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Abstract 

Optimizing an airline schedule usually comprises multiple planning stages. These are the choice of flights 

to offer (schedule design), the assignment of fleets to flight legs (fleet assignment), and the construction 

of rotations under consideration of maintenance constraints (aircraft maintenance routing). Moreover, the 

airline must assign crews to all flights (crew scheduling). Traditionally, either these scheduling stages are 

considered sequentially or an existing schedule is modified in order to cope with the arising complexity 

issue. More recently, some authors have developed models that integrate adjacent stages. In this paper, 

outcomes of a research project with airline IT provider Lufthansa Systems are presented. We consider the 

case of a small to medium-sized point-to-point airline with a homogeneous fleet. Hence, fleet assignment 

is omitted, which offers the possibility to solve schedule design and aircraft maintenance routing simulta-

neously. Our approach explicitly accounts for passengers’ return flight demand and for marginal revenues 

declining with increasing seat capacity, hence, anticipating the effects of capacity control in revenue 

management systems. In order to solve the arising integrated mixed-integer problem, a branch-and-price 

approach and a column generation-based heuristic have been developed. An extensive numerical study, 

using data from a major European airline provided by Lufthansa Systems, shows that the presented ap-

proaches yield high quality solutions to real-world problem instances within reasonable time. 

Keywords: Airline Schedule Design, Aircraft Maintenance Routing, Point-to-Point Air-

line



 

 

1 Introduction 

During the last century, major airlines developed sophisticated hub-and-spoke net-

works to offer passengers connecting flights to travel between as many airports as pos-

sible. Then, slightly before the liberalization of 1978, a new type of airline emerged 

with the advent of Pacific South West and Southwest. These low cost carriers (LCCs) 

had a clear focus on keeping operations simple and keeping costs down, allowing them 

to offer cheaper fares than the traditional network airlines (see, e.g., Dobruszkes 2006). 

In the 1990s, the LCC concept spread to the EU (e.g. Ryanair, EasyJet) where they prof-

ited from liberalization as well as an abundance of cheap secondary airports created on 

converted cold-war airfields. In the last decade, LCCs also gained momentum in the 

Asia Pacific region. Besides issues like short turnaround times, a simple “no frills” 

product structure and cheap in-house ticketing over the internet, virtually all LCCs cut 

operating costs by using only one (68% of LCCs) or two (24%) aircraft types (see Groß, 

Lück, and Schröder 2013). Moreover, most LCCs abstain from sophisticated hub-and-

spoke networks and offer simple point-to-point connections, often in niches and be-

tween secondary airports (see, e.g., Williams 2001, O’Connell and Williams 2005). As 

we focus on this key characteristic, we use the term point-to-point airline in the follow-

ing. 

The schedule is at the heart of each airline’s product portfolio. At the same time, it de-

fines a large part of the cost an airline incurs. In the highly competitive environment 

most airlines face today, it is very important to determine an attractive as well as cost-

effective schedule. 

At most network airlines, it is thus common practice to use sophisticated Operations 

Research (OR) approaches. Usually, the airline scheduling problem is decomposed into 

four planning stages: schedule design, fleet assignment, aircraft maintenance routing, 

and crew scheduling. At the first stage, schedule design, the airline decides which 

flights to offer and optimizes the departure times based on the expected passenger de-

mand. The next stage, fleet assignment, specifies the type of aircraft to use on each 

flight leg. The third stage, aircraft maintenance routing, is done separately for each type 

of aircraft and defines which flights are successively flown by the same aircraft in a 



 

 

rotation. The goal is usually to find feasible or cost-minimal rotations such that each 

flight is covered by exactly one aircraft type. A rotation is feasible if it satisfies certain 

maintenance requirements. Finally, the last stage, crew scheduling, seeks a minimal cost 

assignment of crews to flights that adheres to labor rules. This planning process is per-

formed by OR-experts who dispose of a vast amount of knowledge resulting from re-

search done in academia as well as at network airlines. Airline IT providers offer sched-

uling software that can be used more or less “out of the box”. Moreover, often only in-

cremental changes to an existing schedule are allowed due to operational and marketing 

reasons. 

However, airline schedule planning is still in its infancy at point-to-point airlines and 

no specific software solutions exist. Often, only very basic heuristics are employed. 

They usually combine only two simple flight sequences: flight pairs (also called ping-

pong flights or out and back flights; a-b-a) and combined flight pairs (a-b-c-b-a). This 

simplifies and speeds-up the solution process, but it is also a severe restriction on the 

solution space leading to suboptimal schedules. The structure of these heuristics is ex-

plained in detail in Section 4.2. There, we introduce an extended version of such a heu-

ristic with more flight sequences, which later serves as a benchmark. Moreover, instead 

of a sophisticated demand forecast, new destinations are usually simply tested. That is, 

flights are offered for one or half a year, and the airline observes whether there is 

enough demand. This is largely due to fundamental differences in point-to-point air-

lines’ requirements compared to traditional network airlines (see, e.g., Williams 2001, 

Lawton 2002, O’Connell and Williams 2005, Groß, Lück, and Schröder 2013). (1) They 

dispose of a largely homogeneous fleet and fleet assignment can be omitted. (2) Con-

necting passengers are not considered and the determination of passenger flows does not 

need to include complex network effects. (3) Point-to-point airlines address a market 

with a high price-elasticity and marginal revenues decline quickly with increasing seat 

capacity, resulting in a highly non-linear revenue function. (4) Between most airport 

pairs, only very few weekly flights are offered. Thus, some customer segments include 

possible return flights in their purchase decision and this has to be considered in sched-

ule design. (5) The schedule is allowed to change completely from period to period. 

While the homogeneous fleet (1) and the absence of connecting passengers (2) make the 



 

 

problem easier for point-to-point airlines, other aspects make it harder. Declining mar-

ginal revenues (3) require a non-linear revenue function. The consideration of return 

flights (4) only slightly increases complexity. The possibility to create a completely new 

schedule (5) requires a completely different approach than the widespread utilization of 

a mandatory flight list with some optional flights to choose from.  

To the best of our knowledge, these aspects have not yet been addressed together in the 

literature. 

In this context, airline IT provider Lufthansa Systems wanted to develop specific OR 

approaches for point-to-point carriers’ schedule planning processes. This paper shares 

outcomes from the corresponding research project. The main contributions are as fol-

lows: 

(1) Presentation of the – to the best of our knowledge – first airline schedule plan-

ning model for point-to-point airlines. It fully integrates schedule design and air-

craft maintenance routing. Enhanced demand modeling allows the consideration 

of different customer segments with time of day specific return flight demand 

and nonlinear revenues. The schedule is built from scratch (greenfield ap-

proach). 

(2) Development of the first exact solution approach for integrated schedule design 

and aircraft maintenance routing for point-to-point airlines. Our branch-and-

price algorithm efficiently solves realistic problem instances with up to 15 air-

ports and 10 aircraft. 

(3) Provision of advanced heuristics to obtain high-quality solutions for big instanc-

es. 

(4) Comparison of revenue improvements, solution times, and insights regarding the 

tradeoff between modeling accuracy and solution accuracy in a numerical study 

based on real-world data. 

The remainder of this paper is organized as follows. We review the literature in Sec-

tion 2. In Section 3, we present the model. Section 4 contains the solution approaches 

developed, i.e. an exact branch-and-price algorithm and heuristics. Section 5 summariz-

es the numerical study and Section 6 concludes. 



 

 

2 Literature Review 

Literature from three areas is relevant. (1) Throughout the last two decades, many re-

searchers have sought to ameliorate some of the drawbacks of a sequential solution ap-

proach by integrating various stages of the planning process. (2) Simultaneously, re-

search on the detailed consideration of demand characteristics emerged. (3) Finally, as 

the aforementioned areas only consider network airlines, the sparse work on integrated 

scheduling for charter airlines is most closely related to ours. 

2.1 Integration of Planning Stages 

Several approaches integrate schedule design with fleet assignment. Rexing et al. 

(2000) enhance a fleet assignment model by allowing the departure times of legs to vary 

within specified time windows, providing greater flexibility. Lohatepanont and Barnhart 

(2004) build upon an existing schedule and complement a list of mandatory flights 

(master flight list) that have to be covered with a list of optional flights. Yan and Tseng 

(2002) model demand on an origin and destination basis and build the schedule from 

scratch like we do. Cadarso and Marín (2011) consider robustness to ensure connections 

in case of delays. Cadarso and Marín (2013) extend their previous model and include, 

among others, mandatory flights and a minimum average fleet utilization. Pita, Barn-

hart, and Antunes (2013) develop a linear model that explicitly accounts for congested 

airports and solve it for a smaller network airline. 

Barnhart et al. (1998a) present a model and solution procedure that fully integrates 

fleet assignment with aircraft maintenance routing and consider comfort added when 

passengers can stay in the plane on a through flight instead of connecting to a different 

aircraft. El Moudani and Mora-Camino (2000) aim at online decision support and blend 

a heuristic with Dynamic Programming. Haouari, Aissaoui, and Mansour (2009) as well 

as Haouari et al. (2011) consider aircraft in a disaggregate way and develop a model 

with heuristic and exact solution approaches, respectively, for a regional airline. Recent-

ly, Liang and Chaovalitwongse (2013) have proposed a new formulation that efficiently 

generates near-optimal solutions for a medium-sized airline. 

Barnhart, Lu, and Shenoi (1998) partially integrate fleet assignment and crew schedul-

ing. To maintain tractability, they include an approximation of the crew scheduling 



 

 

problem in the fleet assignment problem. Based on this problem’s solution, the full crew 

scheduling problem is solved. 

Cordeau et al. (2001) integrate aircraft maintenance routing with crew scheduling. 

Their model is further enhanced by Mercier, Cordeau, and Soumis (2005) who intro-

duce penalties if a crew has only little time to change aircraft. Cohn and Barnhart (2003) 

propose a new modeling approach and use variables that represent complete solutions to 

the aircraft routing problem. Mercier (2008) analyzes different types of cuts that have 

been proposed in the literature for solving integrated aircraft routing and crew schedul-

ing problems. Weide, Ryan, and Ehrgott (2010) also consider robustness. Weide (2009) 

additionally develops an exact solution approach. Dück et al. (2012) solve an integrated 

model heuristically by decomposing it into separate stochastic problems for crews and 

aircraft. 

Some authors extend these considerations to aspects of schedule design, aircraft 

maintenance routing, and crew scheduling by allowing flight legs to be moved within 

departure time windows. Klabjan et al. (2002) provide more flexibility for crew sched-

uling while maintaining the feasibility of aircraft routing by adding plane-count con-

straints to the crew-scheduling problem. However, the crew scheduling and aircraft 

routing problems are solved sequentially. Mercier and Soumis (2007) present a fully 

integrated model allowing for flight retiming and develop an efficient solution algo-

rithm. 

Various studies on the integration of fleet assignment, aircraft maintenance routing, 

and crew scheduling have been published. Clarke et al. (1996) provide modeling devi-

ces for including maintenance and crew considerations into the basic fleet assignment 

model. Overall maintenance requirements for each type of aircraft and base constraints 

to fulfill crew rest time requirements are added. Gao, Johnson, and Smith (2009) also 

incorporate aspects of aircraft maintenance routing, crew scheduling, and operations 

into a fleet assignment model. Rushmeier and Kontogiorgis (1997) present a formula-

tion of the fleet assignment model that allows aggregated aircraft maintenance and crew 

considerations. Sandhu and Klabjan (2007) propose a model that completely integrates 

fleet assignment and crew scheduling and partially integrates aircraft maintenance rout-

ing. However, some aircraft maintenance constraints are neglected, which is problemat-



 

 

ic especially for point-to-point and small hub-and-spoke networks. Papadakos (2009) as 

well as Sherali, Bae, and Haouari (2013) present models that fully integrate the three 

stages and solve problem instances relating to major airlines. Cacchiani and Salazar-

González (2013) as well as Salazar-González (2014) also fully integrate the stages and 

heuristically solve their model for a regional airline. 

Most relevant to us is work on the integration of schedule design, fleet assignment, and 

aircraft maintenance routing as there are no publications regarding only the integration 

of schedule design and aircraft maintenance routing. The first paper in this direction is 

from Desaulniers et al. (1997), who extend the model of Abara (1989) with time win-

dows to include scheduling considerations and develop solution approaches to obtain a 

daily schedule. Ioachim et al. (1999) consider a planning horizon of one week. Flights 

are labeled with an identifier and flights with the same identifier must have the same 

departure time across all days. Both approaches need time windows, usually based on a 

previous schedule, as inputs and do not allow building a schedule from scratch. Grosche 

and Rothlauf (2008) develop problem-specific metaheuristics based on threshold ac-

ceptance and genetic algorithms. 

2.2 Detailed Consideration of Demand 

The interaction between demand and supply is a crucial element in the construction of 

an airline schedule, especially regarding the first two stages, schedule design and fleet 

assignment. 

The common models make simplifying assumptions about revenues, passenger de-

mands, and network flows to approximate the revenue obtained from each flight leg. 

Often, only aggregate demand and average fares for the different flight legs are consid-

ered. For example, the revenue for each fleet-type/flight leg combination is needed as 

input for many fleet assignment models, even though this value can be computed exact-

ly for a given leg only after the fleeting of all other legs is determined. Instead, simplify-

ing assumptions provide an estimate for the expected revenue of each leg. The problem 

with this approach is that it does not accurately incorporate the origin and destination 

nature of demand and the resulting passenger flows throughout the network. On any 

given flight leg, passengers with many different origins and destinations as well as tick-



 

 

ets in several different fare classes compete for space. Thus, on an operational level, 

most airlines employ state-of-the-art revenue management (RM) systems to manage 

inventory and maximize revenues across the whole network by protecting seats for high 

value customers.  

Farkas (1996) demonstrates that RM has a significant effect on the origin-destination 

passenger flows and the fare class mix in the network. His analyses show that both net-

work flow and stochastic demand should be incorporated in fleet assignment to obtain 

optimal solutions, but the approaches presented are computationally very demanding.  

Kniker (1998) develops the passenger mix model which routes passengers over a flight 

network. This linear program is the first that includes spill and (partial) recapture of 

passengers. Passengers are said to be spilled if they cannot be accommodated on their 

preferred itinerary due to capacity shortage. Partial recapture means that some of the 

spilled passengers choose another itinerary offered by the same airline. Kniker incorpo-

rates the passenger mix model into the classical fleet assignment model (FAM, see e.g., 

Hane et al. 1995). The resulting itinerary-based fleet assignment model (IFAM) is solv-

able, but much more difficult to solve than the corresponding fleet assignment model. 

By comparing models that capture network effects but assume deterministic demand 

versus stochastic models that ignore network effects, he shows that capturing network 

effects is often more important than capturing stochastic effects. A model incorporating 

both network effects and stochastic demand is not given by Kniker.  

Lohatepanont (2002) continues the analysis of IFAM and investigates its sensitivity to 

several assumptions. He shows through empirical testing that (i) IFAM needs only 

rough estimates of recapture rates, (ii) IFAM outperforms the classical FAM despite 

only deterministic demand is considered, and (iii) despite its assumption that the airline 

has full control over the passenger mix, IFAM continues to perform well in a more real-

istic, less controlled environment. Moreover, both FAM and IFAM are sensitive to de-

mand forecast errors. To strike a balance between FAM and IFAM, Lohatepanont intro-

duces the subnetwork-based fleet assignment model (SFAM). SFAM captures partial 

network effects but is much more tractable. In addition, several approaches for the inte-

gration of fleet assignment and schedule design are proposed. They build upon IFAM 

and use master/optional flight lists. Major results of the aforementioned PhD theses of 



 

 

Kniker (1998) and Lohatepanont (2002) have been published in several papers. Results 

regarding IFAM and SFAM are presented in Barnhart, Kniker, and Lohatepanont 

(2002) and Barnhart, Farahat, and Lohatepanont (2009), respectively. Lohatepanont and 

Barnhart (2004) publish results regarding the integration of schedule design and fleet 

assignment.  

Sherali, Bae, and Haouari (2010) also use a list of optional flight legs. But contrary to 

Lohatepanont (2002), their itinerary-based fleet assignment model directly incorporates 

multiple fare classes and calculates the number of passengers to accept on each itinerary 

without considering spill and recapture.  

Jacobs, Smith, and Johnson (2008) combine an itinerary-based fleet assignment model 

with a network flow formulation of a revenue management problem with stochastic itin-

erary demands in an iterative procedure. In each iteration, the revenue management 

problem is solved with current capacity and provides updated bid prices which reflect 

the marginal value of a seat and are used to add a new Benders’ revenue cut in the fleet 

assignment model. 

2.3 Charter Airlines 

Charter airlines possess some similarities to point-to-point airlines. However, corre-

sponding research is extremely sparse compared to the aforementioned work on net-

work airlines, and highly depends on a number of charter-specific assumptions that re-

duce problem size and thus allow using standard software. 

Erdmann et al. (2001) as well as Kim and Barnhart (2007) both consider airlines with 

heterogeneous fleets, symmetric, time-insensitive demand and allow at most one con-

nection in an itinerary. Additional assumptions further restrict the number of feasible 

rotations. Moreover, in Erdmann et al. (2001), passengers are transported only between 

a set of home airports and a set of airports abroad. The authors do not consider different 

fare classes. Kim and Barnhart (2007) only consider the airports visited by a plane 

throughout the day but do not determine exact departure or arrival times. The schedul-

ing problem is further simplified by considering a plane’s total flying time via aggregate 

type classifications that group the legs flown. This allows a much smaller model formu-



 

 

lation compared to the common usage of binary decision variables representing rota-

tions. 

Ronen (2000) addresses a combined fleet assignment and maintenance routing prob-

lem. Given a set of flights to cover, the charter airline seeks a feasible, cost-minimal 

schedule and flights not covered by its own aircraft are sourced from other airlines. 

Keskinocak and Tayur (1998) consider an almost identical problem faced by a company 

that manages time-shared jet aircraft and has to satisfy customer requests.  

3 Model Description 

The model captures the specific requirements of point-to-point carriers mentioned in 

Section 1 and was developed in cooperation with our industry partner to ensure a good 

fit with the real-world requirements and common management guidelines. In the follow-

ing, we describe the flight network and outline how demand is modeled along with the 

necessary notation. Then, we present the model formulation. 

3.1 Flight Network  

The supply side of the airline is determined by its flight schedule. The integration of 

schedule design and aircraft maintenance routing enables us to guarantee feasibility 

regarding point-to-point airlines’ most important restrictions. 

Each aircraft of the homogeneous fleet is assigned to a fleet base, where it stays over-

night to allow the performance of maintenance activities. Please note that maintenance 

requirements are similar for point-to-point airlines and network airlines because they are 

largely defined by legal requirements that apply to all airlines. We cover activities that 

are performed overnight on a daily time scale (A-checks, see e.g. Clarke et al. 1996 or 

Sarac, Batta, and Rump 2006). In the morning, the aircraft successively become availa-

ble and perform their daily flights. Rotations start and end at the same fleet base and 

aircraft movements are restricted by operational and regulatory issues. Minimum 

ground times must be met, the environment may be protected by nightly curfews and 

congested airports often have slot requirements restricting the maximum number of de-

partures and arrivals in a certain timeframe.  



 

 

For now, we assume that we know the complete set of feasible rotations that respect 

the abovementioned requirements. In Section 4.1.1, we generate new rotations online in 

a branch-and-price framework. Accordingly, the following sets and parameters include 

data regarding individual rotations as well as information like maintenance time win-

dows that govern the number of aircraft available, and, thus determine whether different 

rotations can be flown simultaneously. 

Sets 

𝑁: set of airports. 

𝐹𝐵 ⊆ 𝑁: set of fleet bases. 

𝑇 ⊆ ℕ0: time. In our numerical study, we consider w.l.o.g. a daily schedule and meas-

ure time in minutes, thus 𝑇 = {0, … , 1440}. 

𝑅: set of routes. Between airports A and B, there are two routes: A-B and B-A. For 

route 𝑟 = (𝑟𝑑, 𝑟𝑎) ∈ 𝑅, 𝑟𝑑 denotes the departure airport and 𝑟𝑎 is the arrival airport. 

𝐹: set of flight legs. Flight leg 𝑓 = (𝑓𝑑 , 𝑓𝑎 , 𝑓𝑑𝑡 , 𝑓𝑎𝑡) ∈ 𝐹 departs from airport 𝑓𝑑 ∈ 𝑁 at 

time 𝑓𝑑𝑡 ∈ 𝑇 and arrives at 𝑓𝑎 ∈ 𝑁 at time 𝑓𝑎𝑡 ∈ 𝑇. 

𝑇𝑛
𝐹 ⊆ 𝑇: set of possible departure times of flights at airport 𝑛 ∈ 𝑁, restricted e.g. be-

cause of curfews. 

Ω: set of rotations. A rotation 𝜔 ∈ Ω is a sequence of legs 𝑓𝑖 ∈ 𝐹 that are subsequently 

flown by the same aircraft, departing from and finally arriving back at the same fleet 

base: 𝜔 = [𝑓1, … , 𝑓𝑖 , … , 𝑓|𝜔|], 𝑓𝑑
1 = 𝑓𝑎

|𝜔|
∈ 𝐹𝐵, 𝑓𝑎

𝑖 = 𝑓𝑑
𝑖+1, 𝑓𝑎𝑡

𝑖 ≤ 𝑓𝑑𝑡
𝑖+1 (𝑖 ∈

{1, 2, … , |𝜔| − 1}). 

𝑇𝑊𝑓𝑏
𝑚={1,2, … , |𝑇𝑊𝑓𝑏

𝑚|}: index set of maintenance time windows at fleet base 𝑓𝑏 ∈

𝐹𝐵. 

𝑇𝑓𝑏,𝑡𝑤𝑚
Ω ⊆ 𝑇𝑛

𝐹: set of departure times of rotations from fleet base 𝑓𝑏 ∈ 𝐹𝐵 in mainte-

nance time window 𝑡𝑤𝑚 ∈ 𝑇𝑊𝑓𝑏
𝑚. 

Parameters 

𝑐𝑟 ∈ ℝ0
+: cost of flying route 𝑟 ∈ 𝑅. 

𝑐𝑎𝑝 ∈ ℕ: seating capacity of the single plane type, i.e. number of available seats. In 

line with industry practice, there is only one cabin type (i.e. economy class, see, e.g., 

Williams 2001). 

𝑑𝑒𝑝𝜔 ∈ 𝐹𝐵: first departure airport in rotation 𝜔 ∈ Ω. 



 

 

𝑠𝑡𝑎𝑟𝑡𝜔 ∈ 𝑇: departure time of the first flight in rotation 𝜔 ∈ Ω. 

𝑒𝑛𝑑𝜔 ∈ 𝑇: arrival time of the last flight in rotation 𝜔 ∈ Ω. 

𝛸𝜔,𝑓: 1 if rotation 𝜔 ∈ Ω contains leg 𝑓 ∈ 𝐹, 0 otherwise. 

𝑠𝑡𝑎𝑟𝑡𝑓𝑏
𝑚 (𝑡𝑤𝑚) ∈ 𝑇: begin of 𝑡𝑤𝑚-th maintenance time window (𝑡𝑤𝑚 ∈ 𝑇𝑊𝑓𝑏

𝑚 ∪

{|𝑇𝑊𝑓𝑏
𝑚| + 1}) at fleet base 𝑓𝑏 ∈ 𝐹𝐵. 

𝑞𝑓𝑏,𝑡𝑤𝑚 ∈ ℕ0: number of planes belonging to fleet base 𝑓𝑏 ∈ 𝐹𝐵 available in 𝑡𝑤𝑚-th 

maintenance time window (𝑡𝑤𝑚 ∈ 𝑇𝑊𝑓𝑏
𝑚). 

𝑠𝑙𝑜𝑡𝑇𝑖𝑚𝑒 ∈ ℕ: length of rolling time interval for slot restrictions. 

𝑚𝑎𝑥𝐷𝑒𝑝𝑛 ∈ ℕ0: maximum number of departures from airport 𝑛 ∈ 𝑁 during time in-

terval 𝑠𝑙𝑜𝑡𝑇𝑖𝑚𝑒.  

Please note that the assumption that rotations start and end at the same fleet base fol-

lows current practice at point-to-point airlines. It simplifies planning and operations and 

saves cost. For example, the crews usually live near “their” fleet base and the airline 

thus does not need to provide hotel accommodation during stays at remote airports. 

From a theoretical point of view, this assumption is not crucial for the model, although 

it simplifies it. Relaxing the assumption would necessitate additional flow conservation 

constraints that ensure a constant number of aircraft at the fleet bases. Likewise, the 

solution methods presented in Section 4 can also be extended, but would become more 

computationally intensive as more feasible rotations exist. 

3.2 Demand Modeling 

On the demand side, the model captures the most important revenue effects of a point-

to-point airline to provide a profit-maximizing flight schedule. The airline offers single-

leg return flights to two types of customers, business and leisure customers. While lei-

sure customers’ demand is time-insensitive and only relates to a pair of departure and 

arrival airports, business customers ask for outgoing and return flights in specific time 

windows. Thus, for each airport pair, we have w.l.o.g. one leisure customer segment and 

multiple business customer segments, referring to different demand time windows for 

the flights. For example, think of business customers who want to depart from A to B in 

the morning and return in the afternoon (business customer segment 1), who depart in 

the morning and return in the evening (business customer segment 2), a.s.o. However, 



 

 

even in one segment, there are customers with different valuations for the flight. Air-

lines’ operational RM systems exploit this heterogeneity and prefer customers with 

higher valuations (who are willing to pay more) if capacity is scarce. Thus, airlines typi-

cally observe a non-linear, concave revenue function with marginal revenues decreasing 

in the number of seats allocated to a customer segment. We capture this by a piecewise-

linear approximation (see Section 5.1 for the specific revenue function used in the nu-

merical study). Note that modeling time-sensitive leisure customers is only a matter of 

input data and possible via additional “business” customer segments instead of leisure 

customer segments. 

The following notation is used to describe demand: 

Sets 

𝑆𝐵: set of business customer segments. 

𝑆𝐿: set of leisure customer segments. 

𝑇𝑊𝑑 = {1,2, … , |𝑇𝑊𝑑|}: index set of demand time windows.  

𝑆𝑃 = {0, 1, … , |𝑆𝑃| − 1}: index set of sampling points for the piecewise-linear revenue 

approximation. To ease notation, we use the same number of sampling points for all 

segments. Hence, the interval between the sampling points 𝑝 − 1 and 𝑝 (𝑝 ∈ 𝑆𝑃\{0}) is 

considered as the 𝑝-th interval of the approximated, piecewise-linear revenue function. 

Parameters 

𝑠𝑡𝑎𝑟𝑡𝑑(𝑡𝑤𝑑) ∈ 𝑇: begin of 𝑡𝑤𝑑-th demand time window (𝑡𝑤𝑑 ∈ 𝑇𝑊𝑑 ∪

{|𝑇𝑊𝑑| + 1}).  

𝑠𝑝𝑠,𝑝
𝐵 ∈ ℝ0

+: 𝑝-th sampling point for the linearization of business customer segment 𝑠’s 

revenue function (𝑝 ∈ 𝑆𝑃, 𝑠 ∈ 𝑆𝐵). 

𝑠𝑝𝑠,𝑝
𝐿 ∈ ℝ0

+: 𝑝-th sampling point for the linearization of leisure customer segment 𝑠’s 

revenue function (𝑝 ∈ 𝑆𝑃, 𝑠 ∈ 𝑆𝐿). 

𝑦𝑠,𝑝
𝐵 ∈ ℝ0

+: average revenue in the 𝑝-th interval between sampling points 𝑝 − 1 and 𝑝 

(𝑝 ∈ 𝑆𝑃\{0}) of business customer segment 𝑠’s revenue function (𝑠 ∈ 𝑆𝐵). 

𝑦𝑠,𝑝
𝐿 ∈ ℝ0

+: average revenue in the 𝑝-th interval between sampling points 𝑝 − 1 and 𝑝 

(𝑝 ∈ 𝑆𝑃\{0})  of leisure customer segment 𝑠’s revenue function (𝑠 ∈ 𝑆𝐿). 

𝜙
𝑠,𝑟,𝑡𝑤𝑑
𝐵 : 1 if business customer segment 𝑠 ∈ 𝑆𝐵 requires route 𝑟 ∈ 𝑅 in demand time 

window 𝑡𝑤𝑑 ∈ 𝑇𝑊𝑑, 0 otherwise. 



 

 

𝜙𝑠,𝑟
𝐿 : 1, if leisure customer segment 𝑠 ∈ 𝑆𝐿 requires route 𝑟 ∈ 𝑅 (not time-specific), 0 

otherwise. 

The parameters described above are used in the model to specify a piecewise linear 

revenue function. This can be the real revenue function or an approximation of an arbi-

trary revenue function. There is no further requirement besides nonincreasing marginal 

revenues. In our computational experiments in Section 5, this piecewise linear function 

approximates the real logit demand function. Figure 1 illustrates the piecewise linear 

approximation of total revenue for business customer segment 𝑠 = 1 with |𝑆𝑃| − 1 = 3 

passenger intervals. Note that we approximate total revenue only until its maximum 

because selling more seats would lead to a lower total revenue. 

 

Figure 1: Approximation of total revenue obtained from business customer segment 𝑠 = 1  

with |𝑆𝑃| = 4 sampling points (illustration) 

3.3 Model formulation 

Next, we define the decision variables of the model: 

𝑧𝑠,𝑝
𝐵 ∈ ℝ0

+: seating capacity allocated to business customer segment 𝑠 ∈ 𝑆𝐵 in the 𝑝-th 

interval between sampling points 𝑝 − 1 and 𝑝 (𝑝 ∈ 𝑆𝑃\{0}). 

𝑧𝑠,𝑝
𝐿 ∈ ℝ0

+: seating capacity allocated to leisure customer segment 𝑠 ∈ 𝑆𝐿 in the 𝑝-th 

interval between sampling points 𝑝 − 1 and 𝑝 (𝑝 ∈ 𝑆𝑃\{0}). 

𝑥𝜔: 1 if rotation 𝜔 ∈ Ω is flown, 0 otherwise. 

Abbreviations 

To ease notation and improve readability, we use the following sets of flights: 

total revenue

seats sold

𝑠𝑝1,1
𝐵 𝑠𝑝1,2

𝐵 𝑠𝑝1,3
𝐵𝑠𝑝1,0

𝐵



 

 

𝐹𝑟 = {𝑓 ∈ 𝐹: 𝑓𝑑 = 𝑟𝑑 ∧ 𝑓𝑎 = 𝑟𝑎}: set of flights on route 𝑟 = (𝑟𝑑, 𝑟𝑎) ∈ 𝑅. 

𝐹𝑡𝑤𝑑 = {𝑓 ∈ 𝐹: 𝑓𝑑𝑡 ≥ 𝑠𝑡𝑎𝑟𝑡𝑑(𝑡𝑤𝑑) ∧  𝑓𝑑𝑡 < 𝑠𝑡𝑎𝑟𝑡𝑑(𝑡𝑤𝑑 + 1)}: set of flights in de-

mand time window 𝑡𝑤𝑑 ∈ 𝑇𝑊𝑑. 

𝐹𝑛,𝑡𝐹,𝑠𝑙𝑜𝑡𝑇𝑖𝑚𝑒 = {𝑓 ∈ 𝐹: 𝑓𝑑 = 𝑛 ∧ 𝑓𝑑𝑡 ≥ 𝑡𝐹 ∧  𝑓𝑑𝑡 ≤ 𝑡𝐹 + 𝑠𝑙𝑜𝑡𝑇𝑖𝑚𝑒}: set of flights 

that depart from airport 𝑛 ∈ 𝑁 in the time interval with length 𝑠𝑙𝑜𝑡𝑇𝑖𝑚𝑒 beginning at 

𝑡𝐹 ∈ 𝑇𝑛
𝐹. 

The Demand-Oriented Integrated Scheduling Model for a point-to-point airline 

(DOISM) reads 

maximize  

𝐹(𝐱, 𝐳) = ∑ (∑ 𝑦𝑠,𝑝
𝐵 𝑧𝑠,𝑝

𝐵 + ∑ 𝑦𝑠,𝑝
𝐿 𝑧𝑠,𝑝

𝐿
𝑠∈𝑆𝐿𝑠∈𝑆𝐵 )𝑝∈𝑆𝑃\{0} − ∑ ∑ 𝛸𝜔,𝑓𝑥𝜔𝑐(𝑓𝑑,𝑓𝑎)𝑓∈𝐹𝜔∈Ω  (1) 

subject to 

∑ (∑ ∑ 𝜙
𝑠,𝑟,𝑡𝑤𝑑
𝐵

𝑡𝑤𝑑∈𝑇𝑊𝑑 𝑧𝑠,𝑝
𝐵 + ∑ 𝜙𝑠,𝑟

𝐿 𝑧𝑠,𝑝
𝐿

𝑠∈𝑆𝐿𝑠∈𝑆𝐵 )𝑝∈𝑆𝑃\{0}   

≤ ∑ ∑ 𝛸𝜔,𝑓𝑥𝜔𝑐𝑎𝑝𝑓∈𝐹𝑟𝜔∈Ω    ∀𝑟 ∈ 𝑅 (2) 

∑ ∑ 𝜙
𝑠,𝑟,𝑡𝑤𝑑
𝐵 𝑧𝑠,𝑝

𝐵
𝑠∈𝑆𝐵𝑝∈𝑆𝑃\{0} ≤ ∑ ∑ 𝛸𝜔,𝑓𝑥𝜔𝑐𝑎𝑝𝑓∈𝐹𝑟∩𝐹

𝑡𝑤𝑑𝜔∈Ω  ∀𝑟 ∈ 𝑅, 𝑡𝑤𝑑 ∈ 𝑇𝑊𝑑 (3) 

∑ 𝑥𝜔𝜔∈Ω:𝑑𝑒𝑝𝜔=𝑓𝑏 

∧ 𝑠𝑡𝑎𝑟𝑡𝜔≤𝑡Ω

∧ 𝑒𝑛𝑑𝜔>𝑡Ω

≤ 𝑞𝑓𝑏,𝑡𝑤𝑚   ∀𝑓𝑏 ∈ 𝐹𝐵, 𝑡𝑤𝑚 ∈ 𝑇𝑊𝑓𝑏
𝑚, 𝑡Ω ∈ 𝑇𝑓𝑏,𝑡𝑤𝑚

Ω  (4) 

∑ ∑ 𝛸𝜔,𝑓𝑥𝜔 ≤ 𝑚𝑎𝑥𝐷𝑒𝑝𝑛𝑓∈𝐹
𝑛,𝑡𝐹,𝑠𝑙𝑜𝑡𝑇𝑖𝑚𝑒

𝜔∈Ω    ∀𝑛 ∈ 𝑁, 𝑡𝐹 ∈ 𝑇𝑛
𝐹 (5) 

0 ≤ 𝑧𝑠,𝑝
𝐵 ≤ 𝑠𝑝𝑠,𝑝

𝐵 − 𝑠𝑝𝑠,𝑝−1
𝐵    ∀𝑠 ∈ 𝑆𝐵, 𝑝 ∈ 𝑆𝑃\{0} (6) 

0 ≤ 𝑧𝑠,𝑝
𝐿 ≤ 𝑠𝑝𝑠,𝑝

𝐿 − 𝑠𝑝𝑠,𝑝−1
𝐿    ∀𝑠 ∈ 𝑆𝐿 , 𝑝 ∈ 𝑆𝑃\{0} (7) 

𝑥𝜔 ∈ {0,1}   ∀𝜔 ∈ Ω (8) 

The objective function (1) reflects profit. The first part is the sum of the revenues ob-

tained from business and leisure customers. For each customer type and segment 𝑠, total 

revenue is obtained by summing up the product of marginal revenue 𝑦𝑠,𝑝
𝐵 , 𝑦𝑠,𝑝

𝐿  and the 

number of passengers 𝑧𝑠,𝑝
𝐵 , 𝑧𝑠,𝑝

𝐿  in every interval 𝑝 between the sampling points 𝑝 − 1 

and 𝑝 (𝑝 ∈ 𝑆𝑃\{0}) of the piecewise linear revenue function. The second part subtracts 

the cost of flying the selected rotations. This cost is calculated by summing over all ro-

tations 𝜔 and flight legs 𝑓. Remember that the binary variable 𝑥𝜔 is 1 if rotation 𝜔 is 



 

 

flown and the binary parameter 𝛸𝜔,𝑓 indicates whether rotation 𝜔 contains flight leg 𝑓. 

Constraints (2) ensure that total allocated capacity on each route does not exceed avail-

able capacity. On the left hand side, the number of passengers travelling on route 𝑟 is 

calculated. Therefore, we sum over all intervals, customer segments and (for business 

customers) time windows. Remember that the binary parameters 𝜙
𝑠,𝑟,𝑡𝑤𝑑
𝐵  and 𝜙𝑠,𝑟

𝐿  indi-

cate whether a segment requires a route and the decision variables 𝑧𝑠,𝑝
𝐵  and 𝑧𝑠,𝑝

𝐿  denote 

allocated capacity. Note that demand time windows are not considered here. This is 

necessary only for business customer segments. Accordingly, constraints (3) have the 

same structure as (2) but now ensure that the capacity allocated to business customers 

on each route in each time window does not exceed the respective capacity. Together, 

these two groups of constraints ensure that every business customer gets a flight in his 

demand time window and every customer gets a flight. By using this so-called surrogate 

formulation, we avoid to explicitly consider the demand time windows for leisure seg-

ments, which would require additional distribution variables (see, e.g., Gönsch and 

Steinhardt 2015). Constraints (4) ensure for every fleet base, maintenance time window, 

and departure time that the number of aircraft used does not exceed the number of air-

craft available. Similarly, constraints (5) express the slot restrictions in every timeframe 

of length 𝑠𝑙𝑜𝑡𝑇𝑖𝑚𝑒 for every airport and departure time. Constraints (6) and (7) ensure 

for business and leisure customer segments, respectively, that capacity allocations are in 

line with the intervals of the piecewise linear revenue function. Finally, w.l.o.g., binary 

requirements on the variables 𝑥𝜔 are imposed (8). 

In our solution methods (Section 4), we use the LP relaxation of DOISM obtained by 

substituting the integrality constraint (8) with 

0 ≤ 𝑥𝜔 ≤ 1   ∀𝜔 ∈ Ω (8’) 

Now, the dual of the LP (1) – (8’) is given by (9) – (13), where the dual variables cor-

respond to the constraints (2) – (8’) as follows: 

Constraint (2): 𝑢𝑟
1   ∀ 𝑟 ∈ 𝑅. 

Constraint (3): 𝑢
𝑟,𝑡𝑤𝑑
2   ∀ 𝑟 ∈ 𝑅, 𝑡𝑤𝑑 ∈ 𝑇𝑊𝑑. 

Constraint (4): 𝑢
𝑓𝑏,𝑡𝑤𝑚,𝑡Ω
3   ∀𝑓𝑏 ∈ 𝐹𝐵, 𝑡𝑤𝑚 ∈ 𝑇𝑊𝑓𝑏

𝑚, 𝑡Ω ∈ 𝑇𝑓𝑏,𝑡𝑤𝑚
Ω . 

Constraint (5): 𝑢
𝑛,𝑡𝐹
4   ∀𝑛 ∈ 𝑁, 𝑡𝐹 ∈ 𝑇𝑛

𝐹. 

Constraint (6): 𝑢𝑠,𝑝
5     ∀𝑠 ∈ 𝑆𝐵, 𝑝 ∈ 𝑆𝑃\{0}. 



 

 

Constraint (7): 𝑢𝑠,𝑝
6    ∀𝑠 ∈ 𝑆𝐿 , 𝑝 ∈ 𝑆𝑃\{0}. 

Constraint (8’): 𝑢𝜔
7    ∀𝜔 ∈ Ω. 

minimize 

𝐹𝐷(𝐮) = ∑ ∑ ∑ 𝑞𝑓𝑏,𝑡𝑤𝑚𝑢
𝑓𝑏,𝑡𝑤𝑚,𝑡Ω
3

𝑡Ω∈𝑇𝑓𝑏,𝑡𝑤𝑚
Ω𝑡𝑤𝑚∈𝑇𝑊𝑓𝑏

𝑚𝑓𝑏∈𝐹𝐵 +

∑ ∑ 𝑚𝑎𝑥𝐷𝑒𝑝𝑛𝑢
𝑛,𝑡𝐹
4

𝑡𝐹∈𝑇𝑛
𝐹𝑛∈𝑁 + ∑ ∑ (𝑠𝑝𝑠,𝑝

𝐵 − 𝑠𝑝𝑠,𝑝−1
𝐵 )𝑢𝑠,𝑝

5
𝑠∈𝑆𝐵𝑝∈𝑆𝑃\{0} +

∑ ∑ (𝑠𝑝𝑠,𝑝
𝐿 − 𝑠𝑝𝑠,𝑝−1

𝐿 )𝑢𝑠,𝑝
6

𝑠∈𝑆𝐿𝑝∈𝑆𝑃\{0} + ∑ 𝑢𝜔
7

𝜔∈Ω  (9) 

subject to 

− ∑ 𝑋𝜔,𝑓𝑐𝑎𝑝 𝑢(𝑓𝑑,𝑓𝑎)
1

𝑓∈𝐹 − ∑ ∑ 𝑋𝜔,𝑓𝑐𝑎𝑝 𝑢(𝑓𝑑,𝑓𝑎),𝑡𝑤𝑑
2

𝑓∈𝐹
𝑡𝑤𝑑𝑡𝑤𝑑∈𝑇𝑊𝑑 +

∑ ∑ 𝑢
𝑑𝑒𝑝𝜔,𝑡𝑤𝑚,𝑡Ω
3

𝑡Ω∈𝑇𝑑𝑒𝑝𝜔,𝑡𝑤𝑚
Ω :

𝑠𝑡𝑎𝑟𝑡𝜔≤𝑡Ω

∧ 𝑒𝑛𝑑𝜔>𝑡Ω

𝑡𝑤𝑚∈𝑇𝑊𝑑𝑒𝑝𝜔
𝑚 + ∑ ∑ ∑ 𝑋𝜔,𝑓𝑢

𝑛,𝑡𝐹
4

𝑓∈𝐹
𝑛,𝑡𝐹,𝑠𝑙𝑜𝑡𝑇𝑖𝑚𝑒𝑡𝐹∈𝑇𝑛

𝐹𝑛∈𝑁 + 𝑢𝜔
7 ≥

− ∑ 𝑋𝜔,𝑓𝑐(𝑓𝑑,𝑓𝑎)𝑓∈𝐹   ∀𝜔 ∈ Ω (10) 

∑ ∑ 𝜙
𝑠,𝑟,𝑡𝑤𝑑
𝐵 𝑢𝑟

1
𝑡𝑤𝑑∈𝑇𝑊𝑑𝑟∈𝑅 + ∑ ∑ 𝜙

𝑠,𝑟,𝑡𝑤𝑑
𝐵 𝑢

𝑟,𝑡𝑤𝑑
2

𝑡𝑤𝑑∈𝑇𝑊𝑑𝑟∈𝑅 + 𝑢𝑠,𝑝
5 ≥ 𝑦𝑠,𝑝

𝐵   

   ∀𝑠 ∈ 𝑆𝐵, 𝑝 ∈ 𝑆𝑃\{0} (11) 

∑ 𝜙𝑠,𝑟
𝐿 𝑢𝑟

1
𝑟∈𝑅 + 𝑢𝑠,𝑝

6 ≥ 𝑦𝑠,𝑝
𝐿    ∀𝑠 ∈ 𝑆𝐿 , 𝑝 ∈ 𝑆𝑃\{0} (12) 

𝑢𝑟
1, 𝑢

𝑟,𝑡𝑤𝑑
2 , 𝑢

𝑓𝑏,𝑡𝑤𝑚,𝑡𝛺
3 , 𝑢

𝑛,𝑡𝐹
4 , 𝑢

𝑠𝐵,𝑝
5 , 𝑢

𝑠𝐿,𝑝
6 , 𝑢𝜔

7 ≥ 0 ∀𝑛 ∈ 𝑁, 𝑟 ∈ 𝑅, 𝑓𝑏 ∈ 𝐹𝐵, 

  𝑡𝑤𝑑 ∈ 𝑇𝑊𝑑 , 𝑡𝑤𝑚 ∈ 𝑇𝑊𝑓𝑏
𝑚, 

  𝑡Ω ∈ 𝑇𝑓𝑏,𝑡𝑤𝑚
Ω , 𝑡𝐹 ∈ 𝑇𝑛

𝐹 , 

  𝑠𝐵 ∈ 𝑆𝐵, 𝑠𝐿 ∈ 𝑆𝐿 , 𝑝 ∈ 𝑆𝑃\{0}, 𝜔 ∈ Ω  (13) 

4 Solution Methods 

The model given in the previous section contains a very large number of binary varia-

bles. For example, in one of our networks with only 5 airports and one fleet base, al-

ready 79,975,740 possible rotations exist. To overcome this drawback, such models are 

typically solved using branch-and-price algorithms. In Subsection 4.1, we develop a 

suitable branch-and-price algorithm and describe the corresponding subproblem with its 

solution approach as well as the branching rule used. In Subsection 4.2, we develop two 

heuristic approaches.  



 

 

4.1 Branch-and-Price 

Branch-and-price is an extension of the well-known branch-and-bound approach that 

works without explicitly enumerating a large number of variables. As in branch-and-

bound methods, an LP relaxation is solved at each node to generate dual bounds on the 

optimal solution value and determine the problems considered at potential child nodes. 

In branch-and-price methods, these LPs are solved with a special solution approach 

called column generation.  

Column generation (see e.g. Desrosiers and Lübbecke 2005 for an introduction) is an 

iterative method that alternately solves a restricted master problem (RMP) and a corre-

sponding subproblem. The RMP is a restriction of the master problem that considers 

only a subset of the variables. The RMP is solved and its dual solution is used to find 

variables (columns) with positive reduced profit (as we are maximizing profit). If such 

variables are found, they are added to the RMP and a new iteration starts. If not, the 

current solution is optimal for the (unrestricted) master problem. Checking for positive 

reduced profits can also be seen as verifying dual feasibility and adding violated dual 

constraints along with the corresponding primal variables. Although branch-and-price 

and column generation have been successfully applied to areas like transportation and 

scheduling for decades (see, e.g., Desrosiers, Soumis, and Desrochers 1984, Barnhart 

and Cohn 2004, as well as, for a survey, Barnhart et al. 1998b), Lübbecke and 

Desrosiers (2005) note that the implementation is still difficult because of the vast pos-

sibilities to tune the components. 

We consider the LP relaxation of DOISM the master problem, i.e. problem (1) – (8’). 

In order to solve it, we start with a subset of the feasible rotations in the RMP. In our 

numerical experiments in Section 5, these initial rotations are obtained by using the heu-

ristic IH(4,15) and then CGH described in Section 4.2. Then, we use column generation 

to dynamically generate additional rotations, that is, variables 𝑥𝜔. This lends itself to the 

problem structure as the overall schedule and demand implications are considered in the 

RMP and feasibility of rotations is captured in the subproblem. 



 

 

4.1.1. Subproblem: Generating new Rotations 

The reduced profit 𝑐�̅� of a rotation 𝜔 ∈ Ω is then given by 

𝑐�̅� = − ∑ 𝛸𝜔,𝑓𝑐(𝑓𝑑,𝑓𝑎)𝑓∈𝐹 + ∑ 𝛸𝜔,𝑓𝑐𝑎𝑝 𝑢(𝑓𝑑,𝑓𝑎)
1

𝑓∈𝐹 +

∑ ∑ 𝑋𝜔,𝑓𝑐𝑎𝑝 𝑢(𝑓𝑑,𝑓𝑎),𝑡𝑤𝑑
2

𝑓∈𝐹
𝑡𝑤𝑑𝑡𝑤𝑑∈𝑇𝑊𝑑 − ∑ ∑ 𝑢

𝑑𝑒𝑝𝜔,𝑡𝑤𝑚,𝑡Ω
3

𝑡Ω∈𝑇
𝑑𝑒𝑝𝜔,𝑡𝑤𝑚
Ω :

𝑠𝑡𝑎𝑟𝑡𝜔≤𝑡Ω

∧ 𝑒𝑛𝑑𝜔>𝑡Ω

𝑡𝑤𝑚∈𝑇𝑊𝑑𝑒𝑝𝜔
𝑚 −

∑ ∑ ∑ 𝛸𝜔,𝑓𝑢
𝑛,𝑡𝐹
4

𝑓∈𝐹
𝑛,𝑡𝐹,𝑠𝑙𝑜𝑡𝑇𝑖𝑚𝑒𝑡𝐹∈𝑇𝑛

𝐹𝑛∈𝑁 − 𝑢𝜔
7   (14) 

As we consider a maximization problem here, a positive 𝑐�̅� implies nonoptimality of 

the current solution and rotation 𝜔 can be added to the primal RMP. Analogously, this 

can be seen as starting with a reduced dual problem (9) – (13) with only a subset of con-

straints (10). Given the current solution, we now search for a constraint (10) for some 

rotation 𝜔 that is violated. If we find one, it is added. If not, the solution is optimal. 

Finding a rotation with positive reduced profit (a constraint (10) that is violated for a 

rotation) corresponds to a longest-path problem (LPP) without resource constraints over 

a time line network that aims at finding a rotation with the largest reduced profit. 

 

Figure 2: Subproblem network (time discretization: 60 minutes, curfew: 9pm-9am for illustration)  

For each fleet base 𝑓𝑏, the underlying acyclic network is an implicit representation of 

all rotations an aircraft belonging to 𝑓𝑏 can fly. Therefore, it must incorporate all re-

strictions that determine whether an isolated rotation is feasible, for example minimum 

ground times and curfews. Such a network is illustrated in Figure 2. To keep the exam-



 

 

ple small, there is only the fleet base (A) and a second (non-fleet base) airport (B). 

Moreover, we use a time discretization interval of 60 minutes and a curfew from 9pm 

(1260 min) – 9am (540 min). This network contains four node types: source, sink, the 

fleet base 𝑓𝑏, and regular airports (which may be fleet bases for other aircraft). There is 

a single source node (-1) and a single sink node (-2) to represent the start and the end of 

the rotation, respectively. For all airports including 𝑓𝑏, there is a node for each point in 

time when a flight can start or end at this airport. Every feasible rotation 𝜔 ∈ Ω of an 

aircraft belonging to fleet base 𝑓𝑏 (that is, 𝑑𝑒𝑝𝜔 = 𝑓𝑏) corresponds to a path from 

source to sink in the network for 𝑓𝑏. The length of the path is the reduced profit 𝑐�̅� of 

rotation 𝜔. 

The network contains five arc types: empty rotation, start-of-rotation, end-of-rotation, 

flight, and waiting: 

There is a single empty rotation arc that directly links the source node to the sink. Its 

profit is 0. 

Moreover, there are multiple start-of-rotation arcs that each link the source node to a 

fleet base node at a point in time 𝑡 ∈ 𝑇 when a rotation can start. Their profit is 𝑐�̅�𝑏,𝑡
𝑠𝑟 =

– ∑ ∑ 𝑢
𝑓𝑏,𝑡𝑤𝑚,𝑡Ω
3

𝑡Ω∈𝑇𝑓𝑏,𝑡𝑤𝑚
Ω :𝑡≤𝑡Ω𝑡𝑤𝑚∈𝑇𝑊𝑓𝑏

𝑚 . Likewise, there are end-of-rotation arcs from 

fleet base nodes to the sink with profits 𝑐�̅�𝑏,𝑡
𝑒𝑟 = ∑ ∑ 𝑢

𝑓𝑏,𝑡𝑤𝑚,𝑡Ω
3

𝑡Ω∈𝑇𝑓𝑏,𝑡𝑤𝑚
Ω :𝑡≤𝑡Ω𝑡𝑤𝑚∈𝑇𝑊𝑓𝑏

𝑚 .  

Flight arcs 𝑓 = (𝑓𝑑 , 𝑓𝑎, 𝑓𝑑𝑡 , 𝑓𝑎𝑡) correspond to legs and connect two airports. They start 

at a departure airport 𝑓𝑑 at some point in time 𝑓𝑑𝑡 and arrive at a destination airport 𝑓𝑎 at 

a later point in time 𝑓𝑎𝑡. Note that in our model, the arrival time 𝑓𝑎𝑡 includes the mini-

mum ground time at the airport 𝑓𝑎. This allows for a combination of two adjacent flight 

arcs 𝑓1 = (𝑓𝑑1
, 𝑓𝑎1

, 𝑓𝑑𝑡1
, 𝑓𝑎𝑡1

) and 𝑓2 = (𝑓𝑑2
= 𝑓𝑎1

, 𝑓𝑎2
, 𝑓𝑑𝑡2

= 𝑓𝑎𝑡1
, 𝑓𝑎𝑡2

) without consid-

ering minimum ground times while solving the LPP. The profit of a flight arc 𝑓 is  

𝑐�̅�
𝑓𝑙

= −𝑐(𝑓𝑑,𝑓𝑎) + 𝑐𝑎𝑝 ⋅ 𝑢(𝑓𝑑,𝑓𝑎)
1 + 𝑐𝑎𝑝 ⋅ 𝑢(𝑓𝑑,𝑓𝑎), max

𝑡𝑤𝑑∈𝑇𝑊𝑑
𝑠𝑡𝑎𝑟𝑡𝑑(𝑡𝑤𝑑)≤𝑓𝑑𝑡

2 −

∑ 𝑢
𝑓𝑑,𝑡𝐹
4

𝑡𝐹∈𝑇𝑓𝑑
𝐹 :𝑓𝑑𝑡≥𝑡𝐹∧𝑓𝑑𝑡≤𝑡𝐹+𝑠𝑙𝑜𝑡𝑇𝑖𝑚𝑒 . 

Finally, waiting arcs correspond to the idle time between two flights and allow an air-

craft to remain at an airport until later. The profit of a waiting arc is 0. 

Thus, the reduced profit 𝑐�̅� of rotation 𝜔 is given by 

𝑐�̅� = 𝑐�̅�𝑒𝑝𝜔,𝑠𝑡𝑎𝑟𝑡𝜔

𝑠𝑟 + ∑ 𝛸𝜔,𝑓 ⋅ 𝑐�̅�
𝑓𝑙

𝑓∈𝐹 + 𝑐�̅�𝑒𝑝𝜔,𝑒𝑛𝑑𝜔

𝑒𝑟    (15) 



 

 

To accelerate the column generation process, we seek to find good feasible solutions 

early on. Therefore, we start with a rough discretization of time which successively be-

comes finer. More precisely, when performing column generation, we first use a rough 

discretization of time in the subproblem’s acyclic network. Flight times etc. are adjusted 

such that each path in this network still represents a feasible rotation in the original 

problem. For example, assume that a flight from A to B needs 35 minutes. With a dis-

cretization interval of 60 minutes, there are flight arcs leaving A at 8am and arriving at 

B at 9am, leaving A at 9am and arriving at B at 10am, etc. With an interval of 20 

minutes, there are arcs from 8am to 8:40am, from 8:20am to 9:00am, etc. When no ad-

ditional rotations can be generated, the discretization becomes finer and we again try to 

generate new columns. Only when the finest level is reached and no more columns can 

be generated, the RMP is solved to optimality and we continue with the next node. In 

our numerical experiments (Section 5), we start with an interval of 60 minutes, which is 

successively reduced to 20, 10, and 5 minutes.  

4.1.2. Solution Algorithms for the Subproblem 

As the network described above can contain positive as well as negative profits, label 

setting approaches like the popular Dijkstra algorithm (Dijkstra 1959) cannot be ap-

plied. Instead, label correcting approaches such as the FIFO algorithm (see, e.g., Pape 

1974) may be used. However, to guarantee optimality, every node must be visited. 

Thus, we primarily use a variant of the FIFO algorithm that terminates as soon as a rota-

tion with positive reduced profit is found (FIFO-term). In the numerical experiments 

(see Section 5), we also briefly evaluate solving the subproblem to optimality with the 

FIFO algorithm (FIFO-opt) and with the standard solver IBM ILOG CPLEX (CPLEX). 

4.1.3. Branching: Integer Solutions 

Compared to branch-and-bound, obtaining integer solutions regarding the binary rota-

tion variables (𝑥𝜔) poses some additional challenges. To generate new rotations at the 

nodes of the search tree, a branching rule that is compatible with the subproblem and its 

solution procedure is necessary. The standard approach would be to branch on the 𝑥𝜔 



 

 

and either fix a rotation into the solution (𝑥𝜔 = 1) or forbid the use of a rotation (𝑥𝜔 =

0). It is easy to fix a rotation into the solution. However, forbidding its use is difficult 

since setting 𝑥𝜔 = 0 only prevents the use of the already generated rotation with index 

𝜔. But most probably, the original subproblem returns an identical rotation with another 

index. To avoid this, we would have to modify the subproblem to prevent the generation 

of forbidden rotations. However, we can usually not simply delete any of the arcs in-

volved since they might be needed by other rotations. As Barnhart et al. (2003) point 

out in the context of airline crew scheduling, this could require finding the (𝑘 + 1)th 

shortest path if 𝑘 pairings have been forbidden by previous branching decisions. More-

over, the number of possible rotations is extremely large. 

To overcome these issues, we branch on the flight arcs’ flow, that is, the total number 

of rotations using a flight arc. This guarantees integrality of the arc flows. From the 

flow decomposition theorem follows that the rotation variables 𝑥𝜔 are integral as well 

or an equivalent integer solution can easily be constructed (see, e.g., Vanderbeck 2000). 

Suppose the arc flow of flight arc 𝑓′ = (𝑓𝑑
′, 𝑓𝑎

′, 𝑓𝑑𝑡
′ , 𝑓𝑎𝑡

′ ) is fractional with value 𝑎. 

Then, we generate two child nodes with the following additional constraints in their 

RMPs: 

Left child: ∑ 𝛸𝜔,𝑓′𝑥𝜔𝜔∈Ω + 𝑦𝑗
𝑎𝑟𝑡 ≥ ⌈𝑎⌉    (16) 

Right child: ∑ 𝛸𝜔,𝑓′𝑥𝜔𝜔∈Ω − 𝑦𝑗
𝑎𝑟𝑡 ≤ ⌊𝑎⌋    (17) 

Whereas in branch-and-bound a node can be immediately pruned if the corresponding 

problem is infeasible, in branch-and-price infeasibility can simply indicate that addi-

tional columns must be generated, which in turn requires dual values from the optimal 

solution with the current columns. Thus, we guarantee feasibility at the child nodes us-

ing an artificial variable 𝑦𝑗
𝑎𝑟𝑡 in conditions (16) and (17), where 𝑗 refers to the level in 

the tree where the condition was added. In the objective function, 𝑦𝑗
𝑎𝑟𝑡 is penalized by a 

“big M cost” (see also Lübbecke and Desrosiers 2005, who discuss adding an artificial 

variable to all constraints, which is not necessary here). 

Regarding the generation of new rotations, the structure of the subproblem remains un-

changed. However, we have to take the new dual variable 𝑢𝑎𝑟𝑐 𝑓𝑙𝑜𝑤𝑠
𝑗

 associated with 

constraint (16) or (17) into account by adding 𝑢𝑎𝑟𝑐 𝑓𝑙𝑜𝑤𝑠
𝑗

 to the profit of the correspond-

ing flight arc. 



 

 

We now have all building blocks to use branch-and-price. Unfortunately, branching 

directly on arc flows performed very poor (see also the computational experiments in 

Section 5) because restricting a flow (condition (17)) added little to the structure of the 

solution and often the next solution was basically equivalent with just that specific flight 

starting one point in time earlier or later. 

To arrive faster at the structure of an optimal solution, we investigated several alterna-

tive branching rules and combinations thereof. The best performance was obtained by 

first ensuring integrality of the cumulative number of flights on each route 𝑟 =

(𝑟𝑑, 𝑟𝑎) ∈ 𝑅 in each demand time window 𝑡𝑤𝑑 ∈ 𝑇𝑊𝑑. If the number of flights on 

route 𝑟′ = (𝑟𝑑
′ , 𝑟𝑎

′) departing in demand time window 𝑡𝑤𝑑′
 is a fraction, we add the fol-

lowing child nodes: 

Left child: ∑ ∑ 𝛸𝜔,𝑓𝑓∈𝐹 𝑟′∩𝐹
𝑡𝑤𝑑′ 𝑥𝜔𝜔∈Ω + 𝑦𝑗

𝑎𝑟𝑡 ≥ ⌈𝑎⌉   (18) 

Right child: ∑ ∑ 𝛸𝜔,𝑓𝑓∈𝐹 𝑟′∩𝐹
𝑡𝑤𝑑′ 𝑥𝜔𝜔∈Ω − 𝑦𝑗

𝑎𝑟𝑡 ≤ ⌊𝑎⌋   (19) 

The corresponding dual variable is denoted by 𝑢𝑠𝑢𝑚 𝑟𝑜𝑢𝑡𝑒𝑠 𝑡𝑤
𝑗

. Regarding the subprob-

lem, this variable is added to the profit of all flight arcs on route 𝑟′ departing in demand 

time window 𝑡𝑤𝑑′
. When integrality regarding the cumulative number of flights on 

each route in each demand time window is attained at a node, we continue pursuing 

integrality of the arc flows as described above if not all arc flows are integer yet. 

In addition to the branching rule described above, we also evaluated eight branching 

rules with clustering of arc flows ranging from one cluster containing all arc flows over 

clusters containing only routes/time windows to clusters for each point in time. Moreo-

ver, we considered a dozen combinations thereof, each first using a higher aggregation 

and then successively becoming more granular. The results (not given here) were most-

ly poor. The second best rule was branching on clusters of time windows before using 

the rule described above, but was two to five times slower. 

4.2 Heuristics  

Finally, we present two heuristic approaches. They both belong to a class where col-

umn generation is performed offline. That is, a subset of all columns is generated up-

front and the RMP is solved to optimality using branch-and-bound over this subset, 

without generating new rotations.  



 

 

 The Column Generation Heuristic (CGH) builds on the branch-and-price ap-

proach and performs column generation only at the root node. It solves the inte-

ger program over the columns obtained to optimality with CPLEX. This ap-

proach is widely used in academia (see, e.g., Barnhart, Kniker, and Lohate-

panont 2002 or Lohatepanont and Barnhart 2004 for applications to related prob-

lems). 

 The Industry Heuristic (IH) mimics current practice and allows incorporating 

suggestions and know-how from industry. In a first step, intuitive flight se-

quences are generated. Often only flight pairs (a-b-a) and combined flight pairs 

(a-b-c-b-a) are used in industry. We additionally consider triangle (a-b-c-a), 

square (a-b-c-d-a) and pentagonal (a-b-c-d-e-a) flights, where a, b, c, d, and e 

correspond to different airports. Then, additional flight sequences are generated 

by combining these initial flight sequences up to a total of 𝜏𝑚𝑎𝑥 legs. For exam-

ple, we might obtain the sequence a-b-a-b-c-d-a by combining a flight pair and a 

square flight. Subsequently, rotations are generated by considering the start of 

every flight sequence at the beginning of each demand time window and each 

𝑇𝐷𝐼𝐻 minutes later. In the example above, we might consider the start of the se-

quence at 7:00am (the beginning of the first demand time window) and 12:00am 

(the beginning of the second demand time window), obtaining two rotations. 

With 𝑇𝐷𝐼𝐻 = 120, we would additionally obtain the rotations starting at 

9:00am, 11:00am, 2:00pm, 4:00pm, etc. Finally, DOISM is solved using 

CPLEX over the rotations generated. Note that the combination of initial flight 

sequences is done primarily to speed up the heuristic; DOISM can also combine 

rotations if short ones can be flown one after the other using the same aircraft. 

We denote this heuristic together with its parameter values as 𝐼𝐻(𝜏𝑚𝑎𝑥, 𝑇𝐷𝐼𝐻). 

As the length 𝜏𝑚𝑎𝑥 of the initial flight sequences increases and the offset 𝑇𝐷𝐼𝐻 

decreases, more rotations are generated and the heuristic tends to yield better so-

lutions, albeit at the cost of an increased runtime. 



 

 

5 Computational Experiments 

In this section, we describe a series of computational experiments using real-world da-

ta. The goal of our experiments is twofold. First, we investigate the performance of the 

branch-and-price procedure and the two heuristics with regard to solving the linear 

DOISM model. Second, we consider the influence of the demand function’s lineariza-

tion and analyze the revenues obtained using the underlying non-linear revenue func-

tions. 

All experiments were performed on a workstation with two Intel Xeon E5-2690 CPUs 

at 2.9 GHz and 128 GB of RAM running Windows Server 2008 R2 Enterprise (SP1). 

We implemented the algorithms in C# with Microsoft .NET Framework Version 

5.5.50938 SP1 and used IBM ILOG CPLEX 12.5 to solve linear programs. 

5.1 Test Instances 

Airline IT provider Lufthansa Systems provided data from a major European point-to-

point airline for our experiments. Because of confidentiality issues, we are restricted to 

reporting only some key parameters. The base setting contains 52 airports, 2 fleet bases, 

4 demand time windows, 3 maintenance time windows, a homogeneous fleet with seat 

capacity of 156 per aircraft, predefined ground times, curfews, and the maximum num-

ber of departures per airport, as well as costs and block times (think of flight times) for 

each pair of two airports. Test instances were generated by sampling from this base set-

ting and varying the number of airports |𝑁|, fleet bases |𝐹𝐵|, and the total number of 

aircraft 𝑞 considering the following parameter values: 

 |𝑁| ∈ {5, 10, 15, 20, 30, 40, 52} 

 |𝐹𝐵| = 1 for |𝑁| = 5, 10 

 |𝐹𝐵| ∈ {1, 2} for |𝑁| = 15 

 |𝐹𝐵| = 2 for |𝑁| = 20, 30, 40, 52 

 𝑞 ∈ {2, 5} for |𝑁| = 5, 10 

 𝑞 ∈ {5, 10} for |𝑁| = 15, 20, 30 

 𝑞 ∈ {10, 15} for |𝑁| = 40, 52 



 

 

We used the popular logit demand function (Phillips 2005, p. 53), which can also be 

interpreted as a binary logit choice model (Ben-Akiva and Lerman 1985, p. 71). Thus, 

the total revenue of selling 𝑎 tickets to customer segment 𝑠 ∈ 𝑆𝐵 (𝑠 ∈ 𝑆𝐿) is given by 

 𝑇𝑅(𝑎) = −𝑎 ⋅
−𝑅𝑠𝑏𝑠+ln(

𝑎

𝑀𝐴𝑠−𝑎
)

𝑏𝑠     (20) 

where 𝑅𝑠 is usually interpreted as the (overall) market price and 𝑀𝐴𝑠 as the potential 

market size. The price sensitivities of business and leisure customers were 𝑏𝐵 = 0.02 

and 𝑏𝐿 = 0.1, respectively for 𝐵 ∈ 𝑆𝐵 and 𝐿 ∈ 𝑆𝐿. 

From (20), we obtain non-linear, concave total revenue curves (see also Figure 1). We 

linearized these curves between 0 and their maximum using |𝑆𝑃| ∈ {2, 3, 4, 5} equidis-

tantly spaced sampling points. Thus, we obtained 64 test instances to evaluate the exact 

approaches. For the heuristic approaches, we used |𝑆𝑃| ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10} and 

obtained 144 test instances. 

Although the model addresses strategic/tactical planning, in practice there is only lim-

ited solution time, because the planning experts usually prefer to work iteratively and 

are used to calculate several scenarios. We mimicked this by using a time limit of 12 

hours and report instances not solved to optimality with the parameter values when the 

time limit was reached. 

5.2 Numerical Results 

In this section, we describe the computational results for our solution algorithms. We 

first examine the performance of the implemented branch-and-price procedures in Sub-

section 5.2.1. Subsection 5.2.2 contains an analysis of the heuristic solution methods. 

Finally, the exact and heuristic approaches are compared in Subsection 5.2.3. In Subsec-

tion 5.2.4, we investigate the scalability of the heuristics to settings with three fleet ba-

ses. 

5.2.1. Branch-and-Price 

In the following, we investigate the performance of the branch-and-price approach 

with regard to solving the DOISM model that uses the linearized revenue function. An 

initial feasible solution is obtained with IH(4,15) (Section 4.2) at the root node. The 



 

 

choice of the solution method for the subproblems (Section 4.1.2) had a comparatively 

small influence. Finding the best rotations to add with CPLEX and FIFO-opt showed 

very similar runtimes. Although this exact solution of the subproblem reduced the num-

ber of column generation iterations necessary, it was about 20% – 50% slower than us-

ing FIFO-term to find an arbitrary rotation with positive reduced profit. Thus, we only 

report results obtained with FIFO-term.  

Table 1 and Table 2 contain key performance indicators obtained with branch-and-

price and the two branching rules described in Section 4.1.3, that is directly branching 

on arc flows (rule 1) in comparison to clustering the arc flows according to routes and 

time windows (rule 2). We only show results for |𝑆𝑃| = 2 sampling points (Table 1) 

and |𝑆𝑃| = 5 (Table 2) here. To save space, the results are averaged over two underly-

ing problem instances with different numbers of aircraft 𝑞. Regarding instances solved 

to optimality, we observe that the number of nodes in the complete B&P tree is quite 

small with rule 2. In these nodes, only a comparably small number of rotations is gener-

ated. By contrast, using rule 1, the number of nodes explodes. For example, in the first 

column of Table 1 (|𝐹𝐵| = 1, |𝑁| = 5), both underlying instances are solved to opti-

mality with rule 2 (instances solved to optimality = 2 out of 2), requiring on average 

only one node and 126 rotations. Rule 1 solves only one instance (instances solved to 

optimality = 1 out of 2) while the second is terminated after 12 hours, leading to an av-

erage runtime slightly above 6 hours. On average, 132,511 nodes and 576 rotations were 

generated. A detailed investigation (not shown here) proves that this is because branch-

ing according to rule 1 often adds little to the solution structure. If using a flight leg is 

restricted, usually basically the same solution with just that one specific flight a little bit 

earlier or later is obtained in the child node. Instances that are aborted due to the time 

limit must be treated with care. Here, opposite values are observed. Rule 2 still gener-

ates fewer rotations, but more nodes in the tree. However, this again confirms rule 2’s 

ability to quickly structure the solution in the nodes through branching. Because of their 

stronger structure, nodes can be processed quicker generating less (unnecessary) rota-

tions.  

There is only a small revenue advantage of rule 2, indicating that also rule 1 usually 

finds good solutions within the time limit, but fails at proving optimality. Even in prob-



 

 

lem instances solved to optimality, often only one feasible solution is evaluated. This 

shows that already the initialization with CGH usually finds very good or optimal solu-

tions.  

Table 1: Branch-and-price – comparison of branching directly on arc flows (rule 1) and on routes in time 

windows (rule 2) for |𝑆𝑃| = 2, averaged over 𝑞 

 

Table 2: Branch-and-price – comparison of branching directly on arc flows (rule 1) and on routes in time 

windows (rule 2) for |𝑆𝑃| = 5, averaged over 𝑞 

 

To illustrate the benefit of branching rule 2 over rule 1, Figure 3 depicts the solution 

process for a problem instance with |𝑁| = 10, |𝐹𝐵| = 1, 𝑞 = 5, and |𝑆𝑃| = 5. Solving 

the instance to optimality took more than 2 hours when branching on arc flows (rule 1), 

and 25,132 nodes with 1,750 columns were generated. The maximum depth of the tree 

was 87. When branching on routes and time windows (rule 2), the solution time was 

only 11 seconds, and 36 nodes with 380 columns were generated. The maximum depth 

was 7. 

|N| = 5 |N| = 10 |N| = 15 |N| = 15 |N| = 20 |N| = 30 |N| = 40 |N| = 52

1 20,760.1 21,715.0 37,214.3 105,895.3 107,853.8 109,131.1 166,371.0 166,763.1

2 20,760.1 21,715.0 37,214.3 105,896.9 108,030.1 109,131.1 166,371.0 166,763.1

1 06:00:03 06:00:03 06:00:22 12:00:00 12:00:00 12:00:00 12:00:00 12:00:00

2 00:00:04 00:00:04 00:00:12 00:53:12 04:07:46 06:32:43 12:00:00 12:00:00

1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

2 1 / 1 1 / 1 1 / 1 1 / 2 1 / 2 1 / 1 1 / 1 1 / 1

1 1 (2) 1 (2) 1 (2) 0 (2) 0 (2) 0 (2) 0 (2) 0 (2)

2 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 1 (2) 0 (2) 0 (2)

1 132,511.0 111,947.5 66,882.5 53,329.0 15,598.0 5,835.0 2,542.5 641.5

2 1.0 1.0 4.0 5,240.0 11,977.0 7,663.0 11,347.0 4,653.0

1 576.0 898.0 1,877.5 4,846.0 6,520.0 10,099.5 13,353.5 16,491.5

2 126.0 175.5 425.5 2,054.0 3,891.5 7,146.5 8,443.5 11,758.5

1 49.0 38.5 41.5 61.5 78.0 90.0 89.0 63.5

2 0.5 0.5 2.0 27.5 31.0 36.0 43.0 31.5

instances solved to 

optimality (total)

nodes in B&P tree

generated 

rotations

max. depth B&P

feasible solutions 

(1st / 2nd instance)

rule

|FB| = 1 |FB| = 2

linearized profit

runtime 

[hh:mm:ss]

|N| = 5 |N| = 10 |N| = 15 |N| = 15 |N| = 20 |N| = 30 |N| = 40 |N| = 52

1 61,560.6 70,844.1 111,149.5 275,170.8 291,951.2 310,131.0 460,742.5 481,633.2

2 61,560.6 70,844.1 111,149.5 275,170.8 291,951.2 310,131.0 460,742.5 481,633.2

1 08:15:24 07:03:11 12:00:00 12:00:00 12:00:00 12:00:00 12:00:00 12:00:00

2 00:00:05 00:00:30 00:01:53 12:00:00 12:00:00 12:00:00 12:00:00 12:00:00

1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

2 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

1 1 (2) 1 (2) 0 (2) 0 (2) 0 (2) 0 (2) 0 (2) 0 (2)

2 2 (2) 2 (2) 2 (2) 0 (2) 0 (2) 0 (2) 0 (2) 0 (2)

1 221,544.5 95,963.0 59,637.0 40,440.5 11,761.5 2,553.5 1,161.5 487.0

2 20.0 60.0 134.0 71,087.0 29,656.5 10,978.5 4,905.5 2,718.0

1 1,557.0 2,349.5 3,007.0 7,462.0 5,741.0 8,093.5 10,190.0 14,204.0

2 184.5 647.0 1,278.5 3,595.0 4,705.0 5,802.0 7,753.5 8,288.0

1 126.5 101.0 115.5 161.0 153.5 75.0 98.0 86.5

2 6.0 8.5 16.0 53.0 41.0 31.5 43.5 49.5

instances solved to 

optimality (total)

nodes in B&P tree

generated 

rotations

max. depth B&P

rule

|FB| = 1 |FB| = 2

linearized profit

runtime 

[hh:mm:ss]

feasible solutions 

(1st / 2nd instance)



 

 

       

Figure 3: Solution process of an instance with |𝑁| = 10, |𝐹𝐵| = 1, 𝑞 = 5, |𝑆𝑃| = 5: Number of col-

umns generated and level in the branch-and-price tree with branching directly on arc flows (rule 1; left) 

and on routes in time windows (rule 2; right) 

5.2.2. Heuristics 

In this subsection, we investigate the heuristics’ performance with regard to DOISM 

with its linearized revenue function. In addition to the Column Generation Heuristic 

(CGH) we also consider four variants of the Industry Heuristic (IH), obtained by com-

bining two values 𝜏𝑚𝑎𝑥 = 4, 8 for the initial flight sequences’ maximum length with 

two values 𝑇𝐷𝐼𝐻 = 15, 120 for the offset to create additional rotations. 

Table 3 (Table 4) shows the heuristics’ performance for |𝑆𝑃| = 2 (|𝑆𝑃| = 5) sampling 

points, averaged over the number of aircraft 𝑞. The heuristics CGH and IH(8,15) yield 

comparably high revenues, whereas IH(4,15), which combines only two flight pairs, 

obtains slightly less revenue. When less rotations at later times are generated by increas-

ing the parameter 𝑇𝐷𝐼𝐻, IH(4,120) and IH(8,120) perform much worse. Regarding 

runtime, IH(8,15) is quite slow compared to CGH and other variants of IH. This is due 

to the very high number of rotations generated by IH(8,15), which outnumbers CGH’s 

by a factor of about 10 to 15. For |𝑆𝑃| = 2, |𝐹𝐵| = 2, |𝑁| = 52, there are two outliers 

with considerably higher runtimes: IH(4,15) and IH(8,15). In both cases, an instance 

could not be solved by CPLEX within the time limit of 12 hours and was aborted. How-

ever, the underlying rotations were generated in a few minutes. 

Summing up, we can state that using predefined flight sequences can lead to good re-

sults, but needs a very high number of rotations. By contrast, CGH obviously succeeds 

in focusing on relevant rotations as it obtains comparable revenues with considerably 

less rotations and, thus, is much faster than IH(8,15). 



 

 

Please note that, although IH mimics current practice, it is considerably more sophisti-

cated. In industry, usually only flight pairs (see Section 4.2) and combined flight pairs 

are used and only a small number of rotations is generated. Thus, we think that 

IH(4,120) is closest to practice, but already more elaborated as it also considers triangle, 

square and pentagonal flights. 

Table 3: Comparison of heuristics CGH and IH for |𝑆𝑃| = 2, averaged over 𝑞 

 

Table 4: Comparison of heuristics CGH and IH for |𝑆𝑃| = 5, averaged over 𝑞 

 

|N| = 5 |N| = 10 |N| = 15 |N| = 15 |N| = 20 |N| = 30 |N| = 40 |N| = 52

CGH 20,760.1 21,715.0 37,214.3 105,895.3 107,853.8 109,131.1 166,371.0 166,763.1

IH(4,120) 18,897.7 21,231.9 28,896.8 87,902.7 92,706.0 93,003.4 133,745.1 138,457.4

IH(8,120) 18,897.7 21,231.9 28,896.8 87,902.7 92,706.0 93,003.4 134,028.5 138,772.5

IH(4,15) 20,634.5 21,595.5 34,447.4 104,329.2 106,161.4 106,883.2 158,838.4 159,764.2

IH(8,15) 20,634.5 21,595.5 34,447.4 104,820.5 106,400.1 107,086.5 158,991.4 159,917.3

CGH 00:03 00:03 00:07 00:11 00:35 01:37 04:56 11:31

IH(4,120) 00:01 00:01 00:02 00:03 00:06 00:16 00:29 01:04

IH(8,120) 00:01 00:01 00:04 00:11 00:17 01:08 01:48 04:47

IH(4,15) 00:01 00:03 00:09 00:25 00:40 02:15 04:24 373:07

IH(8,15) 00:02 00:05 00:20 01:23 02:10 10:01 16:22 433:56

CGH 116.5 142.5 322.5 648.5 979.5 1,687.5 3,085.0 4,744.0

IH(4,120) 109.0 321.0 603.0 1,104.0 1,464.0 3,075.0 4,438.0 7,346.0

IH(8,120) 238.0 518.0 1,248.0 2,990.0 3,745.0 9,005.0 11,296.0 20,530.0

IH(4,15) 569.0 1,530.0 2,964.0 5,434.0 7,199.0 15,119.0 20,916.0 34,997.0

IH(8,15) 984.0 2,183.0 4,911.0 11,547.0 14,353.0 33,275.0 41,462.0 73,130.0

linearized 

profit

heuristic

|FB| = 1 |FB| = 2

runtime 

[mm:ss]

generated 

rotations

|N| = 5 |N| = 10 |N| = 15 |N| = 15 |N| = 20 |N| = 30 |N| = 40 |N| = 52

CGH 61,560.6 70,844.1 111,149.5 275,170.8 291,951.2 310,131.0 460,742.5 481,633.2

IH(4,120) 45,694.7 49,870.6 75,009.4 234,398.1 254,315.1 265,652.4 381,120.7 397,928.6

IH(8,120) 45,694.7 49,870.6 75,009.4 241,648.8 263,503.1 268,862.8 390,756.6 407,882.6

IH(4,15) 58,094.5 64,732.6 104,279.8 273,779.7 291,354.8 305,397.7 448,699.3 472,711.5

IH(8,15) 58,094.5 64,732.6 104,279.8 282,738.9 304,628.6 317,029.3 464,359.0 481,488.6

CGH 00:02 00:04 00:07 00:16 00:34 01:40 03:11 08:33

IH(4,120) 00:01 00:01 00:02 00:04 00:06 00:16 00:32 01:04

IH(8,120) 00:01 00:01 00:04 00:12 00:18 01:12 01:51 05:11

IH(4,15) 00:01 00:04 00:10 00:28 00:42 02:30 04:42 12:31

IH(8,15) 00:02 00:06 00:21 01:27 02:12 11:04 17:26 106:18

CGH 105.0 193.0 352.5 841.0 1,173.5 2,157.0 2,843.5 4,327.0

IH(4,120) 109.0 321.0 603.0 1,104.0 1,464.0 3,075.0 4,438.0 7,346.0

IH(8,120) 238.0 518.0 1,248.0 2,990.0 3,745.0 9,005.0 11,296.0 20,530.0

IH(4,15) 569.0 1,530.0 2,964.0 5,434.0 7,199.0 15,119.0 20,916.0 34,997.0

IH(8,15) 984.0 2,183.0 4,911.0 11,547.0 14,353.0 33,275.0 41,462.0 73,130.0

heuristic

|FB| = 1 |FB| = 2

linearized 

profit

runtime 

[hh:mm:ss]

generated 

rotations



 

 

5.2.3. Comparison of Exact and Heuristic Solution Approaches 

In this subsection, we investigate the performance of the three solution algorithms 

branch-and-price (B&P), CGH and IH when applying the corresponding solution to the 

real, non-linearized revenue functions and analyze how it depends on the number of 

sampling points.  

Table 5: Comparison of the exact B&P approach (rule 2) and the heuristics for different numbers of 

sampling points, averaged over |𝑁|, |𝐹𝐵|, and 𝑞 

 

The table and figures in this section show data averaged over the number of airports 

|𝑁| and fleet bases |𝐹𝐵|. Table 5 shows linearized/non-linearized profit, the lineariza-

tion gap, and runtime for B&P with branching rule 2 and the 5 heuristics with 2 to 10 

sampling points. In addition, it contains the number of feasible solutions found and the 

number of instances with proven optimality for B&P. Values for B&P are only available 

up to |𝑆𝑃| = 5 because of the high runtime. 

approach |SP|=2 |SP|=3 |SP|=4 |SP|=5 |SP|=6 |SP|=7 |SP|=8 |SP|=9 |SP|=10

B&P rule 2 91,985 230,911 250,139 257,898 - - - - -

CGH 91,963 230,911 250,139 257,898 261,431 262,377 263,738 264,854 265,200

IH(4,120) 76,855 189,748 205,999 212,999 216,104 217,281 218,192 218,849 219,142

IH(8,120) 76,930 192,878 210,271 217,904 220,754 222,185 223,137 223,775 224,039

IH(4,15) 89,082 224,674 245,215 252,381 256,198 257,399 258,394 259,388 259,573

IH(8,15) 89,237 227,875 251,886 259,669 263,707 265,077 266,392 267,139 267,439

B&P rule 2 141,964 253,864 257,946 262,585 - - - - -

CGH 141,789 253,864 257,946 262,585 264,464 264,818 265,421 266,094 266,292

IH(4,120) 120,139 206,952 213,004 217,842 218,859 219,403 219,727 220,066 220,094

IH(8,120) 119,521 210,902 218,134 222,611 223,582 224,423 224,514 224,953 225,014

IH(4,15) 139,465 245,830 253,162 257,154 259,141 259,811 259,998 260,645 260,608

IH(8,15) 141,490 250,236 260,693 265,254 266,789 267,636 267,883 268,485 268,481

B&P rule 2 37.94% 9.36% 2.78% 1.74% - - - - -

CGH 37.89% 9.36% 2.78% 1.74% 1.17% 0.80% 0.54% 0.47% 0.39%

IH(4,120) 36.53% 7.92% 3.33% 2.16% 1.26% 0.87% 0.61% 0.51% 0.42%

IH(8,120) 36.25% 8.15% 3.56% 2.07% 1.26% 0.89% 0.55% 0.49% 0.42%

IH(4,15) 38.53% 9.09% 3.00% 1.78% 1.13% 0.81% 0.57% 0.51% 0.39%

IH(8,15) 39.09% 9.41% 3.22% 1.97% 1.14% 0.84% 0.53% 0.53% 0.39%

B&P rule 2 04:26:55 07:30:37 07:30:31 07:30:31 - - - - -

CGH 00:02:23 00:02:19 00:01:46 00:01:48 00:01:59 00:01:47 00:01:38 00:01:55 00:01:47

IH(4,120) 00:00:15 00:00:16 00:00:16 00:00:16 00:00:16 00:00:16 00:00:17 00:00:17 00:00:17

IH(8,120) 00:01:02 00:01:06 00:01:04 00:01:06 00:01:08 00:01:09 00:01:08 00:01:10 00:01:11

IH(4,15) 00:47:38 00:02:46 00:02:49 00:02:39 00:03:55 00:03:33 00:03:24 00:03:27 00:03:56

IH(8,15) 00:58:02 00:12:57 00:15:25 00:17:22 00:12:55 00:11:19 00:11:16 00:12:16 00:11:20

feasible 

solutions 

(avg)

rule 2 1.13 1.00 1.00 1.00 - - - - -

instances 

solved to 

optimality 

(total)

rule 2 11 (16) 6 (16) 6 (16) 6 (16) - - - - -

# sampling points

runtime 

[hh:mm:ss]

linearized

profit

non-

linearized

profit

linearization

gap [%]



 

 

Note that even if an instance was solved to optimality with B&P, the profit based on 

the real, non-linearized revenue functions is not necessarily maximal because the linear-

ized revenue function was optimized. However, the table clearly shows that profit in-

creases if more sampling points are used to better approximate the real non-linear reve-

nue function. At the same time, the runtime of B&P increases considerably as more and 

more instances cannot be solved within the time limit. The heuristics’ runtimes show no 

clear trend and seldom exceed a few minutes. An exception are IH(4, 15) and IH(8, 15) 

for |𝑆𝑃| = 2, where a high average runtime is caused by one instance reaching the time 

limit. 

Figure 4 displays the linearization gap, that is, the difference between the value of the 

piecewise linear objective function of DOISM and the profit obtained when applying 

the corresponding solution to the real, non-linearized revenue functions (20). Note that 

these values cannot be inferred by comparing Table 1 with Table 2 because the figure 

relates the values in each table to the corresponding non-linear revenue (not given here). 

The results are strikingly similar for all algorithms. There is a huge gap of up to 40% 

when using only 2 sampling points, which quickly declines and is close to zero with 5 to 

6 sampling points. Moreover, there is not much variation between the test instances and 

similar results are observed for individual test instances (not shown here).  

 

Figure 4: Effect of the number of sampling points on linearization gap, averaged over |𝑁| and |𝐹𝐵| 

As a complement, Figure 5 displays the profit obtained when applying the algorithms‘ 

solutions with the real, non-linearized revenue functions. All mechanisms have in com-

mon that there is a huge profit increase when moving from 2 to 3 sampling points, but 
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there is almost no further increase beyond 4 or 5 sampling points. Again, all test in-

stances (not shown here) exhibit this behavior. Regarding the heuristics’ performance, 

the figure illustrates the superior performance of CGH, IH(4,15), and IH(8,15) already 

observed in the last subsection. Similar to Subsection 5.2.1, we report data for |𝑆𝑃| ∈

{2, 3, 4, 5} regarding the B&P algorithm, although some instances could not be solved to 

optimality. B&P performs similar to the three best heuristics mentioned above, and even 

slightly worse than IH(8,15) for |𝑆𝑃| ∈ {4, 5}. This is partly due to instances not solved 

to optimality and partly due to the linearized objective function used in the optimization. 

Thus, it seems more important to adequately capture demand’s nonlinearity than to 

solve the problem to optimality. This observation is especially relevant for larger prob-

lem instances where a trade-off between using a heuristic with a good demand approxi-

mation and using an exact approach with only a few sampling points (or even linear 

demand) exists. 

 

Figure 5: Effect of the number of sampling points on profit (non-linearized), averaged over |𝑁| and |𝐹𝐵| 

5.2.4. Scalability of the Heuristics 

In the previous subsections, numerical experiments with real-world data showed that 

the heuristics are scalable from 1 to 2 fleet bases. To investigate this further, we now 

also consider |𝐹𝐵| = 3 fleet bases. In the previous subsections, |𝑁| = 15 airports were 

considered for both |𝐹𝐵| = 1 and |𝐹𝐵| = 2 fleet bases. Thus, we now focus on instanc-

es with |𝑁| = 15. As our base setting obtained from industry (see Section 5.1) contains 

only two fleet bases, we generated a new setting for these tests. More specifically, we 



 

 

used an arbitrary instance with |𝑁| = 15 obtained from the real-world data and modi-

fied it such that a third airport can be meaningfully considered as a fleet base. From this 

setting, we derived a total of 6 new test instances by combining |𝐹𝐵| = {1, 2, 3} fleet 

bases with 𝑞 = {5, 10} aircraft. This allows meaningful comparisons among different 

numbers of fleet bases, however, the values obtained cannot be directly compared with 

our previous results for |𝐹𝐵| = {1, 2} because other test instances were used. 

Table 6 shows the results for |𝑆𝑃| = 2 and |𝑆𝑃| = 5, averaged over 𝑞. Obviously, a 

higher number of possible fleet bases offers more flexibility and more profit is obtained. 

In line with our previous results, IH(4,120) provides the lowest revenue, followed by 

IH(8,120). Regarding the results for the Industry Heuristic, IH(4,15) and IH(8,15) ob-

tain the highest revenues. As in the previous numerical experiments, the Column Gener-

ation Heuristic (CGH) outperforms IH(8,15), obtaining higher revenues in less runtime, 

and generating less rotations. 

Table 6: Effect of the number of fleet bases on the heuristics’ performance (|𝑁| = 15) averaged over 𝑞, 

artificial data 

 

In general, the number of rotations generated is similar to the previous tests. It roughly 

doubles from |𝐹𝐵| = 1 to |𝐹𝐵| = 2 and increases by a factor of about 1.7 from |𝐹𝐵| =

2 to |𝐹𝐵| = 3. This leads to a 2x – 3x runtime for each additional fleet base. Thus, the 

heuristics still provide fast solutions with all runtimes below 5 minutes and many less 

than a minute. 

|FB| = 1 |FB| = 2 |FB| = 3 |FB| = 1 |FB| = 2 |FB| = 3

CGH 43,337.5 72,995.7 123,356.1 119,266.2 251,775.5 495,572.0

IH(4, 120) 30,173.5 50,040.8 96,075.7 70,530.8 182,675.8 404,247.1

IH(8, 120) 30,173.5 50,946.5 97,682.5 78,081.7 198,761.8 416,171.2

IH(4, 15) 40,526.0 67,493.9 120,544.3 113,731.7 244,074.6 492,631.3

IH(8, 15) 40,526.0 67,596.0 120,544.3 113,731.7 244,074.6 492,631.3

CGH 00:07 00:14 00:26 00:11 00:19 01:02

IH(4, 120) 00:02 00:05 00:08 00:03 00:05 00:09

IH(8, 120) 00:05 00:12 00:31 00:05 00:14 00:30

IH(4, 15) 00:11 00:30 01:08 00:12 00:33 01:35

IH(8, 15) 00:22 01:21 04:25 00:25 01:30 04:29

CGH 316.0 613.0 922.5 415.5 874.0 1,451.5

IH(4, 120) 728.0 1,331.0 2,104.0 728.0 1,331.0 2,104.0

IH(8, 120) 1,502.0 3,193.0 5,972.0 1,502.0 3,193.0 5,972.0

IH(4, 15) 3,349.0 6,333.0 10,337.0 3,349.0 6,333.0 10,337.0

IH(8, 15) 5,428.0 11,920.0 22,818.0 5,428.0 11,920.0 22,818.0

|SP| = 5

heuristic

|SP| = 2

linearized 

profit

runtime 

[mm:ss]

generated 

rotations



 

 

6 Conclusion 

In this paper, we presented a novel model which integrates scheduling and mainte-

nance routing for point-to-point airlines that dispose of a homogeneous fleet. Particular 

attention is paid to demand modeling. For each departure and arrival airport pair, we 

consider demand from multiple customer segments, which may require certain time 

windows for their outgoing as well as return flights. Moreover, not least due to the in-

dustry standard revenue management systems in place today, marginal revenues decline 

in the number of seats available for a customer segment. The resulting nonlinear total 

revenue function is captured by a piecewise linear approximation.  

Three solution approaches are developed to solve the model. Our exact branch-and-

price based procedure generates necessary rotations online, during the branching pro-

cess, seeking integer solutions. By contrast, two heuristics generate some rotations of-

fline in advance and then use a standard mixed integer linear programming solver 

(CPLEX) to obtain integer solutions. The first heuristic, CGH, is based on the branch-

and-price procedure but uses column generation to solve the LP relaxation only in the 

root node to obtain a set of rotations. The second heuristic, IH, augments a standard 

approach in industry where airlines often consider a few ‘intuitive’ or ‘desirable’ types 

of rotations. 

The numerical experiments with real-world data from a major European point-to-point 

airline document that the branch-and-price approach can solve problem instances with 

up to 15 airports and 10 aircraft to optimality in a reasonable amount of time. For larger 

problem instances, the heuristics can be used. Here, CGH clearly outperforms the other 

heuristics. Its revenue is comparable to that of IH’s best variants, but its runtime is only 

a fraction. The comparison with the results from our branch-and-price approach shows 

that it always yields near-optimal solutions and often even finds an optimal solution. 

Moreover, the experiments have shown that the quality of the revenue function approx-

imation is crucial, much more important than the solution approach. It is more important 

to adequately capture demand’s nonlinearity than to solve the problem to optimality. 

We observed considerable revenue losses when too few sampling points were used, 

especially when we mimicked approaches with linear revenue functions with only two 

sampling points.  
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