations for 𝐶 = 7 and 𝐶 = 10. This effect and the convergence of ExpUt to CVaR can be ex-

plained as follows: Opportunity costs are non-increasing in capacity and for 𝐶 = 7 they are already 

nearly zero. Thus, varying the discount factor of the opportunity costs, i.e. 𝛽, impacts the policy re-

sulting from DiscOC only slightly. Consequently, there are only small differences between the ex-

pected value and standard deviation resulting from DiscOC with different discount factors 𝛽. Simul-

taneously, the policies of ExpUt and CVaR are hardly affected by opportunity costs as that they are 

nearly zero. Thus, the prices are changing very little over the selling horizon. Contrary to DiscOC, the 

risk parameters of CVaR and ExpUt, i.e. 𝛼 and 𝛾 respectively, still have a high impact on the corre-
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sponding nearly static policy. All in all, we can say that for every 𝛼 there is a 𝛾 such that the resulting 

nearly static policies are varying only to a small degree, and thus, expected value and standard devia-

tion are nearly the same. For 𝐶 = 10, opportunity costs are zero and stay zero for the whole selling 

process as we always have at least one capacity per customer left. Thus, DiscOC is completely inde-

pendent of 𝛽 and always leads to the risk-neutral policy. Moreover, every mechanism now has a static 

policy and we can always find for every 𝛼 a corresponding 𝛾 such that CVaR and ExpUt produce ex-

actly the same policy resulting in the same tradeoffs between expected value and standard deviation. 

To check the robustness of the aforementioned results, we next consider a bigger setting with a longer 

time horizon. In particular, Figure 4 shows the tradeoff between expected value and standard devia-

tion with 𝑇 = 50 for the two capacities 𝐶 = 20 (left column) and 𝐶 = 35 (right column). In addition 

to the uniform distribution used up to now (top row), we also consider the additional distributions 

𝐹(𝑝) = √𝑝 (middle row) and 𝐹(𝑝) = 𝑝2 (bottom row). By and large, the aforementioned results are 

still valid. As the time horizon was scaled up with a factor of five, we briefly compare the same 

time/capacity ratios, that is, 𝐶 = 20 with 𝐶 = 4 and 𝐶 = 35 with 𝐶 = 7. Regarding the uniform dis-

tribution, almost nothing changed. For 𝐶 = 20, DiscOC spans a slightly larger range of standard devi-

ations and dominates CVaR at its lower end. For 𝐹(𝑝) = √𝑝, DiscOC is basically not applicable and 

CVaR dominates ExpUt. For 𝐹(𝑝) = 𝑝2 and 𝐶 = 20, DiscOC performs very good, attains all standard 

deviations, and dominates all other methods for the lower third of the interval. For 𝐶 = 35, it is again 

basically useless. CVaR still attains all standard deviations and strictly dominates ExpUt for about the 

lower half of the interval. 
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Figure 4: Tradeoff between expected value and standard deviation with 𝑇 = 50, 𝐶 = 20 (left column), and 𝐶 =

35 (right column) for different distributions of the willingness to pay: 𝐹(𝑝) = 𝑝 (uniform distribution, top row), 

𝐹(𝑝) = √𝑝 (middle row), and 𝐹(𝑝) = 𝑝2 (bottom row)  

Finally, we briefly discuss runtime. From a theoretical perspective, CVaR is very efficient. The num-

ber of states is the same as in risk-neutral dynamic pricing. Likewise, for a variety of demand distribu-

tions, there is a closed-form solution for the one-stage optimization problem solved in each state. As 

expected, Figure 5 shows that the algorithm is very fast and runtime increases only linearly in 𝑇 and 

𝐶, that is, we have 𝒪(𝑇 ⋅ 𝐶). The minor deviation of actual runtime from the predicted scaling is prob-

ably due to operating system tasks on the CPU and similar technical issues. We did not depict the 
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runtime for DiscOC and ExpUt, as it is comparable. For a given 𝛽, DiscOC considers the same states 

and also enjoys a closed-form solution. ExpUt also considers the same states and, thus, has a compa-

rable runtime. However, we solved the one-stage problem in ExpUt numerically, which scales 

runtimes by a constant factor. 

 

 
Figure 5: Runtime of CVaR depending on problem size  

5.2 Tradeoff between risk and revenue with overbooking 

We now add the possibility to overbook to our basic setting (𝑇 = 10). This means that the firm is 

allowed to sell more units of the product than capacity is available. It may be beneficial because we 

now assume that buyers have a given show rate determining the probability that they claim their 

product in the service period after the selling horizon. Whenever a customer’s claim cannot be met, 

the firm has to pay a penalty. To optimize the selling horizon, the firm anticipates that some custom-

ers might not show up. Technically speaking, the boundary conditions of the model must be adapted 

to consider show rate and penalty costs if more capacity has been sold then available. Thus, additional 

states have to be taken into account. In particular, now states with 𝑡 ∈ {1, 2, … , 𝑇} and 𝑐 ∈

{𝐶 − 𝑇, 𝐶 − 𝑇 − 1, … , 0, 1, 2, … , 𝐶} are possible, and thus the model has to deal with negative capaci-

ties. The boundary conditions have to be changed to the effect that, for 𝑡 = 0 and 𝑐 < 0, the number 

of customers’ claims depends on the show rate and the number of sold products and follows a binomi-

al distribution. For every possible number of claims, the penalty costs for every claim exceeding ca-

pacity have to be considered. To evaluate these states, the mechanisms proceed as follows for the last 

period 𝑡 = 0: CVaR calculates the conditional value at risk of the penalty cost’s distribution, DiscOC 

uses the expected penalty and ExpUt the expected utility of the penalty costs. With the new boundary 

conditions and the state space adapted to overbooking, the mechanisms can use their underlying state-
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wise optimization during the selling horizon (𝑡 ∈ {1, 2, … , 𝑇}). Only for DiscOC, a small change is 

necessary to reflect risk aversion. We now increase the opportunity costs whenever there is no capaci-

ty left, i.e. we use 𝑝𝑡,𝑐
𝛽

= argmax
𝑝∈𝒫𝑡

𝑑𝑡(𝑝) ⋅ (𝑝 −
1

𝛽
⋅ (𝑉𝑡

𝛽(𝑐) − 𝑉𝑡
𝛽(𝑐 − 1))) if 𝑐 ≤ 0. By doing so, 

compared to the risk-neutral approach, we increase the selling probability while 𝑐 > 0 and decrease it 

as soon as we run out of capacity because less overbooking is intuitively risk-averse. 

In Figure 6, we show the results of our simulation study using a show rate of 0.8 and penalty costs of 

1, i.e. the highest possible WTP. We varied both parameters in further studies but found the results of 

no further interest, and thus omitted them in this paper. 

 

 
Figure 6: Tradeoff between expected value and standard deviation with overbooking with 𝑇 = 10 and 𝐶 = 1 

(upper left), 𝐶 = 4 (upper right), 𝐶 = 7 (lower left) and 𝐶 = 10 (lower right) 

Obviously, CVaR has the greatest change in its structure. As we can see, there are several gaps in its 

curve compared to the previous subsection without overbooking. A closer look in the data shows that 

CVaR has for every 𝛼 a certain amount of overbooking it permits. When this amount changes, this 

structural change leads to a gap in the curve. In particular, for 𝐶 = 1 overbooking is completely 
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banned for 𝛼 ∈ [0.01, 0.8], partially allowed up to one unit for 𝛼 ∈ [0.81, 0.84] and fully allowed, i.e. 

up to 9 units, for 𝛼 ∈ [0.85, 1] (𝐶 = 4: no overbooking for 𝛼 ∈ [0.01, 0.57], up to 1 unit for 𝛼 ∈

[0.58, 0.76], up to 2 units for 𝛼 ∈ [0.77, 0.84] and up to 6 units for 𝛼 ∈ [0.85, 1]; 𝐶 = 7: 0 for 𝛼 ∈

[0.01, 0.4], up to 1 unit for 𝛼 ∈ [0.41, 0.63], up to 2 units for 𝛼 ∈ [0.64, 0.76] and up to 3 units for 

𝛼 ∈ [0.77, 1]; 𝐶 = 10: no overbooking possible). As the conditional value at risk only considers the 

𝛼-worst outcomes, the states with 𝑡 = 0 and 𝑐 < 0 are highly negative valued because the mechanism 

focuses on the cases where most if not all customers claim their overbooked products.  

As an example, consider the following setting: 𝐶 = 1, 𝛼 = 0.8, show rate 0.8, penalty costs 1. We 

start with calculating the boundary conditions for 𝑡 = 0 and 𝑐 = 0 as well as 𝑐 = −1, i.e. 𝑉0
𝛼(0) and 

𝑉0
𝛼(−1). Obviously, 𝑉0

𝛼(0) = 0. To calculate 𝑉0
𝛼(−1), we have to consider the probabilities that both 

customers (𝐶 − 𝑐 = 1 − (−1) = 2) claim their purchased product, that only one customer shows up 

to claim his product or no customer claims a product at all. The probabilities for these events are 0.64, 

0.32 and 0.04, respectively. The 𝛼-worst outcomes are two and one claims with penalties of 1 and 0, 

respectively. Thus, we have 𝑉0
𝛼(−1) = 𝐶𝑉𝑎𝑟0.8 =

0.64

0.8
⋅ (−1) +

0.16

0.8
⋅ 0 = −0.8. Now, when optimiz-

ing 𝑉1
𝛼(0), we consider opportunity costs of 0.8. As this is greater than or equal to 𝛼 = 0.8, the opti-

mal price is given by 𝑝
𝑡
∞. After similar considerations, we find that 𝑝𝑡

∞ is the optimal solution for 

every 𝑉𝑡
𝛼(0) with 𝑡 = 1, … , 10, and thus overbooking is completely avoided in this example. 

The difference between no overbooking and up to 1 unit is noticeable for CVaR. While the expected 

value slightly increases, there is a huge increase in the standard deviation (first gap from left). By 

comparison, CVaR tends to set lower prices than the other mechanisms, especially after the first gap. 

Thereby, in the simulation, CVaR sells more and has to pay more often than DiscOC and ExpUt the 

penalty costs. Moreover, the impact of the penalty costs is higher for CVaR as the prices earned for 

every overbooked capacity are lower. Together, this leads to a significantly higher increase in stand-

ard deviation. Another interesting observation is that for 𝐶 = 1 and 𝛼 ≥ 0.85 the expected value is 

increasing and the standard deviation is decreasing in 𝛼. This seems contra intuitive as a lower risk 

aversion, i.e. a higher 𝛼, is expected to generate a riskier policy resulting in a higher standard devia-

tion. The explanation of this observation is as follows: A higher 𝛼 leads to higher prices. Although 

higher prices lead to an increased variation of the revenues, the overall standard deviation decreases 

as the selling probability, and thus the probability of paying penalty costs, decreases. 
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Comparing the performance of the mechanisms, we can observe that CVaR is a good choice whenever 

capacity is quite high (𝐶 = 7 and 𝐶 = 10) or risk aversion is strong (left part of the curves in Figure 

6, upper left and upper right). DiscOC performs very well whenever capacity is scarce, while ExpUt is 

mostly dominated by one or two of the other mechanisms. 

6 Conclusion and managerial implications 

In this paper, we have shown how the risk-averse dynamic pricing problem with nested CVaR can be 

transformed to an equivalent, standard dynamic pricing problem maximizing expected revenue. The 

transformation is easy to apply and, thus, the risk-averse problem is easy to compute. Besides time 

consistency, this is a major advantage compared to other approaches to include risk in dynamic pric-

ing, which usually considerably increase the computational burden. As a consequence of the trans-

formation, the well-known monotonicities carry over and new, risk-related monotonicities have been 

shown. Finally, under certain conditions regarding demand, the risk-neutral and risk-averse solutions 

are proportional regarding objective value and optimal prices. 

In a numerical study, we have analyzed the tradeoff between expected revenue and standard deviation 

for dynamic pricing with and without overbooking. In this regard, the new approach performs very 

well compared to two standard approaches from literature. 

Our results have several direct implications for practice. First and foremost, they allow to use existing, 

standard dynamic pricing algorithms and systems for a straightforward, theoretically sound, risk-

averse dynamic pricing. Second, the modification of the selling probabilities is in line with intuitive 

behavior of many risk-averse decision makers who often use “conservative” estimates of selling prob-

abilities. Finally, the proportionality of the risk-averse and the risk-neutral solution not only provides 

an easy alternative to solve the risk-averse dynamic pricing problem. It also shows the objective risk-

averse managers, who ‘heuristically’ discount optimal prices, may implicitly optimize. 
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Appendix: Time-Consistent, Risk-Averse Dynamic Pricing 

A.1 Proof of Lemma 1 and Theorem 1  

First, we show that the standard assumptions regarding the selling probabilities are preserved (Lemma 

1). Second, we show statements a) and b) by induction (Theorem 1). 

A.1.1 Preservation of standard assumptions regarding selling probabilities (Lemma 1) 

First, we show the preservation of all standard assumptions regarding the selling probabilities. They 

have in common that the probability function 𝑑𝑡(𝑝) is two times continuously differentiable and 

strictly monotonically decreasing on (0, 𝑝𝑡
∞) ∀ 𝑡 ∈ {1, 2, … , 𝑇}. Moreover, at least one of the follow-

ing properties holds: 

1. −
𝑑𝑡

′′(𝑝)

𝑑𝑡
′(𝑝)

< −2
𝑑𝑡

′(𝑝)

𝑑𝑡(𝑝)
 ∀ 𝑡 ∈ {1, 2, … , 𝑇}, 𝑝 ∈ (0, 𝑝𝑡

∞) 

2. −
𝑑𝑡

′′(𝑝)

𝑑𝑡
′(𝑝)

< −
𝑑𝑡

′(𝑝)

𝑑𝑡(𝑝)
+

1

𝑝
 ∀ 𝑡 ∈ {1, 2, … , 𝑇}, 𝑝 ∈ (0, 𝑝𝑡

∞) 

Obviously, it holds that �̃�𝑡
𝛼(𝑝) = 1 − (1 − 𝑑𝑡(𝑝)) 𝛼⁄  is also two times continuously differentiable 

and strictly monotonically decreasing on (0, 𝑝𝑡
∞). On this interval it follows 

1. −
(�̃�𝑡

𝛼)
′′

(𝑝)

(�̃�𝑡
𝛼)

′
(𝑝)

= −
𝑑𝑡

′′(𝑝)

𝑑𝑡
′(𝑝)

< −2
𝑑𝑡

′(𝑝)

𝑑𝑡(𝑝)
= −2

𝛼⋅(�̃�𝑡
𝛼)

′
(𝑝)

𝑑𝑡(𝑝)
≤ −2

(�̃�𝑡
𝛼)

′
(𝑝)

𝑑𝑡(𝑝)
≤ −2

(�̃�𝑡
𝛼)

′
(𝑝)

�̃�𝑡
𝛼(𝑝)

 

2. −
(�̃�𝑡

𝛼)
′′

(𝑝)

(�̃�𝑡
𝛼)

′
(𝑝)

= −
𝑑𝑡

′′(𝑝)

𝑑𝑡
′(𝑝)

< −
𝑑𝑡

′(𝑝)

𝑑𝑡(𝑝)
+

1

𝑝
≤ −

(�̃�𝑡
𝛼)

′
(𝑝)

�̃�𝑡
𝛼(𝑝)

+
1

𝑝
 

As �̃�𝑡
𝛼(𝑝) is monotone decreasing and thus, (�̃�𝑡

𝛼)
′
(𝑝) < 0, the last inequality of 1 holds if and only if 

�̃�𝑡
𝛼(𝑝) ≤ 𝑑𝑡(𝑝). By definition of �̃�𝑡

𝛼(𝑝), this is true as �̃�𝑡
𝛼(𝑝) ≤ 𝑑𝑡(𝑝)  ⇔  1 − (1 − 𝑑𝑡(𝑝)) 𝛼⁄ ≤

𝑑𝑡(𝑝)  ⇔  𝛼 − (1 − 𝑑𝑡(𝑝)) ≤ 𝛼 ⋅ 𝑑𝑡(𝑝)  ⇔  𝛼 ⋅ (1 − 𝑑𝑡(𝑝)) ≤ 1 − 𝑑𝑡(𝑝)  ⇔  𝛼 ≤ 1. The last ine-

quality of 2. holds with the same arguments. 
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A.1.2 Proof of a) and b) by induction (Theorem 1) 

Next, we show by induction that the optimal objective values of both optimization problems are equal 

and, simultaneously, that the optimal risk-averse price 𝑝𝑡,𝑐
𝛼  is given by the (transformed) risk neutral 

problem (and vice versa). For 𝑡 = 0, the boundary conditions of both optimization problems are the 

same and, thus, the objective values are the same (induction basis). In the induction step, we assume 

that 𝑉𝑡−1
𝛼 (𝑐) = �̃�𝑡−1

𝛼 (𝑐) ∀ 𝑐 (induction hypothesis, IH) and show that this equality also holds for 𝑡. 

Simultaneously, we confirm that 𝑝𝑡,𝑐
𝛼 = {

𝑝𝑡,𝑐
 𝛼 , 𝑝𝑡,𝑐

𝛼 ∈ [0, 𝑝
𝑡
𝛼,∞)

𝑝
𝑡
∞, 𝑝𝑡,𝑐

𝛼 = 𝑝𝑡
𝛼,∞    ∀ 𝑡, 𝑐. 

To be precise, we distinguish two cases regarding the optimal risk-averse price 𝑝𝑡,𝑐
𝛼 ∈ [0, 𝑝𝑡

∞]: 𝑝𝑡,𝑐
𝛼 ∈

[0, 𝑝
𝑡
𝛼,∞) and 𝑝𝑡,𝑐

𝛼 ∈ [𝑝
𝑡
𝛼,∞, 𝑝𝑡

∞]. We examine both intervals and show the equality of the value func-

tions in both cases, i.e. 𝑉𝑡
𝛼(𝑐) = �̃�𝑡

𝛼(𝑐). While this can be straightforwardly shown for 𝑝𝑡,𝑐
𝛼 ∈

[𝑝
𝑡
𝛼,∞, 𝑝𝑡

∞], we have to take an indirect way to show this equality for 𝑝𝑡,𝑐
𝛼 ∈ [0, 𝑝

𝑡
𝛼,∞) . There, we start 

with showing that the optimal value of the risk-averse problem does not exceed the optimal value of 

the transformed, risk-neutral problem. Next, we show that this relation also holds vice versa. Finally, 

we confirm the relation of both optimal prices. 

A.1.2.1 Proof: 𝑉𝑡
𝛼(𝑐) = �̃�𝑡

𝛼(𝑐) for 𝑝𝑡,𝑐
𝛼 ∈ [𝑝

𝑡
𝛼,∞, 𝑝𝑡

∞] 

In this case, we have that 𝑝𝑡,𝑐
𝛼 ∈ [𝑝

𝑡
𝛼,∞, 𝑝𝑡

∞], and thus, from the definition of 𝑝𝑡
𝛼,∞

, we have 𝑑𝑡(𝑝𝑡,𝑐
𝛼 ) ≤

1 − 𝛼. This case occurs if and only if ∆𝑡,𝑐
𝛼 ≥ 𝑝𝑡

𝛼,∞
 with ∆𝑡,𝑐

𝛼 = 𝑉𝑡−1
𝛼 (𝑐) − 𝑉𝑡−1

𝛼 (𝑐 − 1) =⏟
IH

�̃�𝑡−1
𝛼 (𝑐) −

�̃�𝑡−1
𝛼 (𝑐 − 1) = ∆̃𝑡,𝑐

𝛼 . Otherwise, we could find a price 𝑝 ∈ (∆𝑡,𝑐
𝛼 , 𝑝𝑡

𝛼,∞) with a higher objective value 

(greater than 𝑉𝑡−1
𝛼 (𝑐)) and that would contradict our assumption. Back to our case, we have 𝑉𝑡

𝛼(𝑐) =

𝑉𝑡−1
𝛼 (𝑐) from the minimization calculating CVaR, and either the optimal risk-averse price is equal to 

𝑝𝑡
∞ (and thus a unique solution) or the whole interval [∆𝑡,𝑐

𝛼 , 𝑝𝑡
∞] is optimal. This distinction depends 

on whether the interval is empty or not, whereby an empty interval can only occur if the distribution 

of the willingness-to-pay varies over 𝑡. Note that because 𝑝𝑡,𝑐
𝛼 = 𝑝𝑡

∞ is always an optimal solution we 

choose it and do not need to distinguish any longer. With the induction hypothesis, it holds that ∆̃𝑡,𝑐
𝛼 =
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∆𝑡,𝑐
𝛼 ≥ 𝑝𝑡

𝛼,∞
 and hence, regarding the transformed problem, �̃�𝑡

𝛼(∆̃𝑡,𝑐
𝛼 ) ≤ 0. Thus, with a similar reason-

ing as above, we have 𝑝𝑡,𝑐
𝛼 = 𝑝𝑡

𝛼,∞
 with �̃�𝑡

𝛼(𝑝𝑡
𝛼,∞) = 1 − (1 − 𝑑t(𝑝𝑡

𝛼,∞)) α⁄ = 1 −

(1 − 1 + α) α = 0⁄ . Consequently, it holds that  

𝑉𝑡
𝛼(𝑐) = min

𝑧𝑡−1,𝑐−1,
𝑧𝑡−1,𝑐

(1 − 𝑑𝑡(𝑝𝑡,𝑐
𝛼 )) ⋅ 𝑧𝑡−1,𝑐 ⋅ 𝑉𝑡−1

𝛼 (𝑐) + 𝑑𝑡(𝑝𝑡,𝑐
𝛼 ) ⋅ 𝑧𝑡−1,𝑐−1 ⋅ (𝑝𝑡,𝑐

𝛼 + 𝑉𝑡−1
𝛼 (𝑐 − 1))   

= 𝑉𝑡−1
𝛼 (𝑐) =⏟

IH

�̃�𝑡−1
𝛼 (𝑐) = �̃�𝑡

𝛼(𝑝𝑡,𝑐
𝛼 ) ⋅ (𝑝𝑡,𝑐

𝛼 + �̃�𝑡−1
𝛼 (𝑐 − 1)) + (1 − �̃�𝑡

𝛼(𝑝𝑡,𝑐
𝛼 )) ⋅ �̃�𝑡−1

𝛼 (𝑐) = �̃�𝑡
𝛼(𝑐). 

Above, the first equality is the definition of the risk-averse value function without the maximum as 

𝑝𝑡,𝑐
𝛼  is the optimal price. The second follows from 𝑧𝑡−1,𝑐−1 = 0 and 𝑧𝑡−1,𝑐 = 1/ (1 − 𝑑𝑡(𝑝𝑡,𝑐

𝛼 )) ≤

1/𝛼, which is the solution of the minimization because 𝑉𝑡−1
𝛼 (𝑐) ≤ 𝑝𝑡,𝑐

𝛼 + 𝑉𝑡−1
𝛼 (𝑐 − 1). The third is the 

induction hypothesis.  The fourth equality holds because we have 𝑝𝑡,𝑐
𝛼 = 𝑝𝑡

𝛼,∞
 from ∆̃𝑡,𝑐

𝛼 = ∆𝑡,𝑐
𝛼 ≥ 𝑝𝑡

𝛼,∞
 

and �̃�𝑡
𝛼(𝑝𝑡

𝛼,∞) = 0 (see above). Finally, the fifth equality is the transformed value function without 

the maximization, as 𝑝𝑡,𝑐
𝛼  is its optimal price. 

A.1.2.2 Proof: 𝑉𝑡
𝛼(𝑐) ≤ �̃�𝑡

𝛼(𝑐) for 𝑝𝑡,𝑐
𝛼 ∈ [0, 𝑝

𝑡
𝛼,∞)  

If 𝑝𝑡,𝑐
𝛼 ∈ [0, 𝑝

𝑡
𝛼,∞)  holds, we have (remember that 𝑝𝑡,𝑐

𝛼  deonotes the optimal price) 

𝑉𝑡
𝛼(𝑐) = min

𝑧𝑡−1,𝑐−1,
𝑧𝑡−1,𝑐

(1 − 𝑑𝑡(𝑝𝑡,𝑐
𝛼 )) ⋅ 𝑧𝑡−1,𝑐 ⋅ 𝑉𝑡−1

𝛼 (𝑐) + 𝑑𝑡(𝑝𝑡,𝑐
𝛼 ) ⋅ 𝑧𝑡−1,𝑐−1 ⋅ (𝑝𝑡,𝑐

𝛼 + 𝑉𝑡−1
𝛼 (𝑐 − 1))

≤
1 − 𝑑𝑡(𝑝𝑡,𝑐

𝛼 )

𝛼
⋅ 𝑉𝑡−1

𝛼 (𝑐) + (1 −
1 − 𝑑𝑡(𝑝𝑡,𝑐

𝛼 )

𝛼
)

⋅ (𝑝𝑡,𝑐
𝛼 + 𝑉𝑡−1

𝛼 (𝑐 − 1)) =⏟
𝐼𝐻

1 − 𝑑𝑡(𝑝𝑡,𝑐
𝛼 )

𝛼
⋅ �̃�𝑡−1

𝛼 (𝑐) + (1 −
1 − 𝑑𝑡(𝑝𝑡,𝑐

𝛼 )

𝛼
)

⋅ (𝑝𝑡,𝑐
𝛼 + �̃�𝑡−1

𝛼 (𝑐 − 1)) ≤ �̃�𝑡
𝛼(𝑐) 

where the first inequality follows with the following feasible solution for the minimization problem: 

𝑧𝑡−1,𝑐 =
1

𝛼
 and 𝑧𝑡−1,𝑐−1 = (1 −

1−𝑑𝑡(𝑝𝑡,𝑐
𝛼 )

α
) 𝑑𝑡(𝑝𝑡,𝑐

𝛼 )⁄ . As 𝑝𝑡,𝑐
𝛼 ∈ [0, 𝑝

𝑡
𝛼,∞), the optimal risk-averse price 

is a feasible solution for the transformed optimization problem and, thus, the second inequality holds.  
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A.1.2.3 Proof: 𝑉𝑡
𝛼(𝑐) ≥ �̃�𝑡

𝛼(𝑐) for 𝑝𝑡,𝑐
𝛼 ∈ [0, 𝑝

𝑡
𝛼,∞). 

It holds, that ∆𝑡,𝑐
𝛼 < 𝑝𝑡,𝑐

𝛼 < 𝑝𝑡
𝛼,∞

, because, if 𝑉𝑡−1
𝛼 (𝑐) − 𝑉𝑡−1

𝛼 (𝑐 − 1) < 𝑝𝑡,𝑐
𝛼  would not hold, the objec-

tive value would be less than 𝑉𝑡−1
𝛼 (𝑐) and we would be better off with the null price 𝑝𝑡

∞. Consequent-

ly, case A.1.2.1 would apply and that would contradict our assumption. From the induction hypothe-

sis, we have ∆̃𝑡,𝑐
𝛼 < 𝑝𝑡

𝛼,∞
. Thus, there are prices between the opportunity cost and the null price 𝑝𝑡

𝛼,∞
 

and we have ∆̃𝑡,𝑐
𝛼 = �̃�𝑡−1

𝛼 (𝑐) − �̃�𝑡−1
𝛼 (𝑐 − 1) < 𝑝𝑡,𝑐

𝛼 < 𝑝𝑡
𝛼,∞

.  

We now continue by considering the optimal price in the transformed, risk-neutral problem 𝑝𝑡,𝑐
𝛼  and 

the corresponding optimal objective value �̃�𝑡
𝛼(𝑐). Moreover, 

�̃�𝑡
𝛼(𝑐) =

1 − 𝑑𝑡(�̃�𝑡,𝑐
𝛼 )

𝛼
⋅ �̃�𝑡−1

𝛼 (𝑐) + (1 −
1 − 𝑑𝑡(�̃�𝑡,𝑐

𝛼 )

𝛼
) ⋅ (𝑝𝑡,𝑐

𝛼 + �̃�𝑡−1
𝛼 (𝑐 − 1)) =⏟

IH

1 − 𝑑𝑡(𝑝𝑡,𝑐
𝑇,𝛼)

𝛼

⋅ 𝑉𝑡−1
𝛼 (𝑐) + (1 −

1 − 𝑑𝑡(𝑝𝑡,𝑐
𝛼 )

𝛼
) ⋅ (𝑝𝑡,𝑐

𝛼 + 𝑉𝑡−1
𝛼 (𝑐 − 1))

= min
𝑧𝑡−1,𝑐−1,

𝑧𝑡−1,𝑐

(1 − 𝑑𝑡(𝑝𝑡,𝑐
𝛼 )) ⋅ 𝑧𝑡−1,𝑐 ⋅ 𝑉𝑡−1

𝛼 (𝑐) + 𝑑𝑡(�̃�𝑡,𝑐
𝛼 ) ⋅ 𝑧𝑡−1,𝑐−1

⋅ (𝑝𝑡,𝑐
𝛼 + 𝑉𝑡−1

𝛼 (𝑐 − 1)) ≤ 𝑉𝑡
𝛼(𝑐) 

The third equality can be explained as follows. From ∆𝑡,𝑐
𝛼 < 𝑝𝑡,𝑐

𝛼 < 𝑝𝑡
𝛼,∞

 (see above), it follows that 

𝑧𝑡−1,𝑐 =
1

𝛼
 and 𝑧𝑡−1,𝑐−1 = (1 −

1−𝑑𝑡(�̃�𝑡,𝑐
𝛼 )

α
) 𝑑𝑡(�̃�𝑡,𝑐

𝛼 )⁄  is the optimal solution for the minimization. The 

inequality follows by the fact that 𝑝𝑡,𝑐
𝛼  (together with 𝑧𝑡−1,𝑐 and 𝑧𝑡−1,𝑐−1) is a feasible solution for the 

risk-averse problem. 

A.1.2.4 Conclusion of A.1.2.2 and A.1.2.3 

We first consider equivalence of the value functions. In the case covered in Section A.1.2.1, we di-

rectly showed the equivalence. In Section A.1.2.2, we saw that 𝑝𝑡,𝑐
𝛼  is a feasible solution for the trans-

formed risk-neutral optimization problem with an objective value that is greater than or equal to 

𝑉𝑡
𝛼(𝑐). In Section A.1.2.3, we have shown that 𝑝𝑡,𝑐

𝛼  is a feasible solution for the risk-averse optimiza-

tion problem with an objective value that is greater than or equal to �̃�𝑡
𝛼(𝑐). Hence, 𝑉𝑡

𝛼(𝑐) = �̃�𝑡
𝛼(𝑐). 

Moreover, it holds that every optimal solution 𝑝𝑡,𝑐
𝛼 ∈ [0, 𝑝

𝑡
𝛼,∞) is also an optimal solution for the 

transformed risk-neutral optimization problem (and vice versa) as it is feasible and leads to the opti-
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mal objective value. As the transformed problem is a standard dynamic pricing problem, we know 

that it has a unique solution, namely 𝑝𝑡,𝑐
𝛼 . Consequently it holds that 𝑝𝑡,𝑐

𝛼 = 𝑝𝑡,𝑐
𝛼  on the interval 

[0, 𝑝𝑡
𝛼,∞), and hence, the risk-averse optimization problem has also a unique solution on this interval. 

A.2 Proof of Lemma 2 

First, we consider 𝑑𝑡(∆𝑡,𝑐
𝛼 ) > 1 − 𝛼. As the selling probability is decreasing in the price, the non-

emptiness of the interval (∆𝑡,𝑐
𝛼 , 𝑝𝑡

𝛼,∞) is a direct consequence. Together with Theorem 1, it follows 

that �̃�𝑡−1
𝛼 (𝑐) − �̃�𝑡−1

𝛼 (𝑐 − 1) < 𝑝𝑡
𝛼,∞

. Next, note that the optimal price is never below opportunity cost. 

If so, selling had lower total revenue than not selling. A higher price (up to the opportunity cost) 

would simultaneously decrease the probability of this undesired event and improve its outcome. Thus, 

setting a price lower than the opportunity costs cannot be optimal (see Hempenius 1970, p. 4 for a 

formal proof and the markup on costs). Accordingly, the optimal price of the transformed risk-neutral 

optimization problem 𝑝𝑡,𝑐
𝛼  is an element of the non-empty interval (∆̃𝑡,𝑐

𝛼 , 𝑝𝑡
𝛼,∞), and because of 𝑝𝑡,𝑐

𝛼 =

𝑝𝑡,𝑐
𝛼 , we have 𝑝𝑡,𝑐

𝛼 ∈ (∆𝑡,𝑐
𝛼 , 𝑝𝑡

𝛼,∞).  

Next, we consider 𝑑𝑡(∆𝑡,𝑐
𝛼 ) ≤ 1 − 𝛼. As 𝑝𝑡

𝛼,∞
 was defined such that 𝑑𝑡(𝑝𝑡

𝛼,∞) = 1 − 𝛼 and 𝑑𝑡(𝑝) is 

decreasing, we have ∆𝑡,𝑐
𝛼 ≥ 𝑝𝑡

𝛼,∞
. Because setting prices below ∆𝑡,𝑐

𝛼  is never optimal (see above), the 

optimal price in the transformed problem is 𝑝𝑡,𝑐
𝛼 = 𝑝𝑡

𝛼,∞
 with the transformed selling probability 

�̃�𝑡
𝛼(𝑝𝑡

𝛼,∞) = 0. From Theorem 1, we have 𝑝𝑡,𝑐
𝛼 = 𝑝𝑡

∞. 

A.3 Proof of Lemma 3 

To prove the statement of Lemma 3, we use Theorem 1 to transform the risk-averse dynamic pricing 

problem to a risk-neutral dynamic pricing problem. Showing 𝑑𝑡(∆𝑡,𝑐
𝛼 ) > 1 − 𝛼 is equivalent to show-

ing ∆𝑡,𝑐
𝛼 < 𝑝𝑡

𝛼,∞
 because 𝑑𝑡(𝑝) is decreasing in 𝑝 and, by definition, 𝑑𝑡(𝑝𝑡

𝛼,∞) = 1 − α. For 𝑝𝑡
𝛼,∞ = ∞, 

∆𝑡,𝑐
𝛼 < 𝑝𝑡

𝛼,∞
 is obvious. If 𝑝𝑡

𝛼,∞
 is finite, the inequality holds with: 

∆𝑡,𝑐
𝛼 = 𝑉𝑡

𝛼(𝑐) − 𝑉𝑡
𝛼(𝑐 − 1) = �̃�𝑡

𝛼(𝑐) − �̃�𝑡
𝛼(𝑐 − 1) ≤ �̃�𝑡

𝛼(𝑐) − �̃�𝑡
′ 𝛼(𝑐 − 1) < 𝑝𝑡

𝛼,∞
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This can be explained as follows. By definition and Theorem 1, we have ∆𝑡,𝑐
α = 𝑉𝑡

𝛼(𝑐) − 𝑉𝑡
𝛼(𝑐 − 1) =

�̃�𝑡
𝛼(𝑐) − �̃�𝑡

𝛼(𝑐 − 1). Slightly abusing notation, we now denote the optimal policy from state (𝑡, 𝑐) 

onwards by 𝑝 
𝛼̅̅̅̅ . This policy is leading to the value �̃�𝑡

𝛼(𝑐). There is also an optimal policy from state 

(𝑡, 𝑐 − 1) onwards that is leading to �̃�𝑡
𝛼(𝑐 − 1). But instead of using this policy, we use a policy 𝑝 

𝛼̅̅̅̅ ′
 

that copies to some degree the optimal policy from state (𝑡, 𝑐) onwards. If capacity is left, this new 

policy just uses the former’s price. If no capacity is left (that is, if 𝑐 − 1 products are sold during the 

evolution of the selling process), the null price 𝑝𝑡
𝛼,∞

 is used to ensure that �̃�𝑡
𝛼(𝑝𝑡

𝛼,∞) = 0. This new 

policy 𝑝 
𝛼̅̅̅̅ ′

 is formally defined as follows: 

𝑝𝑡,𝑐
𝛼̅̅ ̅̅̅′

= {
𝑝𝑡,𝑐

𝛼̅̅ ̅̅̅  , 𝑐 > 1

𝑝𝑡
𝛼,∞, 𝑐 = 1

   ∀ 𝑡, 𝑐 

From this new policy 𝑝 
𝛼̅̅̅̅ ′

, we obtain an expected value of �̃�𝑡
′ 𝛼(𝑐 − 1). As this policy is not necessari-

ly optimal, we have �̃�𝑡
′ 𝛼(𝑐 − 1) ≤ �̃�𝑡

𝛼(𝑐 − 1).  

We now compare the evolution of the selling process starting in (𝑡, 𝑐) following policy 𝑝 
𝛼̅̅̅̅ ′

 and start-

ing in (𝑡, 𝑐 − 1) following policy 𝑝 
𝛼̅̅̅̅ ′

. As the latter copies the first policy (to some degree), the evolu-

tion of the selling process is the same at the beginning. It holds that for every realization of demand 

throughout the selling horizon without sellout of 𝑐 − 1 products (i.e. if strictly less than 𝑐 − 1 cus-

tomers buy), the earned revenue and the corresponding probability of occurrence are the same for the 

processes starting in (𝑡, 𝑐) and (𝑡, 𝑐 − 1). The only difference is if 𝑐 − 1 products are sold and there is 

still time left to sell the last product, which is only available in the process that started at (𝑡, 𝑐). The 

probability of occurrence of this situation is below 1 and the highest revenue that can be earned by 

selling the last product is strictly less than 𝑝𝑡
𝛼,∞

. Thus, we have �̃�𝑡
𝛼(𝑐) − �̃�𝑡

′ 𝛼(𝑐 − 1) < 𝑝𝑡
𝛼,∞

. 

A.4 Proof of Theorem 2 

In this proof, we show by induction that the optimal objective values of both optimization problems 

are equal and, simultaneously, that the optimal risk-averse price 𝑝𝑡,𝑐
𝛼,𝜆

 equals the optimal price 𝑝𝑡,𝑐
𝛼,𝜆

 in 

the transformed risk-neutral problem (and vice versa). For 𝑡 = 0, the boundary conditions of both 
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optimization problems are the same and, thus, the objective values are the same (induction basis). In 

the induction step, we assume that  𝑉𝑡−1
𝛼,𝜆(𝑐) = �̃�𝑡−1

𝛼,𝜆(𝑐) ∀ 𝑐 (induction hypothesis, IH) and show that 

this equality also holds for 𝑡. Simultaneously, we confirm that 𝑝𝑡,𝑐
α,𝜆 = 𝑝𝑡,𝑐

𝛼,𝜆   ∀ 𝑡, 𝑐. 

For the induction step, we rewrite both value functions as follows: 𝑉𝑡
𝛼,𝜆(𝑐) = max 

𝑝
ℎ𝑡,𝑐

𝛼,𝜆(𝑝) with   

 ℎ𝑡,𝑐
𝛼,𝜆(𝑝) = (1 − 𝜆)𝔼[1{𝑋𝑡≥𝑝} ⋅ 𝑝 + 𝑉𝑡−1

𝛼,𝜆(𝑐 − 1{𝑋𝑡≥𝑝})] + 𝜆 CVaR𝛼 (1{𝑋𝑡≥𝑝} ⋅ 𝑝 + 𝑉𝑡−1
𝛼,𝜆(𝑐 − 1{𝑋𝑡≥𝑝}))  

and �̃�𝑡
𝛼,𝜆(𝑐) = max

𝑝
 ℎ̃𝑡,𝑐

𝛼,𝜆(𝑝) with  ℎ̃𝑡,𝑐
𝛼,𝜆(𝑝) = �̃�𝛼,𝜆[1{𝑋𝑡≥𝑝} ⋅ 𝑝 + �̃�𝑡−1

𝛼,𝜆(𝑐 − 1{𝑋𝑡≥𝑝})] where �̃�𝛼,𝜆 de-

notes the expectation with regard to the modified selling probability �̃�𝑡
𝛼,𝜆(𝑝). 

In both value functions, the minimization is over all 𝑝 ∈ 𝒫𝑡 = [0, 𝑝𝑡
∞]. However, it suffices to show 

that ℎ𝑡,𝑐
𝛼,𝜆(𝑝) =  ℎ̃𝑡,𝑐

𝛼,𝜆(𝑝) ∀𝑡, 𝑐, ∆𝑡
𝛼,𝜆(𝑐) =⏟

IH

∆̃𝑡,𝑐
𝛼,𝜆≤ 𝑝 ≤ 𝑝𝑡

∞, given the induction hypothesis holds for 𝑡 −

1. For prices below opportunity cost (𝑝 < ∆𝑡
𝛼,𝜆(𝑐) =⏟

IH

∆̃𝑡,𝑐
𝛼,𝜆

), remember that on the one hand, these pric-

es are never optimal. Now, selling is the undesired event and CVaR as well as expected value improve 

by increasing the price, which improves the undesired event and decreases its probability. Thus, we 

have ℎ𝑡,𝑐
𝛼,𝜆(𝑝) < ℎ𝑡,𝑐

𝛼,𝜆(∆𝑡,𝑐
𝛼,𝜆) for  ∀ 𝑝 < ∆𝑡,𝑐

𝛼,𝜆
. On the other hand, we have  ℎ̃𝑡,𝑐

𝛼,𝜆(𝑝) <  ℎ̃𝑡,𝑐
𝛼,𝜆(∆̃𝑡,𝑐

𝛼,𝜆) ∀ 𝑝 <

∆̃𝑡,𝑐
𝛼,𝜆

 because this is a standard dynamic pricing problem where, again, selling below opportunity cost 

makes no sense. Accordingly, the maximizing 𝑝 will not be below opportunity cost. 

Thus, in the following, we only consider ∆𝑡
𝛼,𝜆(𝑐) =⏟

IH

∆̃𝑡,𝑐
𝛼,𝜆≤ 𝑝 ≤ 𝑝𝑡

∞. Accordingly, we explicitly solve 

CVaR’s minimization using the fact that selling (as opposed to not selling) is never the worse event. 

We distinguish two cases for 𝑝 ∈ [∆𝑡
𝛼,𝜆(𝑐) = ∆̃𝑡,𝑐

𝛼,𝜆, 𝑝𝑡
∞]. Moreover, note that if opportunity costs ex-

ceed the null price 𝑝𝑡
∞, we select it and ℎ𝑡,𝑐

𝛼,𝜆(𝑝𝑡
∞) =  ℎ̃𝑡,𝑐

𝛼,𝜆(𝑝𝑡
∞) holds analogous to case A.4.1. 

A.4.1 𝒉𝒕,𝒄
𝜶,𝝀(𝒑) =  �̃�𝒕,𝒄

𝜶,𝝀(𝒑) , 𝟎 ≤ 𝒅𝒕(𝒑) < 𝟏 − 𝜶   

In this case, the selling probability is so low that CVaR includes only the event of not selling and we 

have CVaR𝛼 (1{𝑋𝑡≥𝑝} ⋅ 𝑝 + 𝑉𝑡−1
𝛼,𝜆(𝑐 − 1{𝑋𝑡≥𝑝})) = 𝑉𝑡−1

𝛼,𝜆(𝑐). We have 
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ℎ𝑡,𝑐
𝛼,𝜆(𝑝) = (1 − 𝜆)𝔼[1{𝑋𝑡≥𝑝} ⋅ 𝑝 + 𝑉𝑡−1

𝛼,𝜆(𝑐 − 1{𝑋𝑡≥𝑝})] + 𝜆𝑉𝑡−1
𝛼,𝜆(𝑐)  

= (1 − 𝜆) [(1 − 𝑑𝑡(𝑝)) ⋅ 𝑉𝑡−1
α,𝜆(𝑐) + 𝑑𝑡(𝑝) ⋅ (𝑝 + 𝑉𝑡−1

𝛼,𝜆(𝑐 − 1))] + 𝜆𝑉𝑡−1
𝛼,𝜆(𝑐)  

=⏟
IH

[(1 − 𝜆)(1 − 𝑑𝑡(𝑝)) + 𝜆] ⋅ �̃�𝑡−1
𝛼,𝜆(𝑐) + (1 − 𝜆)𝑑𝑡(𝑝) ⋅ (𝑝 + �̃�𝑡−1

𝛼,𝜆(𝑐 − 1))  

= [1 − (1 − 𝜆)𝑑𝑡(𝑝)] ⋅ �̃�𝑡−1
𝛼,𝜆(𝑐) + (1 − 𝜆)𝑑𝑡(𝑝) ⋅ (𝑝 + �̃�𝑡−1

𝛼,𝜆(𝑐 − 1))  

= [1 − 𝑑𝑡
𝑇,𝛼,𝜆(𝑝)] (�̃�𝑡−1

𝛼,𝜆(𝑐)) + 𝑑𝑡
𝑇,𝛼,𝜆(𝑝) ⋅ (𝑝 + �̃�𝑡−1

𝛼,𝜆(𝑐 − 1))  

= �̃�𝛼,𝜆[1{𝑋𝑡≥𝑝} ⋅ 𝑝 + �̃�𝑡−1
𝛼,𝜆(𝑐 − 1{𝑋𝑡≥𝑝})] = ℎ̃𝑡,𝑐

𝛼,𝜆(𝑝).  

A.4.2 𝒉𝒕,𝒄
𝜶,𝝀(𝒑) =  �̃�𝒕,𝒄

𝜶,𝝀(𝒑) , 𝒅𝒕(𝒑) ≥ 𝟏 − 𝜶   

In this case, the selling probability is so high that CVaR includes both the events of selling and not 

selling and we have 

CVaR𝛼 (1{𝑋𝑡≥𝑝} ⋅ 𝑝 + 𝑉𝑡−1
𝛼,𝜆(𝑐 − 1{𝑋𝑡≥𝑝}))  

= min
𝑧𝑡−1,𝑐−1,

𝑧𝑡−1,𝑐

(1 − 𝑑𝑡(𝑝)) ⋅ 𝑧𝑡−1,𝑐 ⋅ 𝑉𝑡−1
α,𝜆(𝑐) + 𝑑𝑡

 (𝑝) ⋅ 𝑧𝑡−1,𝑐−1 ⋅ (𝑝 + 𝑉𝑡−1
𝛼,𝜆(𝑐 − 1))  

= (1 − 𝑑𝑡(𝑝)) ⋅
1

𝛼
⋅ 𝑉𝑡−1

α,𝜆(𝑐) + 𝑑𝑡
 (𝑝) ⋅ (1 −

1−𝑑𝑡(𝑝)

𝛼
) /𝑑𝑡(𝑝𝑡,𝑐

𝛼,𝜆) ⋅ (𝑝 + 𝑉𝑡−1
𝛼,𝜆(𝑐 − 1))  

 = (1 − 𝑑𝑡(𝑝)) ⋅
1

𝛼
⋅ 𝑉𝑡−1

α,𝜆(𝑐) + (1 −
1−𝑑𝑡(𝑝)

𝛼
) ⋅ (𝑝 + 𝑉𝑡−1

𝛼,𝜆(𝑐 − 1))  

where the second equality again uses the fact that selling is never the worse event and, thus, 

𝑧𝑡−1,𝑐−1 = (1 −
1−𝑑𝑡(𝑝)

𝛼
) /𝑑𝑡(𝑝) and 𝑧𝑡−1,𝑐 = 1/𝛼 are optimal. 

Thus, we have 

 ℎ𝑡,𝑐
𝛼,𝜆(𝑝) = (1 − 𝜆)𝔼[1{𝑋𝑡≥𝑝} ⋅ 𝑝𝑡,𝑐

𝛼,𝜆 + 𝑉𝑡−1
𝛼,𝜆(𝑐 − 1{𝑋𝑡≥𝑝})] 

+𝜆 [(1 − 𝑑𝑡(𝑝)) ⋅
1

𝛼
⋅ 𝑉𝑡−1

α,𝜆(𝑐) + (1 −
1−𝑑𝑡(𝑝)

𝛼
) ⋅ (𝑝 + 𝑉𝑡−1

𝛼,𝜆(𝑐 − 1))]  

 = (1 − 𝜆) [(1 − 𝑑𝑡(𝑝)) ⋅ 𝑉𝑡−1
α,𝜆(𝑐) + 𝑑𝑡

 (𝑝) ⋅ (𝑝 + 𝑉𝑡−1
𝛼,𝜆(𝑐 − 1))] 
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+𝜆 [(1 − 𝑑𝑡(𝑝)) ⋅
1

𝛼
⋅ 𝑉𝑡−1

α,𝜆(𝑐) + (1 −
1−𝑑𝑡(𝑝)

𝛼
) ⋅ (𝑝 + 𝑉𝑡−1

𝛼,𝜆(𝑐 − 1))]  

=⏟
IH

[(1 − 𝜆)(1 − 𝑑𝑡(𝑝)) + 𝜆(1 − 𝑑𝑡(𝑝)) ⋅
1

𝛼
] ⋅ �̃�𝑡−1

𝛼,𝜆(𝑐)  

+ [(1 − 𝜆)𝑑𝑡(𝑝) + λ (1 −
1−𝑑𝑡(𝑝)

𝛼
)] ⋅ (𝑝 + �̃�𝑡−1

𝛼,𝜆(𝑐 − 1))  

= [1 − (1 − 𝜆)𝑑𝑡(𝑝) − λ (1 −
1−𝑑𝑡(𝑝)

𝛼
)] ⋅ �̃�𝑡−1

𝛼,𝜆(𝑐)  

+ [(1 − 𝜆)𝑑𝑡(𝑝) + λ (1 −
1−𝑑𝑡(𝑝)

𝛼
)] ⋅ (𝑝 + �̃�𝑡−1

𝛼,𝜆(𝑐 − 1))  

= (1 − �̃�𝑡
𝛼,𝜆(𝑝)) (�̃�𝑡−1

𝛼,𝜆(𝑐)) + �̃�𝑡
𝛼,𝜆(𝑝) ⋅ (𝑝 + �̃�𝑡−1

𝛼,𝜆(𝑐 − 1))  

= �̃�𝛼,𝜆[1{𝑋𝑡≥𝑝} ⋅ 𝑝 + �̃�𝑡−1
𝛼,𝜆(𝑐 − 1{𝑋𝑡≥𝑝})] =  ℎ̃𝑡,𝑐

𝛼,𝜆(𝑝)  

A.5 Proof of Proposition 3 

The conditions of Proposition 3 are met, i.e. there is a 𝑦 ∈ ℝ such that 𝐹𝑡(𝛼𝑦𝑝) = 𝛼 ⋅ 𝐹𝑡(𝑝) and 

𝑓𝑡(𝛼𝑦𝑝) = 𝛼1−𝑦 ⋅ 𝑓𝑡(𝑝) ∀ 𝑡. Consequently, it holds that 𝑑𝑡(𝛼𝑦𝑝) = 1 − 𝐹𝑡(𝛼𝑦𝑝) = 1 − 𝛼 ⋅ 𝐹𝑡(𝑝) =

1 − 𝛼 ⋅ (1 − 𝑑𝑡(𝑝)) =  1 − 𝛼 + 𝛼 ⋅ 𝑑𝑡(𝑝) and, for the derivative, 𝑑𝑡
′ (𝛼𝑦𝑝) = −𝑓𝑡(𝛼𝑦𝑝) = −𝛼1−𝑦 ⋅

𝑓𝑡(𝑝) = 𝛼1−𝑦 ⋅ 𝑑𝑡
′ (𝑝). Let 𝑝𝑡,𝑐

1  denote the optimal price that a risk-neutral firm sets and 𝑉𝑡
1(𝑐) the 

corresponding value function. In the following, we will repeatedly use the f.o.c. of the problems. As 

they are similar, we only restate the risk-neutral f.o.c. to improve readability: 𝑑𝑡
′ (𝑝𝑡,𝑐

1 ) ⋅ (𝑝𝑡,𝑐
1 −

∆𝑡,𝑐
1 ) + 𝑑𝑡(𝑝𝑡,𝑐

1 ) = 0. 

We now show the proposition by induction over 𝑡, i.e. that 𝑝
𝑡,𝑐

= 𝛼𝑦 ⋅ 𝑝𝑡,𝑐
1  and 𝑉𝑡

𝛼(𝑐) = 𝛼𝑦 ⋅ 𝑉𝑡
1(𝑐). 

For 𝑡 = 1, we plug 𝛼𝑦 ⋅ 𝑝1,𝑐
1  in the sufficient condition (the f.o.c. of the transformed problem) and 

derive 

0 = (�̃�1
𝛼)

′
(𝛼𝑦 ⋅ 𝑝1,𝑐

1 ) ⋅ 𝛼𝑦 ⋅ 𝑝1,𝑐
1 + �̃�1

𝛼(𝛼𝑦 ⋅ 𝑝1,𝑐
1 ) =

1

𝛼
𝑑1

′ (𝛼𝑦 ⋅ 𝑝1,𝑐
1 ) ⋅ 𝛼𝑦 ⋅ 𝑝1,𝑐

1 + 1 −
1 − 𝑑1(𝛼𝑦 ⋅ 𝑝1,𝑐

1 )

𝛼

= 𝛼−𝑦 ⋅ 𝑑1
′ (𝑝1,𝑐

1 ) ⋅ 𝛼𝑦 ⋅ 𝑝1,𝑐
1 + 1 −

𝛼 − 𝛼 ⋅ 𝑑1(𝑝1,𝑐
1 )

𝛼
= 𝑑1

′ (𝑝1,𝑐
1 ) ⋅ 𝑝1,𝑐

1 + 𝑑1(𝑝1,𝑐
1 ) 
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where the first equality follows by definition of �̃�1
𝛼(𝑝) (Theorem 1). The second follows from 

𝑑𝑡(𝛼𝑦𝑝) and 𝑑𝑡′(𝛼𝑦𝑝) discussed above and the third is a rearrangement. The fourth shows that the 

f.o.c. of the transformed problem is equivalent to the f.o.c. of the risk-neutral problem. Obviously, 

these equations imply that 𝛼𝑦 ⋅ 𝑝1,𝑐
1  is an optimal solution to the risk-averse problem if and only if 𝑝1,𝑐

1  

is an optimal solution to the risk-neutral problem. 

Next, by using the same considerations as above, we calculate 𝑉1
𝛼(𝑐) = �̃�1

𝛼(𝑝1,𝑐
𝛼 ) ⋅ 𝑝1,𝑐

𝛼 =

�̃�1
𝛼(𝛼𝑦 ⋅ 𝑝1,𝑐

1 ) ⋅ 𝛼𝑦 ⋅ 𝑝1,𝑐
1 = (1 −

1−𝑑1(𝛼𝑦⋅𝑝1,𝑐
1 )

𝛼
) ⋅ 𝛼𝑦 ⋅ 𝑝1,𝑐

1 = 𝑑1(𝑝1,𝑐
1 ) ⋅ 𝛼𝑦 ⋅ 𝑝1,𝑐

1 = 𝛼𝑦 ⋅ 𝑉1
1(𝑐). Thus, 

the proposition holds for 𝑡 = 1. 

In the induction step, we assume that 𝑉𝑡−1
𝛼 (𝑐) = 𝛼𝑦 ⋅ 𝑉𝑡−1

1 (𝑐) (induction hypothesis, IH) and show 

that this equality also holds for 𝑡. By doing so, we also show that 𝑝𝑡,𝑐
𝛼 = 𝛼𝑦 ⋅ 𝑝𝑡,𝑐

1 . As 𝑉𝑡−1
𝛼 (𝑐) = 𝛼𝑦 ⋅

𝑉𝑡−1
1 (𝑐) (IH), it holds that ∆𝑡,𝑐

𝛼 = 𝛼𝑦 ⋅ ∆𝑡,𝑐
1  (with ∆𝑡,𝑐

1 = 𝑉𝑡−1
1 (𝑐) − 𝑉𝑡−1

1 (𝑐 − 1)). To do so, we now 

distinguish two cases: 

A.5.1 Case 1: ∆𝒕,𝒄
𝟏 < 𝒑𝒕

∞ ⇔ ∆̃𝒕,𝒄
𝜶 < 𝒑𝒕

𝜶,∞
 

In this case, opportunity costs are below the null price and it makes sense to try to sell a unit. It is 

important so see that this happens simultaneously in both problems – the risk-neutral one and the 

transformed, risk-averse problem. More technically, to show this equivalence of the two conditions, 

note that �̃�1
𝛼(∆̃𝑡,𝑐

𝛼 ) = �̃�1
𝛼(𝛼𝑦 ⋅ ∆𝑡,𝑐

1 ) =  1 − (1 − 𝑑𝑡(𝛼𝑦 ⋅ ∆𝑡,𝑐
1 )) / 𝛼 =  1 − (1 − (1 − 𝛼 + 𝛼 ⋅

𝑑𝑡(∆𝑡,𝑐
1 ))) / 𝛼 = 𝑑𝑡(∆𝑡,𝑐

1 ). Using this, the second condition can be reformulated as ∆̃𝑡,𝑐
𝛼 < 𝑝𝑡

𝛼,∞ ⇔

𝑑𝑡(∆𝑡,𝑐
1 ) = �̃�1

𝛼(∆̃𝑡,𝑐
𝛼 ) > �̃�1

𝛼(𝑝
𝑡
𝛼,∞) = 1 − (1 − �̃�1

𝛼(𝑝
𝑡
𝛼,∞)) /𝛼 = 1 − (1 − (1 − 𝛼))/𝛼 = 0, where the 

second inequality holds because �̃�1
𝛼(⋅) is strictly decreasing. From the first condition, we have 

∆𝑡,𝑐
1 < 𝑝𝑡

∞ ⇔ 𝑑𝑡(∆𝑡,𝑐
1 ) > 𝑑𝑡(𝑝

𝑡
𝛼,∞), as 𝑑𝑡

′ (⋅) < 0.  

Now, if 𝑝𝑡
∞ = +∞, then the first condition is always satisfied and the second also because no matter 

how high ∆𝑡,𝑐
1 , 𝑑𝑡(∆𝑡,𝑐

1 ) is always positive. Thus, the conditions are equivalent. 

If 𝑝𝑡
∞ is finite, we have 𝑑𝑡

 (𝑝𝑡
∞) = 0. Again, both conditions are equivalent. 
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Similar to 𝑡 = 1, we again show that 𝛼𝑦 ⋅ 𝑝𝑡,𝑐
1  is an optimal solution to the risk-averse problem if and 

only if 𝑝𝑡,𝑐
1  is an optimal solution to the risk-neutral problem. 

From f.o.c., we have 𝑑𝑡
′ (𝑝𝑡,𝑐

1 ) ⋅ (𝑝𝑡,𝑐
1 − ∆𝑡,𝑐

1 ) + 𝑑𝑡(𝑝𝑡,𝑐
1 ) = 0. Using Theorem 1, we know that 𝑝𝑡,𝑐

𝛼  (the 

optimal price a risk-averse firm sets) fulfills the f.o.c. (�̃�1
𝛼)

′
(𝑝) ⋅ (𝑝 − ∆𝑡,𝑐

𝛼 ) + �̃�1
𝛼(𝑝) = 0 (as the 

transformed optimization problem described in Theorem 1 with �̃�1
𝛼(𝑝) = 1 − (1 − 𝑑𝑡(𝑝)) 𝛼⁄  is 

equivalent to the risk-averse optimization problem). We plug 𝛼𝑦 ⋅ 𝑝𝑡,𝑐
1  in the risk-averse f.o.c. and 

derive 

(�̃�1
𝛼)

′
(𝛼𝑦 ⋅ 𝑝𝑡,𝑐

1 ) ⋅ (𝛼𝑦 ⋅ 𝑝𝑡,𝑐
1 − ∆𝑡,𝑐

𝛼 ) + �̃�1
𝛼(𝛼𝑦 ⋅ 𝑝𝑡,𝑐

1 )

=
1

𝛼
𝑑𝑡

′ (𝛼𝑦 ⋅ 𝑝𝑡,𝑐
1 ) ⋅ (𝛼𝑦 ⋅ 𝑝𝑡,𝑐

1 − 𝛼𝑦 ⋅ ∆𝑡,𝑐
1 ) + 1 −

1 − 𝑑𝑡(𝛼𝑦 ⋅ 𝑝𝑡,𝑐
1 )

𝛼

= 𝛼−𝑦 ⋅ 𝑑𝑡
′ (𝑝𝑡,𝑐

1 ) ⋅ 𝛼𝑦 ⋅ (𝑝𝑡,𝑐
1 − ∆𝑡,𝑐

1 ) + 1 −
𝛼 − 𝛼 ⋅ 𝑑𝑡(𝑝𝑡,𝑐

1 )

𝛼

= 𝑑𝑡
′ (𝑝𝑡,𝑐

1 ) ⋅ (𝑝𝑡,𝑐
1 − ∆𝑡,𝑐

1 ) + 𝑑𝑡(𝑝𝑡,𝑐
1 ) = 0. 

This shows that 𝛼𝑦 ⋅ 𝑝𝑡,𝑐
1  is a solution to the risk-averse f.o.c. if and only if 𝑝𝑡,𝑐

1  solves the risk-neutral 

f.o.c. Again, we calculate 𝑉𝑡
𝛼(𝑐) = �̃�1

𝛼(𝑝𝑡,𝑐
𝛼 ) ⋅ (𝑝𝑡,𝑐

𝛼 − ∆𝑡,𝑐
𝛼 ) + 𝑉𝑡−1

𝛼 (𝑐) = �̃�1
𝛼(𝛼𝑦 ⋅ 𝑝𝑡,𝑐

1 ) ⋅ (𝛼𝑦 ⋅ 𝑝𝑡,𝑐
1 −

𝛼𝑦 ⋅ ∆𝑡,𝑐
1 ) + 𝛼𝑦 ⋅ 𝑉𝑡−1

1 (𝑐) = (1 −
1−𝑑𝑡(𝛼𝑦⋅𝑝𝑡,𝑐

1 )

𝛼
) ⋅ (𝛼𝑦 ⋅ 𝑝𝑡,𝑐

1 − 𝛼𝑦 ⋅ ∆𝑡,𝑐
1 ) + 𝛼𝑦 ⋅ 𝑉𝑡−1

1 (𝑐) = 𝑑𝑡(𝑝𝑡,𝑐
1 ) ⋅

𝛼𝑦 ⋅ (𝑝𝑡,𝑐
1 − ∆𝑡,𝑐

1 ) + 𝛼𝑦 ⋅ 𝑉𝑡−1
1 (𝑐) = 𝛼𝑦 ⋅ 𝑉𝑡

1(𝑐). 

A.5.2 Case 2: ∆𝒕,𝒄
𝟏 ≥ 𝒑𝒕

∞ ⇔ ∆̃𝒕,𝒄
𝜶 ≥ 𝒑𝒕

𝜶,∞
 

In this case, opportunity costs exceed the null price and it does not make sense to try to sell a unit. 

From the proof of Lemma 2 (A.2), we know that selling at a price below opportunity cost is never 

optimal. Thus, selling in period 𝑡 is avoided by setting the risk-neutral (𝑝𝑡
∞) or risk-averse (𝑝𝑡

𝛼,∞
) null 

price. 

 Electronic copy available at: https://ssrn.com/abstract=3338338 
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