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Abstract 

Product-related and market-related uncertainties often cause users to defer from switching to 

new IT devices. There is a value of waiting (VoW) for users because waiting allows them to col-

lect more information. At the same time, many IT switching decisions are increasingly complex 

due to increased connectivity and the resulting interdependencies between jointly used devices. 

Therefore, switching decisions for connected devices not only need to consider the new device 

in isolation, but must also account for the potential benefits from internally or externally con-

necting the device with other devices. Although crucial for users and providers alike, existing 

models cannot explain whether and when users switch in such connected environments.  

We focus on connected Smart Home Devices (SHDs) and simulate users’ actual switching tim-

ing based on a real options model which combines switching and deferral concepts in a context-

specific setting. We examine how Smart Home Network (SHN) density influences switching and 

how providers can use incentives to accelerate switching to foster product diffusion. The find-

ings show an accelerating effect of connectivity and a deferring effect of uncertainty on actual 

switching timing. We also learn that SHD providers should focus more on immediate than on 

delayed incentives to promote product diffusion, since the latter can also have undesired effects. 

Interestingly, external connectivity has almost no influence on decision timing in scenarios with 

highly dense SHNs, leading to further key implications for SHD providers. 

Keywords: Real options approach, Value of waiting, Smart Home Devices, Incentive schemes, 

Private users. 
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1 Introduction 

Rapid technological progress is found in many areas and new generations of IT devices are 

frequently introduced. Consumers may therefore need to constantly assess whether they wish to 

switch to a new generation of IT devices. Finding the right time to switch is not easy, since the 

new device’s capabilities and the user’s ability to exploit them are often uncertain (Kim and 

Kankanhalli 2009). Switching too early can waste money and time (e.g. if a device does not 

work as intended), while switching too late may mean missing out on potential new benefits 

(Kauffman and Li 2005). This decision has become even more complex as many devices nowa-

days provide connectivity to other devices, promising to generate a higher utility when used 

jointly.  

In this paper, we use Smart Home Devices (SHDs) as an example. These IT-enriched household 

devices (e.g., smart thermostats, locks or even washing machines powered by solar panels) inte-

grate physical, sensory, and digital components into single products and are either connected to 

each other or with other IT devices (e.g., smartphones or tablets) in a Smart Home Network 

(SHN). By connecting compatible SHDs in an SHN, their functional ranges can be extended, 

bringing together intelligent devices from various application fields with different primary us-

age purposes (Kuebel and Zarnekow 2015; Rijsdijk and Hultink 2009). Using Internet-based 

connections, certain SHDs also allow for interactions with other users’ devices (Aldrich 2003). 

We refer to these two scenarios as internal respectively external connectivity. In both cases, the 

utility for the focal users can increase if their SHDs are not merely used in isolation, but are in-

stead connected with other internal or external SHDs.  

Previous approaches have used the value of waiting (VoW) concept to explain switching de-

cisions. It is based on the assumption that additional time provides users with more information 

about a new device’s functionality and the likelihood of its market success (Dong and Saha 

1998; Kauffman and Kumar 2008). However, these approaches have important shortcomings in 

the dynamic contexts of connected environments: First, they only take users’ technological sta-

tus quo into account without considering potential ideal switching times in the future (Fan and 

Suh 2014; Ranganathan et al. 2006; Zhang et al. 2009). Second, they approach users’ utilities 
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from a perspective that treats devices in isolation, i.e. they fail to account for the devices’ con-

nectivity as well as users’ current and future tendencies to generate higher utility by using de-

vices jointly with others. This is not only a major theoretical research gap, it is also of high rele-

vance for providers of connected devices who consider incentives to foster users’ switching de-

cisions.  

We interpret users’ possibility to switch to new devices as a real option: users have the op-

portunity, but not the obligation, to select new SHDs and to substitute incumbent ones. Users 

can also defer the decision until a certain point in time. Although being a major determinant for 

whether switching takes place and for designing incentive schemes to foster switching, very few 

approaches have focused on the utility of deferring switching decisions (Henseler and Roemer 

2013). We assess this utility in this work by interpreting the value of a particular option as a rep-

resentation of the VoW. We comprehensively account for connectivity between devices and 

consider the development of uncertainty in intertemporal decisions by introducing a dynamic 

perspective. To do so, we develop a combined deferral and switching option (Kauffman and Li 

2005; Kumar 1996; Loraas and Wolfe 2006), extend it with incentive schemes, and use least 

square Monte Carlo (LSM) simulation to calculate the value of this specific option – the VoW.  

      Altogether, we demonstrate that option theory is a natural tool to model user switching deci-

sions for new technologies and to derive the VoW as well as the actual time to switch for sce-

narios of substantial interdependencies between devices. We also show how changes in SHN 

density and in the number of external connections alter the VoW and the actual point in time to 

switch, and analyze the impact of one-off and repeated incentives to foster switching. 

       We contribute to the literature by presenting a novel approach that employs the VoW concept 

as an explanation for deferred decisions in private users’ technology management in environments 

that are characterized by connectivity-driven uncertainty. Taking the example of SHNs, our model 

explains the impact of uncertainty reduction and timing aspects as relevant factors in switching 

decisions. Regarding future research, our procedure to adapt models to critical decision semantics 

can also be used for other ROAs in the private user context. For SHD providers, we provide a 

better understanding of the roles of connectivity and the VoW in their customers’ switching de-

cisions. We also examine the impact of incentives on actual timing in different scenarios, which 
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can help providers in the configuration of incentive schemes and enhance the diffusion of their 

products. 

The remainder of this paper is organized as follows: In Section 2, we present the conceptual 

foundations of our work. Section 3 develops our enhanced real options approach. In Section 4, 

we derive solutions for the option values and actual switching timing and perform experimental 

simulations. In Section 5, we discuss the results and provide a sensitivity analysis to show the 

robustness of our results. We close with theoretical and practical implications as well as an out-

look on future research in Section 6. 

2 Conceptual Foundation  

2.1 Application of Real Options to Switching Behavior 

At any point in time, users have the opportunity, but not the obligation to switch. This is con-

gruent with real options, which are defined by the right to take a certain future action or not. 

Therefore, the decision to switch to new SHDs embeds a switching option and a deferral option. 

This implies that we can build our switching model on the basis of established switching option 

models (e.g. Margrabe 1978), which address the exchange of financial assets. The switching op-

tion represents the combination of quitting the incumbent device (put option) and using the new 

one instead (call option).  The option to defer provides users with more flexibility, since they 

have the opportunity to delay the decision until more information is collected (Saya et al. 2010). 

This corresponds to a wait-and-see strategy and constitutes the real option’s time value, as it can 

reduce uncertainties about the de facto value of the option underlying (Benaroch 2002). To de-

termine a specific option value, Black and Scholes (1973), and for switching options especially 

Margrabe (1978), have derived the fundamental equations, which we will take as a basis for our 

real option model. The basic option models have in common that they focus on uncertainty as a 

main driver in decision making. This allows linking the different concepts of the real option ap-

proach (ROA) and the private user perspective of the VoW that are characteristic of decisions in 

the field of SHDs. 

The decision to switch requires private users to invest in a new SHD. In some sense, users’ 

decisions are comparable to managers’ decisions on IT investments in the organizational con-

text. In the latter context, the ROA has already been shown to improve decision-making and 
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help understand the role of minimizing uncertainty while waiting (Janney and Dess 2004). De-

pendencies between incumbent and new devices and software are important for various decision 

assessments; for instance, when firms seek to invest in new software platforms (Taudes et al. 

2000). Such interactions are also relevant for SHNs, where the decision to switch to new SHDs 

depends on their compatibility to other connectable devices that users already possess. 

To date, previous works that applied ROAs to technology investments have mainly focused 

on the valuation of investments from a company perspective. For instance, many studies empha-

size the role of option value calculations as ways for managers’ risk management to justify IT 

investment decisions (Dos Santos 1991; Harmantzis and Tanguturi 2007; Heinrich et al. 2011). 

Other research has used option models to derive optimal timing strategies for corporate technol-

ogy selection decisions (Ji 2010; Kauffman and Li 2005; Sollars and Tuluca 2012). However, 

what has not yet received sufficient research attention, is the application of ROA to the private 

user context. 

For the application of ROA, it is important that (at least) partial investment irreversibility 

and uncertain utility gains hold true, otherwise users could reverse an investment without mone-

tary loss when new information becomes available or there is no new information becoming 

available, making immediate decisions equally good as delayed ones (Adner and Levinthal 

2004; Burger-Helmchen 2007). However, the main challenge when transferring option theory to 

tangible, non-financial problems is to account for the assumptions of the financial models they 

were originally developed for. Whenever relaxations of these assumptions are necessary, we 

need to enhance the original models. Since option valuation models consider market risks, but 

more or less ignore project-specific risks (Diepold et al. 2009), we must reflect on the product-

related uncertainties of SHDs in the valuation of the underlying asset. To overcome the lack of a 

perfect market, we must use valuation procedures that can integrate SHD related connectivity 

effects, consider users’ expectations, and simulate the valuation development (Ullrich 2013). 

We apply simulations, such as the LSM approach, to allow for flexible option exercising and to 

identify the right timing to switch SHDs, while preserving the same basis as for the original op-

tion valuation models (Benaroch et al. 2007; Schwartz and Zozaya-Gorostiza 2003; Ullrich 

2013). Finally, as noted, owing to their comprehensive connectivity features, the valuation of 
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SHDs is subject to connectivity effects, which emerge through either connecting different SHDs 

of one user (internal connectivity), or when users connect their SHDs with those of other users 

(external connectivity). We therefore extend existing views on network effects1 to account for 

both internal and external connectivity as part of the valuation process.  

When accounting for the specifics of SHDs, analyzing switching decisions would not be pos-

sible with either classical adoption models (such as the Technology Acceptance Model, Davis 

1989), or theories on the diffusion of innovation (such as Rogers 2010). Theories on the diffu-

sion of innovation often take on a market-perspective and classify users based on the time when 

they adopt an innovation. While we acknowledge that diffusion on a large scale is composed of 

several individual level decisions, adoption is different from switching in the way that, for the 

latter, a similar precedent technology is currently used, which resembles the basis for users’ as-

sessment of the potential of the new technology. By contrast, adoption models merely assess de-

terminants of new technologies without taking the users’ current technologies into account. 

Likewise, other dedicated switching models, such as the push-pull-mooring framework, do not 

usually account for factors such as connectivity, which are crucial for smart home technologies. 

Furthermore, such models only offer a static perspective, which does not account for the spe-

cific time of switching and the remaining usage time of the current technology. 

2.2 Incentives to Influence Users’ Switching Decisions 

Ways to convince users to switch faster to their technology are of great interest for SHD pro-

viders, especially since a rapidly growing installed base can help them to achieve market leader-

ship. While the VoW generally restricts the further diffusion, an explicit reduction of the VoW 

can accelerate user switching and let providers exploit the advantages of early market entries. 

One way for providers to reduce the VoW is to use monetary incentives. 

Incentives and their function related to technology diffusion play a large role in many disci-

plines, such as management, organizational behavior, marketing, and computer science (Wymer 

                                                      

1 Note that network effects usually assume a focal user’s utility to be dependent on the diffusion or usage of the same 

or similar technologies by others, whereas for internal connectivity it is purely the focal user’s decision whether to 

establish a physical connection between their devices. 
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and Regan 2005). They are differentiated concerning reward type and reward timing. For exam-

ple, loyalty programs are used in cooperation with different companies. Providers can pay re-

wards immediately or can delay them (Rothschild and Gaidis 1981; Yi and Jeon 2003). Firms 

can use one-off subsidies and price discounts to stimulate switching to new devices, but they 

can also offer repeated rewards to bind users to a device after its purchase.  

Incentives have an immediate positive effect on perceptions and serve as additional infor-

mation in later evaluation considerations, which further increases the perceived value in the long 

run (Naylor et al. 2006). Besides this utility effect, incentives can reduce users’ motivations to 

collect and recall product information and consider them in the decision process, so that waiting 

to gain information becomes less relevant (Aydinli et al. 2014). In consequence, incentives 

shorten waiting durations in users’ switching decisions (Jørgensen and Zaccour 1999; Lin and 

Huang 2014), by increasing the utility of new devices and therefore also increasing the likeli-

hood of switching (Andrews et al. 2010; Dodson et al. 1978).  

Because of the considerable interdependencies between different devices and the resulting 

uncertainty concerning devices’ utility, the case of SHDs is more complex than for scenarios 

where products and related switching decisions can be treated in isolation. Hence, it is not intui-

tively clear which incentives can be used to promote switching and what their effects are. We 

compare an incentive scheme consisting of an immediate, one-off reward that immediately re-

duces switching costs to new SHDs with a scheme of delayed repeated rewards that seeks to 

bind users in the long run. 

3 Real Option Model Development 

3.1 Decision Scenario and Model Derivation 

We develop a real option model that represents end-users’ VoW derived from the possibility 

to defer a switching decision to a future point in time. Our specific decision situation focuses on 

SHNs, in which users have the possibility to switch from the incumbent SHD (SHD1) to a new 

one (SHD2). Both SHD 1 and SHD 2 fulfill the same stand-alone functionalities, but the new 

one offers more opportunities to connect it with other SHDs of the focal user or an external 

SHN. For example, while the current smart thermostats already offer to communicate electroni-
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cally with other thermostats in the same or another room and while they can automatically ad-

just the power of the main heating, the new generation of thermostats also offers convenient 

control access from any compatible smartphone or tablet. 

 Users’ switching decisions are based on their SHD valuations; they build expectations about 

the utility they will receive if they switch and integrate the new SHD into their SHN (𝐸(𝑈2). 

They also build expectations about the utility they will receive from the incumbent SHD if they 

do not replace it (𝐸(𝑈1)). Both expected utilities relate to the entire usage period, from taking 

the decision whether or not to switch (𝐷𝑡), to the uncertain point in time when SHD1 or SHD2 

are no longer usable (𝐷𝑇); for instance, owing to technological obsolescence. 

We interpret this decision scenario as private users’ real option to defer switching because it 

is possible to replace SHD1 with SHD2. However, it is also possible to defer this decision until 

users possess sufficient information to take a deliberate decision, although there is no immediate 

need for users to switch as they can further use their incumbent SHD. The real option begins 

with the market entry of SHD2 (𝑡0) and ends with the finite expiration date (𝑇), which is neces-

sary since neither SHD1 nor SHD2 can be used forever. Therefore, in contrast to perpetual real 

options with an infinite horizon (Wong 2007; Zhang and Guo 2004), we interpret 𝑇 as the point 

in time at which a future SHD generation enters the market. Then, SHD2 is no longer available 

in the present form because the provider of SHD2 stops selling it and introduces an entirely new 

SHD or changes important properties of SHD2, also rendering it effectively a new device. For 

instance, incentives to switch to SHD2 are dropped or related services are altered or discontin-

ued. This decision scenario is illustrated in Figure 1. 

  

Figure 1. Decision Scenario: Option to Defer Switching SHDs 
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To handle the described semantics of the decision scenario, we first need a valuation for the 

option underlying (here, the SHD) that represents all relevant utilities concerning internal and 

external connectivity. Second, to account for real option modeling, we build on parameters of 

existing models that either address individuals’ private switching behaviors (Haenlein et al. 

2006; Henseler and Roemer 2013) or consider the value in deferring the selection of new tech-

nologies, but in corporate contexts (Benaroch and Kauffman 1999; Harmantzis and Tanguturi 

2007). We combine the relevant elements concerning individual decisions on switching – 

switching costs and individual utility functions – and deferring – exercising and waiting costs – 

within the basic switching option model of Margrabe (1978). We therefore use the basic ele-

ments of the latter: comparisons between two different exercise prices of two different assets 

and a variance greater than zero for the difference between the development of asset prices 

(Margrabe 1978). Third, we integrate incentives, determine adequate and context-specific devel-

opment processes for users’ expectations while waiting, and implement the trade-off between 

deferral costs of switching too late and exercising costs of switching too early.  

3.2 Determining the Option Underlying 

To formalize an appropriate option underlying, we take a utility function approach. As noted, 

SHDs allow users to connect their “pure” IT devices with household devices as well as establish 

connections among their SHDs, both of which can increase SHDs’ functionalities (Kuebel and 

Zarnekow 2015; Mennicken et al. 2014). In addition, the connections can be either within a 

user’s SHN (internal connectivity), but also beyond (external connectivity). For instance, in the 

case of smartphones, there can be internal connections to other SHDs, such as smart TVs, but 

also exogenous connections to other users via communication applications. The former connec-

tivity type leads to a super-additive utility in SHD valuation that users can internalize independ-

ent of other users’ decisions. Therefore, the total utility (𝑈) of an SHD has three components: 

first, a stand-alone utility from basic functionalities (𝐴), for instance, a smartphone’s alarm ap-

plication; second, a connectivity-related utility (𝐶𝑉) emerging in connections between SHDs; 

third, a network-related utility (𝑁𝑉) for connections to other users (Berger et al. 2016; Matutes 

and Regibeau 1996). We therefore derive for SHD 𝑗 
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𝑈𝑗 =  𝐴𝑗 +  𝑁𝑉(𝑏𝑗 , 𝑁𝑗) +  𝐶𝑉(𝑐𝑗 , 𝐷𝑈𝐶𝑗 , 𝐻𝑗),       (1) 

where 𝐴𝑗 , 𝑏𝑗 , 𝑐𝑗 > 0 ∧ 𝑁𝑗 , 𝐻𝑗 ∈ ℕ ∧ 𝐷𝑈𝐶𝑗 ∈ [0, 1]. Thereby, 𝑁𝑗 denotes the exogenous network 

size, and 𝑏𝑗 the external network valuation factor. Further, 𝐻𝑗 denotes the number of SHDs in a 

private network, 𝑐𝑗  the connectivity valuation factor, and 𝐷𝑈𝐶𝑗 the degree of utilized connectiv-

ity (that is, SHN density related to 𝑗).  

Users cannot fully predict the future development of the different utility elements of SHD 

valuation. They face uncertainties concerning connectivity effects, which influence 𝑁𝑉, as well 

as uncertainties concerning the diffusion of the standard and compatibility to other devices, 

which influence 𝐶𝑉. Owing to these unpredictable risks, we use individuals’ perceived expected 

utilities to represent the option underlying. As the valuation includes all future usage periods of 

an SHD, we take the discounted expected utilities into account. That is, 𝐸(𝑈1) reflects the ex-

pected net utility gains from using SHD1 in the future and 𝐸(𝑈2) reflects the expected net util-

ity gains from using SHD2 in the future, both calculated at the time when users take the deci-

sion whether or not to switch. 

Since significant uncertainties accompany the expected utilities, it is possible to extend these 

utilities by the option premium 𝑤, in other words the VoW (Trigeorgis 1996). Therefore, we de-

rive the total utility of a user’s investment in an SHD 𝑗 (𝐸𝑈𝑗,𝑇𝑜𝑡𝑎𝑙) by  

𝐸𝑈𝑗,𝑇𝑜𝑡𝑎𝑙 =  𝐸(𝑈𝑗) + 𝑤 =  𝐸(𝐴𝑗) + 𝐸(𝑁𝑉(𝑏𝑗, 𝑁𝑗)) + 𝐸(𝐶𝑉(𝑐𝑗 , 𝐷𝑈𝐶𝑗 , 𝐻)) + 𝑤.  (2) 

We assume that users evaluate both the incumbent device and the new alternative accord-

ingly. If users switch, 𝐸(𝑈2) + 𝑤 constitutes the actual switching value. If they do not switch 

and therefore do not exercise the option (𝑤 = 0), users derive 𝐸(𝑈1) for using SHD1 in the fu-

ture. We will specify the functional forms of Equation 1 and 2 in detail when we describe the 

data generation process. 

3.3 New Real Option Model Specification 

To specify our new option model, we use a stochastic process of users’ expected changes in 

𝐸(𝑈𝑗) while they wait. Figure 2 presents an illustration of an exemplary development process of 



11 

expected utility. It mainly shows the expected net utility of SHD𝑗 during the option duration re-

spectively until the option is exercised at time 𝑡∗ (bold line: until option is exercised, dotted 

line: after exercise). Note that in addition to the development process from 𝑡0 to 𝑡∗ (as depicted, 

if the option is exercised at all) also the development processes during the entire option duration 

(𝑡0 to 𝑇, not depicted after 𝑡∗) are relevant for the switching decision. The development pro-

cesses in the usage period (𝐷𝑡 to 𝐷𝑇) are not considered in the decision, because the decision is 

already made. However, they are reflected in users’ expected utilities 𝐸(𝑈1) and 𝐸(𝑈2). 

To ensure context-adequacy, we differentiate between the development of 𝐸(𝐴𝑗 +

𝐶𝑉(𝑐𝑗 , 𝐷𝑈𝐶𝑗 , 𝐻𝑗)) =  𝐸𝐴𝑗  +  𝐸𝐶𝑉𝑗 =  𝐸𝐴𝐶𝑉𝑗 and of 𝐸(𝑁𝑉(𝑏𝑗 , 𝑁𝑗)) = 𝐸𝑁𝑉𝑗.  

For the development of changes in 𝐸𝐴𝐶𝑉𝑗, we assume a geometric Brownian motion as a typ-

ical stochastic differential equation type to model uncertainty in option valuation, one that is fre-

quently used for new technologies that enable new application fields (Carr 1995; Taudes et al. 

2000). We argue for an upward trend in expectations, since users will obtain information about 

how to exploit all functionalities of SHD2 and how to use it with other SHDs in their SHNs. 

Moreover, owing to habituation, they expect to increasingly exploit the utility of SHD1, also 

confirming an upward trend. Therefore, we derive 

𝑑𝐸𝐴𝐶𝑉𝑗 = 𝐸𝐴𝐶𝑉𝑗 [(𝜇𝐸𝐴𝐶𝑉𝑗 −  𝛿𝐸𝐴𝐶𝑉𝑗 )𝑑𝑡 +  𝜎𝐸𝐴𝐶𝑉𝑗
𝑑𝑧𝐸𝐴𝐶𝑉𝑗 ] (𝑗 = 1, 2),   (3) 

with 𝜇𝐸𝐴𝐶𝑉𝑗
 as the expected changes growth rate and the standard deviation 𝜎𝐸𝐴𝐶𝑉𝑗

 as its volatil-

ity. In general, 𝛿𝐸𝐴𝐶𝑉𝑗  represents dividend yields (the deferral costs of waiting or the exercising 

costs of switching), and 𝑑𝑧𝐸(𝑈𝑗) the increment of a standard Wiener process at time 𝑡 with 

𝑑𝑧𝐸(𝑈𝑗)  ~ 𝑁(0, 𝑑𝑡) (Carr 1995; Harmantzis and Tanguturi 2007; Margrabe 1978). 
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Figure 2. Exemplary Development Process of Expected Changes of 𝐸(𝑈𝑗) 
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tinuous movements occur when new information supports a re-evaluation of the option underly-
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mation predicting that a sufficient installed base will not be reached (Kauffman and Kumar 
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 ,       (4) 

where 𝜆 is the mean number of jumps per unit time and 𝑃𝑟𝐽𝑢𝑚𝑝 is the probability of a jump 
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option’s exercise price be the sum of 𝐸(𝑈1), which is lost if users switch, and the difference be-

tween additional switching costs 𝐾 (lump sum) and the provider’s immediate, one-off incentive 

𝐼, i. e., 𝐸(𝑈1) + (𝐾 − 𝐼). Additional switching costs exist because users need, for instance, to 

invest extra time in learning to use the new SHD or need to buy new complementary products 

for the SHN (Burnham et al. 2003). SHD providers can directly reduce these costs by offering a 

one-off reward to a potential customer (Corbo and Vorobeychik 2009). We implement a deferral 

cost rate 𝛾 on SHD2’s utility and an exercise cost rate 𝑟 on SHD1’s utility, analog to dividend 

yields. Therefore, we can consider the trade-off between switching too early or using the new 

device too late, which justifies why finding the right timing to switch is both useful and neces-

sary (Benaroch and Kauffman 1999; Harmantzis and Tanguturi 2007). Deferring provides users 

with the opportunity to gather more information, but they cannot use the new SHD while wait-

ing and, therefore, do not profit from its utility during that time. SHD providers can influence 

the deferral costs by offering repeated delayed incentives; that is, the incentives are provided 

throughout the whole usage period. For instance, they can offer free monthly updates and addi-

tional applications that enhance the functionalities of users’ SHDs (Corbo and Vorobeychik 

2009). Waiting to switch increases the deferral costs since these rewards cannot be obtained. We 

assume the incentives to be a multiplicative factor in the form of (1 + 𝑖) (with 𝑖 ≥ 0) so that the 

deferral costs are 𝛾 ⋅ (1 + 𝑖).  

Implementing the described modifications, we are able to formalize our real option model 

concerning the individual user perspective and the waiting perspective. The initial equation for 

the option value (𝑤) is given by 

𝑤(𝐸(𝑈2), 𝐸(𝑈1), 𝐾, 𝐼, 𝑇) = max (0, 𝐸(𝑈2) − (𝐸(𝑈1) + (𝐾 − 𝐼))).   (6) 

3.4 Solution Approach 

For now, we ignore that the expected changes of 𝐸𝑁𝑉𝑗 are modeled with a jump diffusion 

process and assume that 𝐸(𝑈𝑗) follows the Geometric Brownian Motion in all expected utility 

elements. We obtain a closed form solution for the value of our option type by  

𝑤𝐵𝑆(𝐸(𝑈2) , 𝐸(𝑈1) , 𝐾, 𝐼, 𝑇) = 𝐸(𝑈2) 𝑒−(1+𝑖)𝛾𝑇𝑁(𝑑1) − (𝐸(𝑈1)  + (𝐾 − 𝐼))𝑒−𝑟𝑇𝑁(𝑑2),  
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with 𝑑1 =  
ln (𝐸(𝑈2) (𝐸(𝑈1)+(𝐾−𝐼)))+(0.5𝜎2−(1+𝑖)𝛾 + 𝑟)𝑇⁄

𝜎√𝑇
, and 𝑑2 =  𝑑1 − 𝜎√𝑇 .  (7) 

Here, 𝜎 denotes the standard deviation of the expected change rate on 𝐸(𝑈1) and 𝐸(𝑈2), and 

𝑁(∗) the standard normal distribution function (Black and Scholes 1973; Margrabe 1978; 

McDonald and Siegel 1986). Let us now define a random variable 𝑋𝑛, which has the same dis-

tribution as the product of 𝑛 i.i.d. random variables, of which each is identically distributed as 

the random variable (𝑌 − 1). Further, we define 𝐸𝑛 to be the expectation operator of 𝑋𝑛 (Mer-

ton 1976). We can now derive from Equation 7 the option value while accounting for jumps by 

𝑤(𝐸(𝑈2) , 𝐸(𝑈1) , 𝐾, 𝐼, 𝑇) =  ∑
𝑒−𝜆𝑇(𝜆𝑇)𝑛

𝑛!
∞
𝑛=0  [𝐸𝑛{𝑤𝐵𝑆(𝐸(𝑈2)𝑋𝑛𝑒−𝜆𝜅𝑇 , 𝐸(𝑈1) , 𝐾, 𝐼, 𝑇)}].(8) 

Equation 8 is no closed-form solution. However, it allows us to approximate solutions rea-

sonably well via LSM simulation (Kou 2002; Longstaff and Schwartz 2001; Merton 1976). Our 

real option model combines important modifications for the SHN context. The option underly-

ing is based on the specific utility elements of SHDs and considers users’ expected utility per-

ceptions. Defining an appropriate underlying is indispensable to account for individual users 

and their switching behavior.  

Further, technology investments, such as users’ selection of SHDs, require the implementa-

tion of deferral costs and exercise costs to consider the related trade-offs (Benaroch and 

Kauffman 1999; Harmantzis and Tanguturi 2007). The incumbent device is not perfectly risk-

free, but provides users with a comparably constant and well assessable utility. Therefore, we 

assume that 𝛾 ⋅ (1 + 𝑖) > 𝑟.  

The users can execute the option to defer switching on any given day within the option dura-

tion. There are no analytical closed-form solutions for such American-type options. Therefore, 

we need approximation processes (e.g., LSM simulations) to calculate the option value and us-

ers’ switching timing (Benaroch and Kauffman 1999; Harmantzis and Tanguturi 2007; 

Longstaff and Schwartz 2001). Note that the calculated time to switch maximizes users’ utility 

concerning uncertainties and expectations, which encourages them to actually switch (𝑡∗ de-
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notes the actual switching timing). However, 𝑡∗ is optimal only subject to the information avail-

able to users at a given point in time; hence, we refer to actual rather than optimal time to 

switch.  

4 Solutions for Option Values and Actual Switching Timing 

To derive solutions, we first determine variables and calculate the option underlying’s ex-

pected utilities. Further, we define simulation paths by following our stochastic differential 

equations. Based on specific values and randomly generated data, we use the LSM simulation 

algorithm to derive the American-type values. We repeat several simulation runs and take the 

mean values of the VoW and 𝑡∗ as the basis for sensitivity analyses on expiration dates and the 

volatility in expectations. Finally, we vary values for internal connectivity and external connec-

tivity and compare different provider incentive schemes. Figure 3 gives an overview of the dif-

ferent steps to calculate the switching decision as well as on the parameters in the sensitivity 

analysis. 

 

Figure 3. Simulation Procedures and Analyses 

4.1 Data Generation Processes and Simulation Paths 

We specify the expected utility functions (Equations 1 and 2) and their development in the 

usage period (𝐷𝑡 to 𝐷𝑇 , as indicated in Figure 2). We divide the usage period into a certain num-

ber of time increments 𝑑𝑑𝑡 (𝑑𝑑𝑡 =  {0; 1; 2; 3; 4; 5}); that is, we assume a usage time of 5 years 

starting with the point in time when users decide whether to switch – 𝑡∗ (𝑑𝑑𝑡 = 0). In this pe-

riod, we assume that the internal and external network size develop from year to year following 
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an epidemic network diffusion model (Geroski 2000). To calculate the future time path of the 

internal network size (𝐻𝑗(𝑑𝑑𝑡)), we derive  

𝐻𝑗(𝑑𝑑𝑡) =  
𝐻𝑗,𝑒𝑥

[1−𝜙𝑒−𝛼𝐻𝑗,𝑒𝑥𝑑𝑑𝑡]
, with 𝜙 =  

𝐻𝑗,𝑒𝑥 − 𝐻𝑗(𝑑𝑑𝑡=0)

𝐻𝑗(𝑑𝑑𝑡=0)
,     (9) 

where 𝐻𝑗,𝑒𝑥 denotes the potential expected network size and 𝛼 denotes a coefficient reflecting 

the scale by which the network integration of previous SHDs influences the usage of emerging 

SHDs. 𝐻𝑗(𝑑𝑑𝑡 = 0) > 0 must hold true (Geroski 2000). We propose that 𝐻2,𝑒𝑥 >  𝐻1,𝑒𝑥 be-

cause the new SHD2 has greater connectivity possibilities than SHD1. Equivalently, to calculate 

the future time path of the external network size (𝑁𝑗(𝑑𝑑𝑡)), we derive 

𝑁𝑗(𝑑𝑑𝑡) =  
𝑁𝑗,𝑒𝑥

[1−𝜙𝑒
−𝛽𝑁𝑗,𝑒𝑥𝑑𝑑𝑡

]
, with 𝜙 =  

𝑁𝑗,𝑒𝑥 − 𝑁𝑗(𝑑𝑑𝑡=0)

𝑁𝑗(𝑑𝑑𝑡=0)
,     (10) 

where 𝑁𝑗,𝑒𝑥 denotes the potential expected network size and 𝛽 is a coefficient reflecting the 

scale by which previous users influence new ones. 𝑁𝑗(𝑑𝑑𝑡 = 0) > 0 must hold true (Geroski 

2000).2 𝑁2,𝑒𝑥 is characterized by users’ uncertainty: they do not know whether SHD2 will reach 

a considerable installed base, leading to a large external network size, or whether SHD2 will fail 

in the market and the number of possible external connections will decrease (Katz and Shapiro 

1994). Therefore, we implement a failure rate 𝑓 in the new SHD’s potential external network 

size. SHD providers can decrease the probability of failure 𝐹 by offering incentives. We obtain 

the following distribution rule for expected potential network sizes: 

𝑁2,𝑒𝑥 
↗ > 𝑁1,𝑒𝑥, 𝑤𝑖𝑡ℎ 1 − 𝐹(𝑓, 𝐼, 𝑖)

↘ < 𝑁1,𝑒𝑥 , 𝑤𝑖𝑡ℎ         𝐹(𝑓, 𝐼, 𝑖)
 ,       (11) 

where 𝐹′(𝑓) > 0 and 𝐹′(𝐼), 𝐹′(𝑖) < 0. To transfer internal and external network size into utili-

ties, we assume that 𝐶𝑉 and 𝑁𝑉 for both SHDs follow curves with diminishing marginal utili-

ties. We use ln-functions to reflect that a network size of at least 2 is needed to generate connec-

tions-related utility. 𝐶𝑉 and 𝑁𝑉 are calculated for 𝑑𝑑𝑡 with related network sizes. We derive:  

                                                      
2 The necessary conditions 𝐻𝑗(𝑑𝑑𝑡 = 0) > 0 and 𝑁𝑗(𝑑𝑑𝑡 = 0) > 0 are not problematic in our scenario, because an 

internal network already exists and because independently of SHD2’s market success or failure in the long run, we can 

at least assume that some early adopters will use SHD2 already before it has seen strong market diffusion. 
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𝐶𝑉(𝑐𝑗 , 𝐷𝑈𝐶𝑗 , 𝐻𝑗,𝑑𝑑𝑡) =  𝑐𝑗 ⋅ 𝐷𝑈𝐶𝑗 ⋅  ln(𝐻𝑗,𝑑𝑑𝑡);                 (12) 

𝑁𝑉(𝑏𝑗 , 𝑁𝑗,𝑑𝑑𝑡) = 𝑏𝑗 ⋅ ln(𝑁𝑗,𝑑𝑑𝑡).       (13) 

We build the net present values discounting 𝐶𝑉 and 𝑁𝑉 to 𝑑𝑑𝑡 = 0, representing the expected 

utilities 𝐸𝐶𝑉𝑗 and 𝐸𝑁𝑉𝑗. To indicate that the basic functionalities of SHD2 are equal or better 

than SHD1, we take 𝐸𝐴1 =  𝐴1 as a fixed parameter, but assume that  

𝐸𝐴2 = 𝐸𝐴1 +  𝑠2 ⋅ 𝜂2,         (14) 

where 𝜂2  =  [0; 1] is an uniformly distributed random number and 𝑠2  ∈  ℕ+ is a deviation fac-

tor accounting for how much SHD2 is expected to outperform SHD1 in stand-alone usage. 

Therefore, we can sum up 𝐸𝐴𝑗, 𝐸𝐶𝑉𝑗 and 𝐸𝑁𝑉𝑗 to derive 𝐸(𝑈𝑗) for SHD2 and SHD1. 

The valuation factor 𝑐𝑗  is taken as a random, multiplicative factor from a normal distribution. 

𝑓, 𝐼, 𝑖, 𝑏𝑗 and 𝐷𝑈𝐶𝑗  are fixed parameters. We assume that 𝐷𝑈𝐶2 >  𝐷𝑈𝐶1 since we noted that 

the new SHD should be a superior alternative in terms of connectivity, making possible a denser 

private network. Since 𝑐𝑗 , 𝑁𝑗,𝑒𝑥 and 𝜂2 are all random variables, they reflect users’ uncertainties 

relating to the different utility parts: users do not know for sure how much better the stand-alone 

functionalities in SHD2 are (𝜂2 in stand-alone utility); they do not know if they are able to ex-

ploit the additional utilities of better connectivity features in SHD2 (𝑐𝑗  in connectivity-related 

utility); they do not know whether SHD2 can reach a broad market diffusion (𝑁𝑗,𝑒𝑥 in external 

network-related utility).  

Next, we simulate the development processes of expected changes in 𝐸(𝑈2) and 𝐸(𝑈1) on 

1000 paths (𝑁𝑆 = 1000) and thereby prepare to apply the LSM algorithm. For this purpose, we 

define 𝑇 = 1 as time to expiration and 𝑁𝑇 = 365 ⋅ 𝑇 as the number of time intervals 𝑡. We as-

sume that users could take their switching decisions in any time interval during the option dura-

tion. To derive the processed values of 𝐸(𝑈2)𝑡 and 𝐸(𝑈1)𝑡  for any time interval, we use 𝐸(𝑈2) 

and 𝐸(𝑈1) as starting points in the first time interval (𝑡 = 1) and iteratively add 𝑑𝐸(𝑈𝑗) =

 𝑑𝐸𝐴𝐶𝑉𝑗,𝑡 +  𝑑𝐸𝑁𝑉𝑗,𝑡 for all other time intervals according to the Geometric Brownian Motion 

and the jump diffusion process (Equations 3 and 5). We set 𝜎𝐸𝐴𝐶𝑉2
>  𝜎𝐸𝐴𝐶𝑉1

 and 𝜎𝐸𝑁𝑉2
 >
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 𝜎𝐸𝑁𝑉1
 to implement that, owing to related uncertainties, SHD2 is a more volatile alternative 

than SHD1 so that new information during the decision phase can have a stronger (positive or 

negative) effect on expected valuation changes. We simulate the expected changes for every 

path and derive two 𝑁𝑆 × 𝑁𝑇 simulation path matrices Θ𝐸(𝑈1) and Θ𝐸(𝑈2), where every row 

presents the expected development of the valuation of the option underlying while waiting (Ap-

pendix 1 shows the specific parameter values for our base case). 

As we will describe in the next section, we use the generated data to calculate option values 

and actual timing via the LSM approach.  

4.2 Calculating the Value of Waiting and the Actual Time to Switch  

Longstaff and Schwartz (2001) formulate the following decision rule for LSM: at any incre-

mental point of time in the expiration period, option owners exercise an American option if the 

immediate payoff of exercising is higher than the expected payoff from continuing to hold the 

option. Accordingly, the optimal exercise timing depends on the conditional expectation of op-

tion continuation payoffs. Therefore, we must estimate continuation values for every time inter-

val from the cross-sectional information given in the simulation path matrices by using least 

square regressions. The fitted values represent expected continuation values, and we compare 

them with immediate exercising to identify the right exercise decision along each simulation 

path. We repeat the procedure recursively for every time interval to calculate the option value 

by discounting the net utility gains to the first time interval (Moreno and Navas 2003).  

To apply the LSM algorithm, we build the utility gain matrix Ω for every simulation path by 

searching the positive differences between Θ𝐸(𝑈2) and (Θ
𝐸(𝑈1)

+ (𝐾 − 𝐼)) (𝐾, 𝐼 as scalars) and 

by setting 0 if differences are negative. This is necessary to adapt the approach to our combined 

option type. We derive: 

Ω = max(Θ𝐸(𝑈2) − (Θ
𝐸(𝑈1)

+ (𝐾 − 𝐼)), 0).      (15) 

If the option is in the money at time interval 𝑁𝑇 − 1, users can decide between exercising 

immediately or continuing to hold the option until 𝑇. Let vector 𝑍 denote 𝐸(𝑈2) at time interval 

𝑁𝑇 − 1 for the in-the-money paths and 𝑌 denote the corresponding discounted utility gains at 

time interval 𝑁𝑇 if the option is not exercised. Analogous to Longstaff and Schwartz (2001), we 
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regress 𝑌 on a constant and different nonlinear functions (Laguerre Polynomials) of 𝑍. There-

fore, we derive the estimated utility gains from option continuation conditional on 𝐸(𝑈2) at 

time interval 𝑁𝑇 − 1. If the value of immediate exercise is greater than the value from continua-

tion, it is best to exercise the option, otherwise it is optimal to exercise later. We recursively re-

peat the procedure – least square regressions and value comparisons – until time interval 2 

(Longstaff and Schwartz 2001; Moreno and Navas 2003). The result is an optimal time interval 

to exercise the option for every simulation path with the corresponding optimal utility gain 𝑈𝐺* 

taken from the utility gain matrix Ω. We discount all the optimal utility gains back to the start-

ing date and derive the American-type option value 𝑤𝐴𝑀 with the discounted utility gains 𝑈𝐺̅̅ ̅̅ * 

as 

𝑤𝐴𝑀 = (∑ 𝑈𝐺̅̅ ̅̅
𝑖

𝑁𝑆
𝑖 *)/𝑁𝑆.        (16) 

The time to switch 𝑡* (also referred to as actual timing) reported in the following is the average 

of the above-mentioned time intervals when the option is exercised over all paths. We also cal-

culate the duration of waiting as the share of 𝑡∗ to the total number of time intervals 𝑁𝑇: 

𝑡𝑝𝑒𝑟𝑐
∗ =  𝑡∗ 𝑁𝑇⁄ . 

Finally, we repeat the process described, from calculating the valuation of the option underly-

ing, to constructing the simulation path matrices, to using the LSM approach in 1000 simulation 

runs (creating 1000 paths each). The values reported in the following are means over all 1000 

simulation runs3. We provide numerical solutions for users’ VoW and indicate the actual timing 

for switching SHDs. In addition, Table 1 also presents the results for expected connectivity- and 

network-related utilities. The user actually switches after approximately 90 days, in other 

words, after 25% of the option duration. Further, the user positively values the opportunity to 

defer a decision, with a VoW of 21.09. The user’s expected valuation for SHD2 (𝐸(𝑈2) =

                                                      

3 We performed all analyses with MATLAB R2014. We also calculated 95% confidence intervals for 𝑡* 

([86.01;93.81]) and wAM ([20.39;21.78]). The results indicated that 1000 simulation runs provide a stable basis for our 

analysis. 
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181.79) significantly exceeds the expected valuation of SHD1 (𝐸(𝑈1) = 146.07), mainly be-

cause of the much better expected connectivity-related utility. We will use these values for com-

parisons and will observe how they alter in the sensitivity analysis. 

Value of 
Waiting 

Actual 
Timing 

Actual Wait-
ing Duration 

Option Underlying Val-
uation 

Expected Connectiv-
ity-related Utility 

Expected Network-related 
Utility 

𝑤𝐴𝑀 𝑡* 𝑡𝑝𝑒𝑟𝑐
∗  𝐸(𝑈2) 𝐸(𝑈1) 𝐸𝐶𝑉2 𝐸𝐶𝑉1 𝐸𝑁𝑉2 𝐸𝑁𝑉1 

21.09 89.91 24.63% 181.79 146.07 83.74 44.18 35.53 41.89 

Table 1. Mean Simulation Results (Base Case)  

4.3 Altering Expiration Dates and Volatilities  

As stated in Section 3.3, our ROA cannot yet address two semantics of our decision scenario: 

First, an uncertain, but fixed expiration date 𝑇, and second, a decreasing uncertainty of the devel-

opment of expected utilities while users wait. We handle both specifics by performing sensitivity 

analyses.  

First, we vary 𝑇 and simulate our VoW and actual timing for an option duration up to six years, 

i.e., 𝑇 =  {1; 2; 3; 4; 5; 6}, assuming that most current SHDs will no longer be used and must be 

replaced in case of longer periods. We run all five new simulations with the same seeds for the 

random number generator to ensure comparability.4 The results for option value, actual timing 

and actual waiting duration are shown in Table 2. We find that altering the option duration has no 

significant influence on 𝑤𝐴𝑀 – the VoW. The value varies between 21.03 and 22.52. Users 

mostly value the fact that they have the possibility to wait, but how long they can defer a decision 

is less important. A longer period of possible waiting has a small effect on actual timing: even if 

the point in time to switch is later in absolute terms, users should switch earlier relative to the 

option duration. There is a tendency that actual timing in percent of the option duration is lower 

with higher 𝑇. This means that our base case with its shorter one year expiration date is slightly 

biased as it shows a longer (relative) actual waiting duration 𝑡𝑝𝑒𝑟𝑐
∗  compared to longer option 

durations.  

Expiration Date 
Value of Wait-

ing 
Actual 
Timing 

Actual Waiting 
Duration 

𝑇 𝑤𝐴𝑀 𝑡* 𝑡𝑝𝑒𝑟𝑐
∗  

 Simulation Results (Mean Values, 1000 Simulation Runs, Varying T) 

(Base Case)             1  21.09 89.91 24.63% 

                                                      
4 This process is repeated in all later sensitivity analyses: we ensure that every simulation for every parameter variation 

performs 1000 simulation runs and that every first, second, or n-th run uses the same number generator seeds. 
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2  22.52 137.95 18.90% 

3 21.81 188.41 17.21% 

4 22.13 243.51 16.68% 

5 21.03 313.40 17.17% 

6 22.14 314.57 14.36% 

Table 2. Simulation Results for Varying Expiration Date 𝑇 

Second, to show that the volatility of the expected changes should decrease during the option 

duration owing to more information, we vary 𝜎𝐸𝐴𝐶𝑉2
 and 𝜎𝐸𝑁𝑉2

, which determine the development 

of the expected utilities of SHD2 during the option period. This is necessary because there are no 

appropriate processes that allow us to implement a decreasing volatility in our ROA, even if it 

should shrink owing to more information collected while users defer to switch. By altering vola-

tilities, we learn how to interpret the results of our simulated model concerning users’ uncertainty 

(Table 3). First, we vary 𝜎𝐸𝐴𝐶𝑉2
 and 𝜎𝐸𝑁𝑉2

 simultaneously. Then, we vary only one of them and 

compare the findings. Increasing 𝜎𝐸𝐴𝐶𝑉2
 and 𝜎𝐸𝑁𝑉2

 simultaneously raises the VoW from 21.09 to 

39.10, and users will wait longer to take the switching decision, 46.01% of the option duration 

instead of 24.63%. The higher the uncertainty, the more users can profit from waiting so that 

𝑤𝐴𝑀 increases and the better it is to defer switching. We can see from varying the volatilities 

separately that a higher uncertainty regarding the internal connectivity effects (𝜎𝐸𝐴𝐶𝑉2
=

0.5; 𝜎𝐸𝑁𝑉2
= 0.05) drives this effect more strongly than a higher uncertainty regarding the exter-

nal effects (𝜎𝐸𝐴𝐶𝑉2
= 0.05; 𝜎𝐸𝑁𝑉2

= 0.5). Accordingly, if we start with the initial volatility and 

keep it constant, therefore failing to capture the actually decreasing volatility, the model overes-

timates volatility, and, therefore, we overestimate both actual timing and waiting duration. These 

effects are in line with the basic ROA assumptions and they provide further evidence that our 

developed model is still consistent with ROA theory.  

Volatility Geomet-
ric Brownian Mo-

tion 

Volatility Jump 

Diffusion 
Value of Waiting 

Actual 

Timing 

Actual Waiting 

Duration 

𝜎𝐸𝐴𝐶𝑉2
 𝜎𝐸𝑁𝑉2

 𝑤𝐴𝑀  𝑡* 𝑡𝑝𝑒𝑟𝑐
∗  

Simulation Results (Mean Values, 1000 Simulation Runs, Varying 𝜎𝐸𝐴𝐶𝑉𝑗
 and 𝜎𝐸𝑁𝑉𝑗

 together) 

(Base Case)    

0.05 
(Base Case)    

0.05 
21.09 89.91 24.63% 

0.15 0.15 23.54 96.95 26.56% 

0.25 0.25 27.46 119.57 32.76% 

0.35 0.35 31.97 142.50 39.04% 

0.5 0.5 39.10 167.93 46.01% 

 Simulation Results (Mean Values, 1000 Simulation Runs, Varying 𝜎𝐸𝐴𝐶𝑉𝑗
 and 𝜎𝐸𝑁𝑉𝑗

 separately) 

0.5 0.05 37.79 163.13 44.69% 
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0.05 0.5 22.90 111.31 30.50% 

Table 3. Simulation Results for Varying Volatilities 𝜎𝐸𝐴𝐶𝑉2
 and 𝜎𝐸𝑁𝑉2

 

4.4 Sensitivity Analysis on Internal and External Connectivity 

Since the presence of internal and external connectivity and their interactions are particularly 

important for SHDs, we examine changes to internal connectivity (affecting 𝐸𝐶𝑉𝑗) and to the 

number of external connections (affecting 𝐸𝑁𝑉𝑗). Of interest are the changes to SHD2 when 

SHD1 remains unchanged. To concretize, we address two questions: first, what happens if the 

possibilities to connect SHD2 to the user’s other devices are increased, i.e. increasing 𝐷𝑈𝐶2? 

Second, how does varying the failure rate 𝑓, which influences the expected external network 

size (and therefore, external connectivity), affect the results? We analyze both of the variations 

for three distinct scenarios: first, all else being equal except for the critical variable; second, for 

a high-volatility scenario (using higher 𝜎𝐸𝐴𝐶𝑉2
 and 𝜎𝐸𝑁𝑉2

); third, we vary 𝐷𝑈𝐶2 in a scenario 

with a high failure rate and 𝑓 in a scenario with a high SHN density to extract interaction ef-

fects. 

First, we vary 𝐷𝑈𝐶2 in steps of 0.05 between 0.5 and 0.9 (Figures 4a and 4b). We calculate 

the high-volatility scenario with 𝜎𝐸𝐴𝐶𝑉2
=  𝜎𝐸𝑁𝑉2

= 0.5 and the high failure rate scenario with 

𝑓 = 0.8. We find that 𝐷𝑈𝐶2 positively affects the VoW (Figure 4a) and that the actual time to 

switch is earlier if the connectivity of SHD2 is relatively higher compared to SHD1’s connectiv-

ity (Figure 4b). This holds true for all scenarios. Increasing 𝐷𝑈𝐶2 results in a greater 𝐸𝐶𝑉2 (from 

83.74 to 150.73) in all cases, increases [𝐸(𝑈2) − 𝐸(𝑈1)] and reduces actual switching timing 

owing to higher unrealized utility gains. Independently of the value of 𝐷𝑈𝐶2, a higher volatility 

increases the option value (confirming the sensitivity analysis regarding volatility in Section 

4.3) and a higher failure rate reduces it. We observe that all real option values increase owing to 

the increase in connectivity. Users value the possibility to gain information about the additional 

connectivity features. 

Further, we see that raising internal network connections is more effective when there are 

fewer external connections. In the base case, varying 𝐷𝑈𝐶2 reduces actual timing (in %) by 

21.67 percentage points (24.63% to 2.06%), while a reduction of 40. 55 percentage points 
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(44.96% to 4.41%) is possible for 𝑓 = 0.8. A higher 𝐸𝐶𝑉2 can rapidly outweigh decreased ex-

pected valuations regarding the external network, at least if users want to accelerate their 

switching decisions. Interestingly, in the high-volatility scenario, the resulting graph decreases 

much slower, compared to the other two scenarios. For instance, when increasing 𝐷𝑈𝐶2 from 

0.5 to 0.55 raises [𝐸(𝑈2) − 𝐸(𝑈1)] (from 35.94 to 44.37), the actual timing is reduced only by 

0.9 percentage points from 43.42% to 42.53%, whereas the same connectivity change reduces 

actual timing by 5.71 and 9.65 percentage points in cases with lower volatility. Therefore, the 

effects of a better internal connectivity are hampered by the uncertainty about the viability of 

these effects. 

 

Figure 4a. Effects of Varying 𝐷𝑈𝐶 Figure 4b. Effects of Varying 𝐷𝑈𝐶  

 on the VoW  on Actual Timing (%) 

 

Next, we vary 𝑓 in steps of 0.1 between 0.1 and 0.8 (Figures 5a and 5b). An increase in 𝑓 

reduces 𝐸𝑁𝑉2 since SHDs’ market diffusion is expected to be subject to a higher failure rate. We 

calculate the high-volatility scenario again with 𝜎𝐸𝐴𝐶𝑉2
=  𝜎𝐸𝑁𝑉2

= 0.5 and the high internal 

connectivity scenario with 𝐷𝑈𝐶2 = 0.9. In all three scenarios, the reduction of external network 

connections results in a lower VoW; however, the option value level is sharply higher in the 

case of higher volatility and when SHD2 is more valuable owing to better internal connectivity 

(Figure 5a). The higher 𝑓, the longer users will wait with a switching decision. While this effect 

is present for every scenario, the extent of the effect differs substantially (Figure 5b). The rela-

tionship is strongest for the base case, where the actual timing increases from 9.55% to 

44.96%. With a higher volatility, the actual timing increases only by 9.12 percentage points 
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(from 26.03% to 35.15%), and the effect is much weaker. Interestingly, a higher volatility does 

not imply a generally later switching decision. At a failure rate of 0.6 and higher, the actual 

switching timing is earlier compared to the base case (for instance at 𝑓 = 0.8, 𝑡𝑝𝑒𝑟𝑐
∗ = 35.15% 

for the high volatility case compared to 𝑡𝑝𝑒𝑟𝑐
∗ = 44.96% in the base case). Again, the higher un-

certainty about utility effects, here due to external connectivity, hampers the impact of these 

utility effects. 

Further, we find that in a high internal connectivity scenario, the influence of an increasing 

failure rate almost vanishes, and 𝑡𝑝𝑒𝑟𝑐
∗  increases from 2.47% to 2.45%. This confirms our pre-

vious finding that a dense SHN accelerates switching decisions independently of the external 

connectivity effects. Even if 𝐸𝑁𝑉2 has an effect on the valuation of the option, it barely influ-

ences decision timing in the case of high internal connectivity.  

 

Figure 5a. Varying Failure Rates’ Effects Figure 5b. Varying Failure Rates’ Effects on 

 on VoW  Actual Timing (%) 

 

4.5 Examining the Roles of Incentives 

SHD providers seek to accelerate users’ switching decisions by using incentives. To test pos-

sible incentive schemes, we vary 𝐼 and 𝑖 and observe the effects on 𝑤𝐴𝑀 and 𝑡𝑝𝑒𝑟𝑐
∗ . Again, we 

perform the analysis for different volatility scenarios. Finally, to shed more light on the optimal 

configuration of an incentive scheme, we also vary the delayed, repeated incentive for different 

sizes of an immediate, one-off incentive.  
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We start by running our simulation with 𝐼 = {0; 10; 20; 30; 40; 50}. Table 4 presents the re-

sults, also for the variation in the high-volatility scenario with 𝜎𝐸𝐴𝐶𝑉2
=  𝜎𝐸𝑁𝑉2

= 0.5. By defi-

nition, increasing 𝐼 reduces the switching costs and positively influences the size of the external 

connectivity effect. Independently of the uncertainty level, the option value increases in the im-

mediate incentive 𝐼 (low-volatility case: 𝑤𝐴𝑀 = 4.83 to 𝑤𝐴𝑀 = 37.57; high-volatility case: 

𝑤𝐴𝑀 = 25.42 to 𝑤𝐴𝑀 = 52.08). Again, a higher volatility increases the VoW level. Further, in-

creasing the immediate, one-off incentive is very effective in shortening the actual waiting dura-

tion if there is little uncertainty: 𝑡𝑝𝑒𝑟𝑐
∗  decreases by 46.93 percentage points, from 56.72% to 

9.79%. In the high-volatility case, 𝑡𝑝𝑒𝑟𝑐
∗  also is reduced, but only by 11.25 percentage points 

from 49.73% to 38.48%. Therefore, immediate, one-off incentives are especially useful to ac-

celerate switching decisions in cases with low uncertainty regarding the valuation of SHDs and 

can also help when there is high uncertainty.  

 
Low-Volatility Scenario 

𝜎𝐸𝐴𝐶𝑉2
=  𝜎𝐸𝑁𝑉2

= 0.05 

High-Volatility Scenario 

𝜎𝐸𝐴𝐶𝑉2
=  𝜎𝐸𝑁𝑉2

= 0.5 

Immediate, One-off 
Incentive 

Value of  
Waiting 

Actual 
Timing 

Actual Waiting 
Duration 

Value of  
Waiting 

Actual Timing 
Actual Waiting 

Duration 

𝐼 𝑤𝐴𝑀  𝑡* 𝑡𝑝𝑒𝑟𝑐
∗  𝑤𝐴𝑀  𝑡* 𝑡𝑝𝑒𝑟𝑐

∗  

Simulation Results (Mean Values, 1000 Simulation Runs, Varying 𝐼) 

0.00 4.83 207.01 56.72% 25.42 181.50 49.73% 

10.00 8.81 168.11 46.06% 29.04 180.36 49.41% 

20.00 14.26 126.16 34.56% 33.57 172.00 47.12% 

 (Base Case)   30.00 21.09 89.91 24.63% 39.10 167.93 46.01% 

40.00 28.78 57.58 15.78% 45.08 159.57 43.72% 

50.00 37.57 35.74 9.79% 52.08 140.46 38.48% 

Table 4. Simulation Results for Varying 𝐼 and Different Volatilities 

Next, we vary 𝑖 in steps of 0.5 from 0 to 2.0 for low and high volatility. We run these simu-

lations for different values of 𝐼 =  {0; 30; 50}. Increasing the delayed incentive positively influ-

ences the size of the external connectivity effect and raises the costs of deferral by definition. 

The result is that, for all scenarios, 𝐸(𝑈2) increases from 157.93 to 195.75. The effects of this 

increase on the VoW and actual timing for both the low-volatility and the high-volatility sce-

nario are shown in Table 5. In all low-volatility scenarios, an increase in 𝑖 from 𝑖 = 0.0 to 𝑖 =

1.5 results in an increase of the option value, independent of the immediate incentive’s value. 

The higher the delayed incentive is, the lower the actual waiting duration: 𝑡𝑝𝑒𝑟𝑐
∗  decreases by 

61.00 (𝐼 = 0), 50.19 (𝐼 = 30), and 20.45 (𝐼 = 50) percentage points. However, the effects 
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vanish for the incremental change of 𝑖 = 1.5 to 𝑖 = 2.0, indicating that a further increase of de-

layed incentives is not recommended for suppliers.  

 
Low-Volatility Scenario 

𝜎𝐸𝐴𝐶𝑉2
=  𝜎𝐸𝑁𝑉2

= 0.05 

High-Volatility Scenario 

𝜎𝐸𝐴𝐶𝑉2
=  𝜎𝐸𝑁𝑉2

= 0.5 

Delayed, Repeated 

Incentive 

Value of Wait-

ing 

Actual 

Timing 

Actual Waiting 

Duration 

Value of 

Waiting 

Actual Tim-

ing 

Actual Waiting 

Duration 

𝑖 𝑤𝐴𝑀 𝑡* 𝑡𝑝𝑒𝑟𝑐
∗  𝑤𝐴𝑀  𝑡* 𝑡𝑝𝑒𝑟𝑐

∗  

Simulation Results – Scenario 𝐼 = 0 (Mean Values, 1000 Simulation Runs, Varying 𝑖) 

0.00 0.12 343.37 94.07% 18.20 167.31 45.84% 

0.50 0.71 322.85 88.45% 19.00 173.43 47.52% 

1.00 4.83 207.01 56.72% 25.42 181.50 49.73% 

1.50 7.88 118.80 32.55% 30.42 190.77 52.27% 

2.00 7.86 120.69 33.07% 30.16 195.69 53.61% 

Simulation Results – Scenario 𝐼 = 30 (Mean Values, 1000 Simulation Runs, Varying 𝑖) 

0.00 3.41 201.82 55.29% 25.57 169.29 46.38% 

0.50 6.83 180.49 49.45% 28.14 173.70 47.59% 

(Base Case)     1.00 21.09 89.91 24.63% 39.10 167.93 46.01% 

1.50 31.33 18.37 5.03% 46.85 166.28 45.56% 

2.00 31.31 18.62 5.10% 46.29 175.06 47.96% 

Simulation Results – Scenario 𝐼 = 50 (Mean Values, 1000 Simulation Runs, Varying 𝑖) 

0.00 13.44 83.15 22.78% 34.26 156.59 42.90% 

0.50 18.80 70.13 19.21% 37.81 157.20 43.07% 

1.00 37.57 35.74 9.79% 52.08 140.46 38.48% 

1.50 50.95 8.37 2.29% 61.78 130.76 35.82% 

2.00 50.93 8.49 2.33% 61.09 147.08 40.30% 

Table 5. Simulation Results for Varying 𝑖 and 𝐼 for Different Volatilities 

These mechanisms differ in the high-volatility scenarios. Even if the change of option values 

𝑤𝐴𝑀 when increasing 𝑖 is comparable, the effects on 𝑡𝑝𝑒𝑟𝑐
∗  deviate substantially. For 𝐼 = 30 and 

𝐼 = 50, there is neither a clear positive nor a clear negative effect on the actual time to switch. 

In these scenarios, 𝑡𝑝𝑒𝑟𝑐
∗  increases in 𝑖 from 0 to 0.5 (𝐼 = 30: 46.38% to 47.59%; 𝐼 = 50: 

42.90% to 43.07%). Then, 𝑡𝑝𝑒𝑟𝑐
∗  decreases as 𝑖 further increases from 0.5 to 1.5 (𝐼 = 30: 

47.59% to 45.56%; 𝐼 = 50: 43.07% to 35.82%) and then increases again if the delayed incen-

tives are further increased to 𝑖 = 2 (𝐼 = 30: 47.95%; 𝐼 = 50: 40.30%). Therefore, there may 

be an optimal 𝑖 to accelerate switching. Interestingly, in the case of 𝐼 = 0, the actual time to 

wait continuously increases from 49.02% to 55.78%.It is not possible to accelerate users’ 

switching decisions merely by increasing the delayed incentive if volatility is high and there are 

no immediate incentives. There are optimal values of 𝑖 from which further increases have an un-

intended effect for SHD providers. In accordance with the results from Table 4, a higher imme-

diate incentive consistently reduces the actual waiting duration. 
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We also conducted all analyses with a high level of 𝐷𝑈𝐶2 = 0.9 (results available upon re-

quest). Although the previously identified effects did not fundamentally change, they were 

weaker. Accordingly, incentives help when SHN density is high, but they are less effective. 

5 Discussion of Results 

Our findings identify significant decision mechanisms and relationships between the model’s 

underlying parameters. Important for the interpretation of the results is a careful analysis of the 

option duration and of users’ uncertainty about the expected changes in their valuations of the 

option underlying. First, we showed that option duration has no significant effect on VoW and 

only a very small effect on users’ actual timing (as a percentage of the option duration). We 

were able to interpret the results without restrictions despite using only 𝑇 = 1 for all further 

sensitivity analyses. Second, we tested the consequences of altering volatility and identified that 

our high-volatility scenarios tended to overestimate option values and waiting durations. We 

had to consider the findings on option duration and diffusion processes as sort of model relaxa-

tions while interpreting the sensitivity analyses’ results (Müller et al. 2016). 

With these findings in mind, we found two main drivers of the VoW: volatility and the ex-

pected utility of the new SHD. On the one hand, users prefer waiting when they face more un-

certainty. Interestingly, the product-related uncertainties regarding the internal connectivity in 

the SHN have a stronger impact than the market-related uncertainties of the external network. 

On the other hand, high expected values for a new SHD’s utility lead to higher option values; it 

promises the opportunity to switch to a new device that provides higher utility gains. This is in 

line with research on firms’ IT investments stating that higher valuations of an option underly-

ing accelerate investment decisions (Ji 2010; Li 2009). 

Next, we identified clear roles of internal and external connectivity effects and their interac-

tion. Since the possibility of internal and external connections is inherent to SHDs, this analysis 

is highly relevant. Its focus on private users complements existing research on how network ef-

fects influence option values from a provider perspective (Kauffman and Kumar 2008). Gener-

ally, more internal or external connections increase an option’s value and reduce the actual wait-

ing duration because a higher connectivity and a greater external network size both raise the 
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new SHD’s expected valuation and, accordingly, the costs of deferral. Product-related and mar-

ket-related uncertainties weaken the influence of both 𝐶𝑉 as well as 𝑁𝑉. Interestingly, sensitiv-

ity analysis showed that high internal connectivity leads to early switching, independent of the 

external connectivity effects. Therefore, compatibility with many of a user’s other devices fos-

ters their willingness to use an SHD. The possibility to integrate SHDs into dense SHNs can ex-

plain why certain devices exist that diffuse rapidly after their introduction in the market. In re-

cent years, this can be observed for smartphones, which often serve as a control unit for SHDs, 

and for which several previously unknown manufacturers have profited from compatibility 

within the Android ecosystem and reached large market success within a short time.  

Finally, our results provide insights for configuring incentive schemes for SHD providers. 

Immediate, one-off incentives were effective in every scenario, and a higher volatility only 

weakened the effects. These incentives accelerate switching decisions since they increase an op-

tion’s value and therefore encourage users to switch earlier. Despite this, the provision of de-

layed incentives was useful only up to a certain threshold. When further increased, they had no 

additional positive effect on an option’s value and did not further reduce the actual switching 

timing. If volatility was high, we could even identify an effect contrary to the application of im-

mediate incentives: later switching became more likely when the delayed incentives exceeded a 

critical level. This is in line with findings from marketing research: in markets where users 

show strong deferral behavior (which corresponds to our high-volatility scenario), immediate 

incentives are more effective than delayed ones (Zhang et al. 2000). An explanation could be 

that immediate incentives not only have a direct monetary effect, but also reduce activities to 

search for information as subsequent information is of no consequence. Delayed incentives do 

not have this effect on requiring information because they are offered later. Further, they also 

show some uncertainty concerning realization. This could be a problem, especially in high-vola-

tility scenarios, since early and fixed measures to reduce uncertainty are necessary. Therefore, 

an optimal SHD provider incentive scheme should primarily use high immediate incentives and 

can be extended with a limited amount of delayed incentives. Both incentive types are effective, 

but delayed incentives are only effective up to a certain level, since they can cause counter-intu-

itive effects in high-volatility scenarios after exceeding a certain amount. 



29 

6 Conclusion 

6.1 Theoretical Contributions 

The possibility to wait has its own value because uncertainties can be reduced. To our best 

knowledge, no approach has employed this VoW concept as an explanation for deferred deci-

sions in private users’ technology management. We provided an option model that allows the 

analysis of the role of deferring in switching decisions from a private user perspective. The fo-

cus on SHNs as an innovative environment that is characterized by connectivity-driven uncer-

tainty, and the application of a context-specific SHD valuation, further differentiate our ap-

proach. To be able to investigate the decision scenario of SHD switching, several enhancements 

that collectively allow the calculation of actual switching timing were required as well as exami-

nation of the influences of internal and external connectivity and incentives:  

- the combination of internal connectivity and external connectivity to define the option un-

derlying 

- the combination of deferral and switching costs in one model and its extension to account 

for provider incentives that are related to both cost types 

- the representation of uncertainty in the development of expected utilities using a Geometric 

Brownian Motion for product-related uncertainties and a jump diffusion process for mar-

ket-related uncertainties 

- LSM simulation for the different diffusion curves and the combined option to defer switch-

ing (Kou 2002; Longstaff and Schwartz 2001).  

Even if the specifications are set by a decision scenario, the general procedure to adapt mod-

els to critical decision semantics can also be used for other ROAs in the private user context. 

Our model explains why uncertainty reduction and timing aspects are relevant factors in switch-

ing decisions for connected devices in SHNs. We have shown that determining the VoW is criti-

cal to derive a comprehensive valuation of an SHD, highlighting that this utility should not be 

ignored in theoretical explanations of users’ switching behaviors, at least if users’ decisions are 

not restricted by fixed dates. We urge researchers to incorporate these ideas so as to provide a 

more realistic perspective of how users decide between different technology generations. 
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This study also contributed to IS switching theory by deriving specific intertemporal effect 

mechanisms of users’ behaviors and decision criteria based on our sensitivity analysis. It high-

lights the dynamic aspects in switching decisions by simulating expectations during the option 

and the usage duration. We extend previous research on deferral in network industries 

(Kretschmer 2008) by demonstrating that compatibility in form of connectivity is a main driver 

for earlier switching decisions and accelerating market diffusion. 

6.2 Practical Implications 

While our focus is on firm-consumer interaction, our findings are also relevant for other in-

stitutions, such as governments, which may wish to nudge their citizens/customers to use new 

technologies (e.g. smart meters) on a broad scale. There are two major aspects concerning the 

practical relevance of our findings: First, understanding the roles of the VoW and its determi-

nants in switching decisions forms the basis to build profound knowledge about users’ switch-

ing behaviors. Second, understanding incentives’ impacts on actual timing in different scenarios 

facilitates the configuration of incentive schemes. Both aspects are crucial when SHD providers 

need to quickly accelerate the diffusion of their devices. 

Our calculated actual times to switch indicate on average when SHD providers can expect 

their customers to take a switching decision. This helps to identify the relevant users for provid-

ers’ incentive schemes. In many switching decisions, uncertainty is a critical factor to consider 

since it prevents users from early switching. Our study has shown that the influences of product-

related uncertainties are greater than that of market-related uncertainties. Therefore, SHD pro-

viders’ information campaigns should focus on the utility of the additional application fields if 

the device is integrated into the SHN rather than highlighting the already established market dif-

fusion. An example is Apple. The company frequently enters new markets (e.g. when launching 

the first iPhone, iPad) and provides their customers with continuous ease of use  and compatibil-

ity of the devices within the Apple ecosystem. 

Since users value the possibility to wait, SHD providers should offer incentives to counteract 

this motivation for deferral behavior. We found that immediate, one-off incentives are the most 

effective since they not only provide additional utility to users, but also reduce their motivation 
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to search for further (potentially negative) information. These incentives are often used by soft-

ware vendors, such as Microsoft, who offered the Windows 10 at a considerably lower price, or 

even for free, to users who decided to switch from older Windows versions before a specific 

date. Providers need to be more careful with delayed incentives; these are also effective and can 

support immediate incentives, but only up to a certain threshold. Exceeding this threshold can 

also cause undesired effects on switching timing, especially in cases of high uncertainty. SHD 

providers should primarily use high immediate incentives. Based on their sales and pricing strat-

egy, they can extend these with limited delayed incentives if needed. While it may appear logi-

cal that immediate incentives can have a stronger impact on switching decisions than delayed 

incentives, we still observe manifold related examples in practice (such as telecommunication 

contracts) for which delayed incentives still play a large role. We therefore believe that these in-

sights are particularly helpful in the current stage where SHD diffusion is still moderate. 

It is also important for providers to know that, in scenarios with high internal network den-

sity, the VoW and the actual waiting duration do barely depend on external connectivity effects. 

This means that even without a large installed base to exploit external connectivity effects, SHD 

providers can still cater for users with dense SHNs by supplying highly compatible SHDs. This 

is important to facilitate new market entries.  

We acknowledge that most users may not have the tools to conduct our calculations. How-

ever, even if humans are often not rational, models assuming rational decision makers are 

widely used to successfully explain various phenomena. Moreover, departing from the rational-

ity assumption opens up a plethora of possibilities that endangers modelling assumptions to be-

come arbitrary. We think it is a viable way to start with the rationality assumption, although this 

is clearly not perfect. From a more practical point of view, institutions such as consumer repre-

sentative organizations might have the required knowledge and tools for the calculations. They 

could use them as a basis for product tests and to support individual consumers in their purchase 

decisions. Our model could also serve as a basis for an implementation in recommender systems 

that could be offered by technology suppliers or independent websites that seek to assist con-

sumers in their purchasing decisions. 
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6.3 Limitations and Opportunities for Future Research 

After demonstrating that our model is suitable to analyze users’ SHD switching decisions 

and inform providers on their incentive strategies, our work also provides a solid basis for future 

research, especially considering the enhancement of numerical solutions and the application of 

empirical data.  

As noted, using the Geometric Brownian Motion and the jump diffusion process to predict 

the development of users’ expected valuations does not fully capture the decision semantics; the 

decreasing uncertainty while waiting and gaining information cannot be implemented in our ap-

proach. We solved this problem by performing sensitivity analysis to examine the impact of re-

duced volatility on our results. However, future studies can work on the integration of other sto-

chastic differential equations. Such extensions could provide enhanced solutions that are more 

exact in terms of fit for other scenarios.  

We used a combination of suitable values and randomly generated data to find numerical so-

lutions when running our simulations, in line with our goal to present a framework for switching 

behavior and to use it exemplarily. Our numerical results have to be interpreted with this back-

ground in mind: They show the potential outcome within a range of reasonable parameter val-

ues. In this sense, we identified the underlying effects and their directions, and provided well- 

interpretable results. However, we cannot conjecture that these effects hold for every SHD/SHN 

product. The exact model parameters, and maybe even some necessary modifications to the 

model itself, clearly depend on product, company and strategy. Obviously, future research may 

also extend our data generation process, for instance, by performing empirical research in the 

form of conjoint analyses for actual products on the market, to allow for a specification of rela-

tive importance and utilities of device features. Thereby, a similar model could be applied to 

field data or quasi-field data, as has been done in other studies (Harmantzis and Tanguturi 2007; 

Henseler and Roemer 2013). Another opportunity would be to contrast our model with other ex-

plicit switching models (such as the push-pull-mooring framework), which might also profit 

from integrating the value-of-waiting concepts into their underlying basis.  
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While explaining users’ switching behaviors for connected devices is currently already of 

high interest, its importance is likely to increase. Future devices and technologies will be in-

creasingly connected, opening the door for more complex interactions and dependencies be-

tween devices, not only in Smart Home or other private usage contexts, but also for other appli-

cations in professional contexts, such as digitized production processes or traffic coordination. 

Our findings can serve to guide research into decision behaviors and can inform investment de-

cisions concerning emerging technologies. 
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Appendix 

Parameter Value Definition Explanation 

Stand-alone Utility 𝑨 

𝐴1 60 Stand-alone utility of an SHD Value represents stand-alone utility of SHD1 as a 

basis to calculate the stand-alone utility of SHD2 

𝑠2 5 Deviation factor Determines the extent to which SHD2 outperforms 
SHD1 concerning the stand-alone utility 

Connectivity-related Utility 𝑪𝑽 

𝐷𝑈𝐶2 0.5 Degree of utilized connectivity (SHD2) Value represents a certain share of possible 

connections between SHDs that is already realized. 

𝐷𝑈𝐶1 0.3 Degree of utilized connectivity (SHD1) Value represents a certain share of possible 

connections between SHDs that is already realized. 

Lower values for SHD1 indicate that it is less 

integrated than SHD2 

𝐻2,𝑒𝑥 30 Expected internal network size for SHD2 (within 5 

years) 

Expected number of SHDs if user decides for SHD2 

𝐻1,𝑒𝑥 18 Expected internal network size for SHD1 (within 5 
years) 

Expected number of SHDs if user decides for SHD1. 
Smaller since SHD2 is better integrated. 

𝐻2/1(𝑑𝑑𝑡 = 0) 10 Internal network size at option start User has already some SHDs in the internal network 

to connect with SHD1 or SHD2 

𝛼 0.03 Growth coefficient for internal network Denotes how strongly the integration of existing 

SHDs influences the integration of new SHDs into the 

internal network 

Network-related Utility 𝑵𝑽 

𝑏2/1 1.5 External network valuation factor Marginal utility of a new user in the external network 

𝑓 0.4 Market failure rate of SHD2 Denotes the probability for which SHD2 is likely to 

miss the necessary installed base for market success 

𝛽 0.02 Growth coefficient for external network Denotes how strongly the previous integration of 

users influences the future integration of other users 

𝑁2/1(𝑑𝑑𝑡 = 0) 150 External network size at option start Denotes the number of other users at the option start 

date 

𝑁2,𝑒𝑥(𝑃𝑟 = 1 − 𝐹) 450 Expected external network size with SHD2 if SHD2 is 

successful 

If SHD2 is successful, its external network increases 

strongly 

𝑁2,𝑒𝑥(𝑃𝑟 = 𝐹) 50 Expected external network size with SHD2 if SHD2 is 

not successful 

If SHD2 is not successful, its external network 

decreases strongly 

𝑁1,𝑒𝑥(𝑃𝑟 = 1 − 𝐹) 125 Expected external network size with SHD1 if SHD2 is 

successful 

If SHD2 is successful, SHD1’s external network 

decreases  

𝑁1,𝑒𝑥(𝑃𝑟 = 𝐹) 200 Expected external network size with SHD1 if SHD2 is 

not successful 

If SHD2 is not successful, SHD1’s external network 

increases 

Values for Variables in Option Calculation 

𝛾 0.05 Deferral cost rate Analog to dividend yields because of switching too 

late 

𝑟 0.03 Exercising cost rate Analog to dividend yields because of switching too 

early 

𝑖 1.00 Delayed incentives rate on deferral costs Part of multiplicative factor (1 + 𝑖) 

𝐼 30 One-off incentives Extent offered to users at the time of switching 

𝐾 50 One-off switching costs (lump sum) Accruing costs to users at the time of switching 

𝜎𝐸𝐴𝐶𝑉2
 0.05 Standard deviation of changes in the development 

process of expected utilities 

Volatility in Geometric Brownian Motion for SHD2 

𝜎𝐸𝐴𝐶𝑉1
 0.01 Standard deviation of changes in the development 

process of expected utilities 

Volatility in Geometric Brownian Motion for SHD1 

𝜎𝐸𝑁𝑉2
 0.05 Standard deviation of changes in the development 

process of expected utilities 

Volatility in Jump Diffusion Process for SHD2 

𝜎𝐸𝑁𝑉1
 0.01 Standard deviation of changes in the development 

process of expected utilities 

Volatility in Jump Diffusion Process for SHD1 

𝜆 0.05 Mean number of jumps per unit time Probability of jumps in Jump Diffusion Process 

 

Table A1. Values for Data Generation and the Calculation of Solutions (Base Case) 
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