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Abstract 

Pokharel and Liang [2012. A model to evaluate acquisition price and quantity of used products for remanufactur-

ing. International Journal of Production Economics 138, 170–176] considered a consolidation center that buys 

used products of different quality levels and sells them together with spare parts to a remanufacturer. The consol-

idation center’s decision problem is to determine the acquisition price to offer for used products and the quanti-

ties of spare parts to buy. In this paper, comments on their work are given. It is shown that following Pokharel 

and Liang’s original assumptions, the problem has a trivial solution. We then consider an alternative assumption 

where supply is uniform and depends on the acquisition price. For this setting, an efficient solution algorithm 

and numerical examples are provided. In a second model, additional assumptions are relaxed, allowing the con-

solidation center more flexibility. As expected, this further decreases cost. 
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A note on a model to evaluate acquisition price  

and quantity of used products for remanufacturing 

1 Introduction  

In recent years, remanufacturing has become increasingly popular for ecological as well as 

economic reasons. The remanufacturing process starts with the reclamation of used products, 

often called “cores”. They are then disassembled, cleaned and inspected. Depending on the 

quality of the cores, some spare parts may be added and, finally, they are reassembled to some 

sort of “as good as new” products. In this context, Pokharel and Liang (2012) consider a con-

solidation center that buys used products from collection centers (which obtained them from 

customers), combines them with appropriate spare parts corresponding to their quality level 

and sells both to a remanufacturer. Given a fixed order quantity from the remanufacturer that 

must be fulfilled and stochastic returns of used products, Pokharel and Liang (2012) propose a 

model to determine optimal acquisition prices and quantities for the different quality levels. 

More specifically, they do not decide on the quantity of used products actually bought, but on 

the planned quantity that equals the number of corresponding spare parts that must be bought 

in advance before the realization of supply. Moreover, the planned quantities (total number of 

spare parts) must sum up to the given order size. For reasons of business continuity, every-

thing offered by the collection centers is actually bought. 

This paper is organized as follows. In Section 2, comments on the work of Pokharel and 

Liang (2012) are given. We strictly adhere to Pokharel and Liang’s assumptions and identify 

several shortcomings of their paper. To do so, in Subsection 2.1, we carve out a main assump-

tion that is not explicitly stated in Pokharel and Liang (2012): Despite being a decision varia-

ble in their model, the acquisition price does not influence supply. The amount and quality of 

cores obtained by the consolidation center is independent of the acquisition price. Thus, the 

only cost-minimizing solution is obviously the lowest acquisition price possible. However, 

Pokharel and Liang (2012) do not obtain this trivial solution because of a sign error in their 

analysis of the KKT-conditions, as we show in Subsection 2.2. From our point of view, the 

existence of the trivial solution renders any further analysis of the problem as given by 

Pokharel and Liang’s assumptions superfluous. For the sake of completeness, we discuss in 

Subsection 2.3 why the numerical solution procedure developed and used in the remainder of 

Pokharel and Liang (2012) is highly questionable and does not even get close to the optimal 

solution in the instances considered.  
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In Section 3, we present our first model. It is obtained by correcting the key assumption. We 

now assume that supply depends on the acquisition price offered by the consolidation center. 

Albeit also other assumptions could be questioned, we think this is the smallest change neces-

sary to arrive at a reasonable problem. Moreover, it ensures analytical tractability. To improve 

readability, we state the complete problem formulation in Subsection 3.1 and also briefly mo-

tivate our choice of the price-dependent supply function. In Subsection 3.2, we derive the 

KKT conditions from the corresponding optimization problem and show that the trivial solu-

tion is now no longer necessarily optimal. A solution algorithm is developed in Subsection 3.3 

and applied to numerical examples in Subsection 3.4.  

In Section 4, a second model is presented. Here, we additionally relax three questionable as-

sumptions from Pokharel and Liang (2012). First, the consolidation center is no longer re-

quired to buy all cores offered to him. Second, we now assume that the quality levels are nest-

ed in the sense that the spare parts necessary for a low-quality core are also sufficient for a 

higher-quality core. Third, the total number of spare parts bought is no longer required to 

equal the given order size, for example allowing the consolidation center to buy more spare 

parts to hedge against supply uncertainty. 

We conclude in Section 4. 

2 Comments 

2.1 Dependence of used product supply on acquisition price 

Pokharel and Liang (2012) never explicitly state how the supply of used products depends on 

the acquisition price. Their model assumptions only state that “used product supply at quality 

level n , nS , is stochastic […]” (P&L Assumption 1), “Used product supply quantity at quality 

level n  follows a probability density function  nf S  with known mean n  and standard de-

viation n ” (P&L Assumption 2) and that the acquisition price must be in the range between 

the salvage value 0r  and the per unit underage penalty cost 0P  minus the cost of the corre-

sponding spare parts nb  (P&L Assumption 5: 0 0n nr p P b   ).  

Comment. By comparing equations (P&L 5) and (P&L 6) we note that the derivative of n nS p  

with respect to np  is obviously nS  (see P&L 6). There is no dependence of the returned quan-

tity nS  on the acquisition price np : nS  is not a function of np . Given that the acquired quanti-

ty of used products does not depend on the acquisition price, one would intuitively expect the 

lowest possible price to minimize cost. More formally, the objective function stated in Section 

2.2 is linear in the prices np  and increasing. As it is minimized, the smallest possible values 
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are optimal. However, in the two remarks in their Section 3.3, Pokharel and Liang analytically 

show that the optimal price np  does not equal the lower or upper bound. They consider this 

result intuitive because they seem to be not aware of the fact that their model technically does 

not include any influence of prices on supply. 

Moreover, from equations (P&L 3) and (P&L 4) and later elaborations, it is obvious that the 

inequality in P&L Assumption 5 is not meant in the strict sense, that is, it should read 

0 0n nr p P b   . 

2.2 Analysis of the KKT conditions 

In the following, we first briefly restate the authors’ analytical investigation. Then, comments 

are given. It is shown that the authors’ counterintuitive result is caused mainly by a sign error 

when applying KKT-conditions. 

The starting point for their elaborations is “the cost function, C , for total acquisition [cost] by 

the consolidation center” (Pokharel and Liang 2012, Section 3.3) 
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where the first three elements are costs for acquisition of used products, spare parts and un-

derage quantities, respectively, and the fourth is the salvage value obtained from an overage 

quantity. To obtain the optimal acquisition price np  and planned acquisition quantity nq  for 

each quality level n , (P&L 1) is minimized subject to the following constraints: 
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 0n np P b   1n ,...,K    (P&L 4) 

These constraints ensure that the sum of the planned acquisition quantities over all quality 

levels equals the order quantity from the remanufacturer and that the acquisition price is in the 

range mentioned above. Using (P&L 1–4), the authors derive the Lagrangian 
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where  , n , and n  are the Lagrange multipliers associated with the total quantity of used 

products as well as the lower and upper bounds on the acquisition price, respectively. From 
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the Lagrangian, the following KKT first order conditions are derived using  nF q  to denote 

the cumulative probability density function of nS : 
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 0 0nr p  , 0n  ,  0 0n nr p       (P&L 9) 

 0 0n np b P   , 0n  ,  0 0n nn p b P       (P&L 10) 

Using these conditions, the authors now show in two remarks that optimal prices np  cannot 

be equal to the lower bound, but may be equal to the upper bound. 

 “If 0np r  and 0n np P b  , then 0n   [(P&L 9)] and 0n   [… (P&L 10)]. Other-

wise, it will give 0nS   or strictly 0nS   [… (P&L 6)]”. They conclude that offering the 

lowest price is not optimal. 

 “If, 0np r  and 0n np P b   then 0n   [… (P&L 9)] and 0n   [… by (P&L 10)]. 

Then from [… (P&L 6)], n nS  , […].” The authors conclude that offering the highest 

possible price can be optimal. This is described as intuitive because “such a high price can 

attract the return of more used products”. 

Comment. Given the stochastic environment and the last two terms, equation (P&L 1) is ob-

viously meant to represent expected cost. Thus, to be formally precise, the first element 

should be  n n n nS p pE . Correcting for obvious typos such as the omitted last sum, the 

Lagrangian is given by 
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 (P&L 5new) 

with  1 Kp ,..., pp  and  1 Kq ,...,qq  as well as the Lagrange multipliers  1 K,..., α , 

 1 K,..., β  and   associated with the lower and upper bounds on the acquisition price and 

the total quantity of used products, respectively. From (P&L 5new), the following KKT nec-

essary conditions are obtained (see e.g. Taha 2007, Chapter 18.2.2):  
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 0 0nr p  , 0n  ,  0 0n nr p     1n ,...,K   (P&L 9new) 

 0 0n np b P   , 0n  ,  0 0n nn p b P     1n ,...,K   (P&L 10new) 

The main difference to conditions (P&L 6–10) is the sign of the Lagrange multipliers: Condi-

tions (P&L 9new) and (P&L 10new) now require n  and n  to be non-positive. This is obvi-

ously caused by accounting for the minimization and the inequality constraints. Using the 

corrected conditions, we obtain exactly the opposite results regarding prices equaling the up-

per and lower bound (assuming the bounds are not equal). Optimal prices now cannot equal 

the upper bound or any value between the bounds with a positive acquisition quantity, but can 

equal the lower bound. 

 If 0n np P b   it follows that 0np r  and, thus, 0n   (P&L 9new) and 0n   (P&L 

10new). From (P&L 6new), 0n   is obtained, which is a contradiction for reasonable 

values of n . Thus, offering prices equal to their upper bound is not optimal. 

 Moreover, if 0np r  and 0n np P b  , it follows that 0n   (P&L 9new) and 0n   

(P&L 10new). From (P&L 6new), 0n   is obtained. Thus, offering prices strictly great-

er than the lower bound cannot be optimal.  

 If 0np r  for some quality level n , it follows that 0n np P b   and, thus, 0n   (P&L 

9new) and 0n   (P&L 10new). From (P&L 6new), 0n   is obtained. Thus, only of-

fering the lowest prices is optimal. Thus, we analytically showed that the optimal prices 

equal the lower bound and confirmed the trivial and intuitive solution. 

The authors do not discuss sufficiency of the KKT conditions. With reasonable assumptions 

( 0n n    and 0 0r P , see P&L Assumption 5) it is easy to see that the objective function is 

convex. As all constraints are linear, the necessary KKT conditions are also sufficient. 

2.3 Solution heuristic 

After the two remarks, the authors essentially state that the optimal acquisition quantity nq  is 

obtained from (P&L 7) and (P&L 8) and an additional equation that reflects that “the critical 

probabilities for such optimal quantity balance at a point where the expected profit is equal to 

the expected loss for all used products”: 

       01n n n n nF q P p F q p r        (P&L 16) 
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The authors state that the left hand side is “the unit expected profit by selling one more used 

product” and the right hand side is “the unit expected loss of one more unsold used product.” 

Subsequently, they present an iterative algorithm that searches for nq  that simultaneously 

satisfy (P&L 7) and (P&L 8). Finally, np  are calculated using (P&L 16).  

Comment. Given the existence of the trivial solution shown in the preceding section, any 

further analysis as done in the remainder of Pokharel and Liang (2012) – the second part of 

P&L Section 3.3, Section 3.4, and Section 4 – is actually superfluous. However, we wondered 

why the solution algorithm presented in Section 3.3 does not even get close to the trivial op-

timal solution in Section 4. 

Regarding (P&L 16), note that balancing expected loss and additional profits associated with 

increasing a decision variable is broadly applied. For example, this concept is the basis for the 

well-known Littlewood’s rule (see Littlewood 1972) that has heavily influenced revenue 

management. However, it remains unclear what the LHS and RHS of (P&L 16) exactly repre-

sent and the explanations signal that not all relevant values are considered. 

As a used product supplied and bought by the consolidation center can only be sold to the 

manufacturer if an adequate spare part was bought, the acquisition quantity nq  and, thus, the 

number of spare parts to buy should be the relevant decision variable here. The two cases to 

distinguish are now as follows: 

 An additional spare part (the -thnq ) is bought and a cost of nb  for the spare part is in-

curred. With probability  1nF q  , it is not used because supply is insufficient. In this 

case, an underage cost of 0P  is incurred. With probability  1 1nF q  , supply is suffi-

cient, np  is paid and no underage cost is incurred (for the -thnq  core).  

 The -thnq  spare part is not bought. In this case, the underage cost 0P  is always incurred, 

but with probability  1 1nF q  , supply is at least nq , np  is paid and the -thnq  core 

can be salvaged for 0r . 

Putting this together, we obtain     01 1 1n n n nb F q P F q p         

    0 01 1n nP F q p r      which simplifies to 

     0 01 1n nb F q P r     .    (P&L 16new) 

This equation is now very similar to Littlewood’s rule and can be readily interpreted. Buying 

an additional spare part costs nb  and, if supply is high enough, saves 0 0P r  because the con-

solidation center does not have to pay the underage cost but at the same time cannot obtain the 

salvage value. From (P&L 16new), it becomes clear that the optimal quantities do not depend 

on the acquisition price, if  nF q  is independent of the price. Thus, (P&L 16new) can be 
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transparently derived and has a clear interpretation, whereas no justification for (P&L 16) can 

be found. 

3 A first model with uniform supply distribution 

In this section, we present a model that closely follows the assumptions of Pokharel and Liang 

(2012) but assumes that although supply is stochastic, the collection centers tend to collect 

more used products if the acquisition price offered to them is higher. In Section 4, we will 

additionally change other questionable assumptions. To improve readability, the following 

Subsection 3.1 briefly states all assumptions, including those identical to Pokharel and Liang 

(2012). In Subsection 3.2, the model formulation is given and sufficient conditions for an op-

timal solution are derived. In Subsection 3.3, an iterative algorithm to solve the model is pre-

sented. Subsection 3.4 presents a numerical example based on the data given by Pokharel and 

Liang (2012). The notation used throughout this section is summarized in Table 1. 

3.1 Problem statement 

In this subsection, we completely restate the problem to improve readability. This enables us 

to concisely define the relevant parameters. We also motivate our deviation in one key as-

sumption from Pokharel and Liang (2012), namely the dependence of supply on acquisition 

price. 

We consider a consolidation center that has already contractually agreed to supply d  units of 

cores to a remanufacturer. Thus, for the decision problem considered here, the price that the 

consolidation center obtains from the remanufacturer is irrelevant and d  is given. There are 

K  quality levels, and cores of each quality level  1n ,...,K  are shipped together with spe-

cific spare parts to the remanufacturer. The cores are bought at an acquisition price np  from 

collection centers that provide a stochastic supply denoted by the random variable nS . Before 

knowing the realization of supply, the consolidation center has to partition the remanufactur-

er’s total order size d  into the planned acquisition quantities nq  for each quality level and 

buys the required spare parts at a per unit price of nb . If the collection center cannot provide 

the required quantity d  because supply falls short of nq  for some quality levels, a per unit 

penalty cost of 0P  is incurred. This cost 0P  depends on the contract with the remanufacturer. 

It may just capture lost sales and equal the selling price, but it can additionally include a con-

tractual penalty or reflect a loss of goodwill. On the other hand, if supply nS  exceeds nq , the 

consolidation center nonetheless buys the whole amount provided to facilitate the business of 

the collection centers and disposes of the superfluous quantity n nS q  at a salvage value of 

0r . It is assumed that if the acquisition price was below 0r , the collection centers would sal-
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vage the used products themselves. Thus, the acquisition price np  for quality level n  must 

obviously satisfy 0 0n nr p P b   . Only a single period without any inventories, technology 

improvements, etc. is considered.   

Table 1: Notation and indices 
 

1,...,n K : quality level 

np : acquisition price  

nq : planned acquisition quantity 

nb : cost of required spare parts 

d : fixed order size of the remanufacturer 

0P : penalty payment for shortages, cost for lost 
sales (per unit) 

0r : salvage value of surplus units of used products 

( , )C p q : total cost of the consolidation center 

nS : used product supply (random variable) 

 , nn p nf S : pdf of nS  

nl : scaling parameter 

n : expected value of nS  

n : standard deviation of nS  

, , α β : Lagrange multipliers 

 L , , , ,p q α β : Lagrange function 

 

 

In addition to these assumptions from Pokharel and Liang (2012), we now assume that sto-

chastic supply nS  depends on the acquisition price np . With higher acquisition prices, the 

collection centers increase their effort and tend to collect more used products.  

That acquisition prices can be used to control returns is not only intuitive, but also a wide-

spread assumption in the current literature (see Gönsch 2014 and the references cited therein). 

For example, Bulmus et al. (2014) use it to analyze competition for used products and Cai et 

al. (2014) to study acquisition and production planning for a joint manufacturing and remanu-

facturing system. Xiong et al. (2014) investigate dynamic pricing for used products with lost 

sales and uncertain quality. Gönsch (2014) considers negotiations to acquire used products 

and contains references to various prior studies and surveys. Although these studies do not 

consider the unique multi-stage setting with collection and consolidation centers of Pokharel 

and Liang (2012), we think that this basic economic principle can also be applied here. With a 

higher acquisition price, the collection centers increase their efforts, or, in line with the 

abovementioned literature, simply offer a higher price to the customers, leading to an increase 

in the supply of used products. 

Analogously to Gönsch (2014) and the references cited therein, we assume that customers’ 

valuations for their used products are heterogeneous and the amount of used products returned 

to the collection centers is stochastic. Moreover, as discussed above, we assume that a higher 

acquisition price leads to an increase in supply. Accordingly, and to improve tractability, we 

assume that supply for the consolidation center is zero if the price equals the salvage value 
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and is uniformly distributed in the interval  00 n n,l p r    for 0np r , where nl  is a scaling 

parameter. The corresponding pdf (for 0np r ) is then given by 

    
 0

0

1
0

0
n

n n n

n nn,p n

if S l p r
l p rf S

otherwise


  

 



   (1) 

The consolidation center’s decision problem now is to determine the optimal acquisition pric-

es  1 Kp ,..., pp  and planned acquisition quantities  1 Kq ,...,qq  that minimize expected 

cost given the fixed order size d , the cost parameters  1 Kb ,...,bb , 0r , and 0P  as well as the 

scaling parameters  1 Kl ,...,ll . 

3.2 Model formulation 

Using this notation, the decision problem is formally given by 

 

         
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0 0 0
0
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2 n n
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K q l p r
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p r b q P q S f S dS r S q f S dS
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p q
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subject to 

 
1

K

n

n

q d


     (3) 

 0np r  1n ,...,K    (4) 

 0n np P b   1n ,...,K .   (5) 

The objective function (2) calculates expected cost and is a sum over all quality levels. For 

each quality level n , the first term represents the expected payments to the collection centers, 

the second term is the cost for spare parts, the third term is the penalty cost incurred when the 

supplied quantity is too low and the fourth term refers to the revenue from salvaging surplus 

supply. Constraint (3) ensures that the planned quantities nq
 
are a partition of the order size 

d . Constraints (4) and (5) reflect the lower and upper bound for the acquisition prices np , 

respectively. 

Remark. To be formally precise, we must use limits to account for the pdf used being valid 

only for 0np r . As this would become superfluous again through rearrangements in Subsec-

tion 3.3, we neglect this to improve readability. Moreover, we need to include a constraint 

ensuring non-negativity of nq . However, as the unconstrained problem’s solution has 

nonnegative values for nq  for realistic parameter values, we neglect this constraint to render 
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the presentation clearer. For completeness, a model including this constraint is briefly consid-

ered in Appendix A. 

For model (2) – (5), the Lagrangian is given by (see e.g. Taha 2007, Chapter 18.2.2) 

 

         
 

   

0

0 0 0
0

1

0 0

1 1

2

n n

n
n n

K q l p r
n n

n n n n n n n n n n n
q

n

K K

n n n n n n

n n

n,p n,p

L , , , ,

p l
p r b q P q S f S dS r S q f S dS

q d r p p b P



  





 

 
       

 

 
          

 

  

 

p q α β

 (6) 

with  1 Kp ,..., pp  and  1 Kq ,...,qq  as well as the Lagrange multipliers  1 K,..., α , 

 1 K,..., β  and   associated with the lower and upper bound constraints on the acquisi-

tion price and the total quantity of used products, respectively. From (6), the following KKT 

necessary conditions are obtained:  

  
 

 

2

0 0

0 2

0

0
2

n

n n

n n n

q P rL
l p r

p l p r
 


     

 
 1n ,...,K   (7) 

 
 

 
0 0

0

0

0
n

n

n n n

q P rL
b r

q l p r



    

 
  1n ,...,K   (8) 

 
1

K

n

n

q d


 ,  , 
1

0
K

n

n

q d


 
  

 
      (9) 

 0 0nr p  , 0n  ,  0 0n nr p     1n ,...,K   (10) 

 0 0n np b P   , 0n  ,  0 0n nn p b P     1n ,...,K   (11) 

In Appendix B, we show that these necessary conditions are also sufficient. Now, the simple 

analysis from Section 2.2 showing that the optimal price is equal the lower bound is no longer 

possible. 

3.3 Solution algorithm 

Unfortunately, Equations (7)–(11) are difficult to solve analytically. Therefore, we present an 

iterative algorithm here. Please note that the algorithm itself is completely different from 

Pokharel and Liang’s, although the overall structure shows some similarities at first glance. 

We now solve equations (7) and (8) simultaneously for np  and nq . First, we neglect (10) and 

(11) and denote the resulting price by np' : 

 
 

 

2

0

0

0 02

n

n

b r
p r

P r

  
  


  1n ,...,K   (12‘) 

Considering (10) and (11), we obtain 
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 

 

2

0

0

0 02

n

n

n

b r
p r

l P r

   
  


  1n ,...,K   (12) 

Comparing (12’) and (12) it is obviously necessary to choose the Lagrange multipliers as fol-

lows to take Equations (10) and (11) into account: 

   0min 0n n n,l p r     1n ,...,K   (13) 

and 

   0min 0n n n n,l P b p      1n ,...,K   (14) 

For nq , we obtain  

 
   0 0

0 0

n n n

n

b r l p r
q

P r

   



  1n ,...,K .  (15) 

As np  is nondecreasing in   and nq  increases in   and np  (for reasonable values of  , oth-

erwise see Appendix A for 0nq  ), both np  and nq  are nondecreasing in  . Thus, it is easy 

to find a   such that Equation  (9) is holds. We only briefly outline the procedure. 

Algorithm 1: Determining the solution of (7)–(11) 

1. Start with an arbitrary value  0n
n

max b r   . 

2. Calculate all np  using (12’). 

3. Calculate all n  and n  using (13) and (14). 

4. Calculate all np  using (12). 

5. Calculate all nq  using (15). 

6. If 
1

K

n

n

q d


 : break 

elseif 
1

K

n

n

q d


 : increase   and go to Step 2 

else: decrease   and go to Step 2 

3.4 Numerical example 

We illustrate the algorithm with three examples based on data given by Pokharel and Liang 

(2012), assuming a product with 6K   quality levels. The salvage value is 0 $10r   and the 

penalty payment is 0 $100P  . The data for  1 6b ,...,bb  and  1 6l ,...,ll  is given together 

with the resulting minimum value for   (see Step 1 of the algorithm) in Table 2. For the 

equality check in Step 6, a precision of 0.01 is used.  
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Table 2: Data used for numerical study 

Quality 

level n  

Cost of spare parts 

nb  [$] 

Scaling parameter 

nl  [Units/$] 0nb r  

1 10 54 20 

2 15 42 25 

3 20 58 30 

4 25 116 35 

5 30 100 40 

6 35 353 45 

In the first scenario, the consolidation center is contractually obliged to deliver 2 000d ,  

units. The optimal solution is at 72 019* .   with a total cost of $124,090. Data related to the 

6 quality levels given in Table 3. As the prices are not equal to their lower or upper bounds, 

* *= =α β 0 . 

Table 3: Prices 
np  and planned quantities 

nq  with resulting distribution of supply  

(first scenario: 2 000d , ) 

Quality 

level n  

Price 

np  [$] 

Quantity 

nq  [Units] 

Expected 

value 
n  

Standard 

deviation 
n  

1 25.03 469.21 405.90 8.22 

2 22.28 269.50 257.92 6.56 

3 19.81 265.61 284.46 6.89 

4 17.61 363.26 441.57 8.58 

5 15.70 202.63 284.78 6.89 

6 14.06 429.80 715.83 10.92 

To further illustrate the model, we additionally consider a second scenario with a smaller 

agreed order size of only 1 000d ,  units. This scenario reflects the idea behind the second 

scenario considered by Pokharel and Liang (2012), but the change of the order size allows us 

to save space and reuse all other data previously given. The optimal solution now is at 

64 126* .   with a cost of $55,697. Data related to the 6 quality levels is given in Table 4 

and again * *= =α β 0 . 

Table 4: Prices 
np  and planned quantities 

nq  with resulting distribution of supply  

(second scenario: 1 000d , ) 

Quality 

level n  

Price 

np  [$] 

Quantity 

nq  [Units] 

Expected 

value 
n  

Standard 

deviation 
n  

1 20.82 286.39 292.06 6.98 

2 18.50 155.28 178.60 5.46 

3 16.47 142.28 187.62 5.59 

4 14.71 176.92 273.34 6.75 

5 13.23 86.68 161.68 5.19 

6 12.03 152.45 358.68 7.73 

An analysis of the cost components (not given here) shows for the two examples that roughly 

30% is due to underage costs, and that underage costs are often only slightly higher than costs 
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for spare parts. Moreover, most of the time when underage costs occur, the bottleneck is not 

the overall supply quantity, but a mismatch between cores and spare parts in some quality 

levels. Thus, the consolidation center can probably reduce cost by buying more spare parts 

(although some might definitely remain unused) or by – alternatively – using the same spare 

parts for different quality levels. We investigate these issues in the following section. 

4 A second model with relaxed assumptions 

In this section, we additionally relax three questionable assumptions from Pokharel and Liang 

(2012). In Subsection 4.1, the corresponding model formulation is given. In Subsection 4.2, 

we revisit the examples from Section 3.4 and show that with the relaxed assumptions, the firm 

can operate at a considerably lower cost. We reuse most of the notation from Section 3, how-

ever, some new notation is necessary and summarized in Table 5. 

4.1 Model formulation 

The assumptions changed are as follows. First, the consolidation center is no longer required 

to buy all cores offered. Second, we now assume that the quality levels are nested in the sense 

that the spare parts necessary for a low-quality core are also sufficient for a higher-quality 

core. In line with the numerical examples in Section 3, we define that lower indices n  denote 

higher quality. Third, the total number of spare parts bought is no longer required to equal the 

given order size, for example allowing the consolidation center to buy more spare parts to 

hedge against supply uncertainty. 

Table 5: Additional notation introduced in Section 4 
 

nt : quantity of spare parts bought  

 , ,nQ dS t : quantity of cores acquired 

 ,C p t : total cost of the consolidation center 

 

In our second model, the consolidation center decides on the acquisition prices np  and the 

number of spare parts to buy nt . We use the new notation nt  here to distinguish it from the 

planned acquisition quantity nq  of Section 3. The quantity of cores acquired  , ,nQ dS t  is 

formally no decision variable. Instead, this second stage decision is directly calculated by 

      
1 1

K K

n' n' n'

n'

n

' n

n

n

n

n

t Q , ,dQ , ,d min S , , Qt d , ,d
   

 
 

  
 

 S tt S t S  1n ,...,K (16) 

Equation (16) is based on the nesting of the quality levels. Thus, a high-quality core is at least 

as valuable as a lower-quality core to the consolidation center, because if there are spare parts 
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for the lower-quality one, then they can also be used for the high-quality core. It follows that 

the consolidation center will never offer more for a lower quality core, that is 'n np p  for 

'n n  (for reasonable supply functions). Having this in mind, the consolidation center obvi-

ously buys as much low-quality cores as possible, given a realization of supply S , available 

spare parts t  and the order size d . The number of cores  , ,KQ dS t  acquired in the lowest-

quality level, K , can be directly computed by (16) as the sums contain no elements and, thus, 

there is no recursion. It is the minimum of three terms: the number of cores supplied KS , the 

number of spare parts available Kt , and the order size d . Regarding a higher quality level n , 

the structure remains the same. The number of cores acquired cannot exceed supply nS , spare 

parts available and demand. However, regarding the spare parts available, spare parts bought 

for lower quality levels 'n n  but still unused have to be added. Similarly, the order size is 

reduced by the number of (cheaper) cores already acquired. 

Using  , ,nQ dS t , the decision problem is formally given by 

 

 

   
 

 
 1 1 0 0

0 10 0
1 1

l l

,

min ,

, , , ,
K K

n

K K
K

n n n n n

p r p r

n p nn
n n

C

Q d p b t P d Q d f S d


 

    
       

  
   

p t

S t S t S
 (17) 

subject to 

 0np r  1n ,...,K    (18) 

 0nt   1n ,...,K .   (19) 

The objective function (17) calculates expected cost. For a given realization of supply S , the 

first sum represents payments to the collection centers and cost for spare parts. The second 

term is the penalty cost incurred when number of cores bought and combined with spare parts 

falls short of the order size. Constraint (18) is a lower bound on np  necessary for our supply 

distribution and constraint (19) ensures nonnegativity of nt . 

Compared to model (2)–(5), model (17)–(19) is unfortunately less analytically tractable be-

cause the quality levels cannot be considered independently. As is obvious from the definition 

of  , ,nQ dS t , the number of spare parts of quality level n  to buy depends on all lower quali-

ty levels 'n n . Thus, the integral over the joint distribution is needed to calculate the expec-

tation. 
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4.2 Numerical example 

In the following, we reconsider the two examples from Section 3.4 and solve them with mod-

el (17)–(19). As no analytical solution is possible, we use a numerical approach. The model 

was implemented in Matlab R2014b, the integral numerically approximated and the minimi-

zation was performed by the metaheuristic patternsearch from the Global Optimization 

Toolbox. 

In the first scenario, the consolidation center is contractually obliged to deliver 2 000d ,  

units. The solution now has a total cost of only $99,302. Data related to the 6 quality levels 

given in Table 6.  

Compared to the more restrictive model of Section 3, higher prices are offered and more spare 

parts for lower quality cores (levels 3 to 6) are bought. Both is intuitive, higher prices increase 

supply and hurt less as no longer all cores supplied must be bought. Buying relatively more 

spare parts for lower quality cores makes the consolidation center more flexible, as they can 

also be used for higher quality cores. Interestingly, at least with the given prices, the consoli-

dation center still buys exactly 2,000 spare parts. Apparently, it is better to substitute a cheap 

spare part with a more versatile one than to buy additional cheap ones. Exploiting the addi-

tional flexibility, the consolidation center decreases cost by 20%. Now, only about 7% of the 

cost is for underage (compared to 30% in Section 3) and about 52% and 41% is for spare parts 

and the acquisition of cores, respectively. 

Table 6: Prices 
np  and spare parts bought 

nt  with resulting distribution of supply  

(first scenario: 2 000d , ) 

Quality 

level n  

Price 

np  [$] 

Spare parts 

nt  [Units] 

1 32.20 102.25 

2 26.64 270.00 

3 22.05 283.75 

4 19.47 413.00 

5 19.99 302.00 

6 14.25 629.00 

In the second scenario the agreed order size is only 1 000d ,  units. The optimal solution now 

has a cost of $43,653, which is 22% less than before. Data related to the 6 quality levels is 

given in Table 7. 

Compared to Section 3, the consolidation center again offers higher prices and buys more 

spare parts for lower quality cores (levels 3 to 6) to hedge against supply uncertainty. Total 

cost consists of about 6% for underage, 54% for spare parts and 40% for cores. Again, the 

total number of cores bought equals the order size. 
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Table 7: Prices 
np  and spare parts bought 

nt with resulting distribution of supply  

(second scenario: 1 000d , ) 

Quality 

level n  

Price 

np  [$] 

Spare parts 

nt  [Units] 

1 24.80 88.97 

2 20.69 155.03 

3 20.33 192.00 

4 16.46 301.00 

5 13.49 111.00 

6 11.84 152.00 

5 Conclusion 

In this paper, we identified several shortcomings in Pokharel and Liang (2012) and corrected 

them in two ways. First, sticking to their original assumptions, it was shown that the problem 

only has a trivial solution. The solution algorithm given is highly questionable, because it has 

no justification and it fails to identify this solution. We then reasonably modified a key as-

sumption and allowed supply to depend on the acquisition price. For this first model, a new 

solution algorithm was given and illustrated using numerical examples. Of course, several of 

the assumptions we kept could also be challenged. Thus, we presented a second model with-

out these assumptions. In this model, the consolidation center can freely choose the number of 

spare parts bought, buys only as many cores as needed, and can use spare parts for lower qual-

ity cores for high quality cores instead. In our examples, these additional flexibilities reduce 

cost by about 20%.  

Future work could consider further relaxing the remaining assumptions. For example, the 

nesting structure for the relation between cores and spare parts of different quality levels is 

still restrictive. Non-ordered quality levels (e.g. either part A, or B, or both of a core may be 

broken) could be considered. However, this might necessitate solving a linear program instead 

of the recursive formulation used in this work and, thus, further complicate the calculation of 

the number of cores acquired. Another possible extension is to internalize the decisions on d  

and the selling price of the consolidation center to the remanufacturer. 
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Appendix 

A. Ensuring non-negativity of q 

In this appendix, we consider the case that the problem unconstrained with regard to nq  may 

have an optimal solution with 0nq  . Therefore, we include the constraint 

 0nq     1n ,...,K .  (A.1) 

For model (2)–(5) with (A.1), the Lagrangian is given by 
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p q α β

 (A.2) 

with the new Lagrange multipliers  1 K,..., γ  associated with the new lower bound (A.1) 

for nq . Using (A.2), the second KKT necessary condition (8) slightly changes and we obtain 

new necessary conditions:  
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0

0

0
n

n n

n n n

q P rL
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q l p r
 


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 
  1n ,...,K   (A.3) 

 0nq  , 0n  , 0n nq    1n ,...,K .  (A.4) 

With condition (A.1), the simultaneous solutions of equations (7) and (8) for np  and nq  now 

depend on n : 
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  1n ,...,K   (A.5) 

 
   0 0

0 0

n n n n

n

b r l p r
q

P r

    



  1n ,...,K .  (A.6) 

Given (A.5) and (A.6), a simple binary search as in Algorithm 1 is no longer possible and a 

solution regarding   and γ  has to be found simultaneously. Note that the new necessary con-

ditions (7),  (9)–(11), (A.3), and (A.4) are again sufficient because the Hessian matrix of the 

Lagrangian is still given by (B.3) (see Appendix B) and the new constraint (A.1) is linear. 
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B. Sufficiency of KKT necessary conditions (7)–(11) 

As it is easy to see that the constraints (3)–(5) are linear, it suffices to show that the objective 

function (2) is convex to proof sufficiency of the necessary conditions for a minimization 

problem. We notice that (2) can be written as  

    
1

K

n

n

C , C ,


p q p q      (B.1) 
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As the sum of convex functions is convex, it suffices to show that (B.2) is convex. The Hessi-

an matrix of (B.2) is given by 
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  (B.3) 

We now apply Sylvester’s criterion to show that   nH C ,p q  is positive definite because its 

leading principal minors are all positive. Regarding the first leading principal minor, we ob-

tain 
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Regarding the second leading principal minor, we obtain 
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Both inequalities are obtained using (3) and (4) and hold for all inner solutions of problem 

(2)–(5). Thus,  nC ,p q  is convex and  C ,p q  is also convex. 

□ 
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