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Abstract 

Many industries use revenue management to balance uncertain, stochastic demand and inflexible 

capacity. Popular examples include airlines, hotels, car rentals, retailing, and manufacturing. The classical 

revenue management approaches considered in theory and practice are based on two assumptions. First, 

demand – as the only uncertain variable – follows a known distribution and, second, risk-neutrality 

justifies the maximization of expected revenue.  

Recently, two related streams of literature emerged that do not need these assumptions. Research on risk-

averse revenue management acknowledges that, in practice, many decision makers are risk-averse. 

Research on robust revenue management focuses worst-case scenarios without a known demand 

distribution, which is especially relevant for new and extremely unstable businesses. 

This paper motivates the consideration of risk-averse and robust revenue management. We briefly 

introduce revenue managements’ two main methods – capacity control and dynamic pricing – in the 

classical, risk-neutral setting. Then, we provide an exhaustive review of the literature on risk-averse and 

robust capacity control and dynamic pricing. In doing so, the relevant decision criteria are briefly 

introduced. Finally, possible avenues for future research are outlined. 
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1 Introduction 

Modern revenue management emerged after the deregulation of the US aviation 

industry in the 1970s. It instantly became a must-have in the airline industry (Cross 

(1997)). Today, revenue management entails a series of quantitative methods to 

optimize revenue by controlling sales to heterogeneous customers stochastically 

arriving over time. The objective is to efficiently use inflexible capacities that are 

available for only a limited time. Even with revenue management, the revenues will be 

uncertain, in the classical setting due to the unknown demand.  

1.1 Risk-neutral Revenue Management 

The classical approach is to use random variables with a known distribution and to 

maximize the expected revenue, or the profit margin, in industries with considerable 

variable costs. The high volumes of similar sales processes justify the corresponding 

risk-neutrality. Airlines record hundreds—the major ones even thousands—of 

departures per day. Given the high level of repetition, a single realization has a 

negligible impact and the law of large numbers dictates that the average revenue will 

converge to the expected value. Furthermore, the maximization of the expected value 

leads to mathematically simpler and more manageable models.  

1.2 Risk-averse Revenue Management 

Feng and Xiao (1999), followed by Lancaster (2003), first question the assumption of 

risk-neutrality, but stick to the assumption of known probabilities, leading to risk-averse 

revenue management. Barz (2007) argues that, if the level of repetition is too low, the 

assumption of perfect insurance and (where applicable) capital markets is necessary to 

convert the uncertain revenue stream into a certain one with the same present value. 

Levin et al. (2008) describe the now often-used example of an event promoter who only 

organizes a few, but very large, events per year. Each event entails a substantial capital 

investment and could be a matter of economic survival. The promoter would therefore 

rather have reasonably low revenue expectations and put more emphasis on ensuring 

that a certain minimum revenue is attained. Optimizing expected values can also be 
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inappropriate when a constant revenue stream should be secured in order to, for 

example, service financial obligations, or meet shareholders’ expectations (Lancaster 

(2003)). A few negative reports, particularly on the stock market, can often quickly 

overshadow slightly better average results. Furthermore, decision makers’ wishes and 

preferences are often mentioned. For instance, an advisor for smaller airlines consulted 

Weatherford (2004) about risk-averse capacity controls. Barz (2007) reports that a 

consultant’s clients were uncomfortable with the results of the risk-neutral system. 

These clients therefore often change the underlying forecast manually to obtain less 

risky decisions. Singh (2011) observes that the individual risk-aversion of employees 

has a significant influence on manual overwriting of decisions from the revenue 

management system.  

1.3 Robust Revenue Management 

Robust revenue management assumes that exact distributional information is not 

available and uses uncertainty sets to describe ranges, for example for demand 

realizations or distribution parameters. Some worst-case criterion is optimized. While 

probabilities are usually available in stable business environments with large amounts of 

historical data, new or unstable businesses often rely on expert judgements (Perakis and 

Roels (2010)), but also numerical methods are available to construct the uncertainty set 

from historical data (e.g. Sierag and van der Mei (2016)), think of lower and upper 

bounds on demand. While robust revenue management is formally different from risk-

averse revenue management, many researchers also have more stable revenues in mind 

and, for example, numerically analyze the expected revenue vs. variance trade-off of 

robust approaches.  

1.4 Sources of stochasticity and uncertainty 

In reality, all parameters – demand, capacity, and revenues – can be subject to 

stochasticity and uncertainty. Environmental factors such as unexpected events, changes 

in the competitive landscape, or the unexpected impact of alliance partners’ flawed 

revenue management systems might influence the parameters. Capacity might change 
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due to unexpected equipment malfunction or delays. Surprisingly, even the products’ 

prices are uncertain. Especially traditional network airlines have developed very 

complex fare structures, leading to a vast number of fares on the same route. However, 

forecasting demand for each fare would be impossible and, even more important, most 

revenue management systems are still restricted to 24 booking classes (the letters of the 

alphabet). Thus, fares are grouped and the ‘products’ used in revenue management are 

in fact averages over several individual fares. Accordingly, their prices are uncertain as 

they depend on the actual mix of fares.  

In classical, risk-neutral revenue management, a few authors consider variation other 

than demand variation. For example, de Boer (2004) as well as Wang and Regan (2006) 

anticipate exogenous aircraft swaps, that is, stochastic capacity in parts of their work. 

However, their ultimate goal are endogenous swaps based on the development of 

demand (see also Section 7.6.2). 

To the best of our knowledge, stochastics and uncertainty sets always refer to demand in 

the literature on risk-averse and robust revenue management. Only Lai and Ng (2005) 

consider uncertain prices (see Section 3.2). Accordingly, this survey is restricted to 

demand variation as the only source of stochasticity and uncertainty. However, 

considering potential additional sources might be a possible avenue for future research 

(see Section 7.6.3). 

1.5 Contribution 

Although much called for in practice, no survey or textbook has covered this active area 

of research that started about two decades ago. This paper attempts to close this gap by 

providing an exhaustive literature review along with an introduction into revenue 

management. It aims at readers with a general interest in revenue management as well 

as risk-aversion and robustness, but does not presume any prior knowledge. Finally, we 

compare the state of the art with recent trends in related areas and give an extensive 

outline of possible avenues for future research. 
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1.6 Outline 

The remainder of this paper is structured as follows: In Section 2, we introduce 

classical, expectation-maximizing revenue management and briefly explain its two 

major areas, capacity control and dynamic pricing with the corresponding basic model 

formulations. Sections 3 and 4 review the literature on risk-averse and robust capacity 

control, respectively. Sections 5 and 6 summarize the corresponding literature on 

dynamic pricing. In Section 7, we outline potential avenues for future research.  

2 Classical Revenue Management 

Historically, as well as methodologically, one can distinguish between two basic 

approaches. Capacity control deals with products offered at prescribed prices. In 

passenger aviation, these are the different booking classes comprising an identical core 

service (a seat on a flight from A to B in economy class) with different conditions 

(options to change or cancel the booking, price, etc.). In Germany, another well-known 

example are the national railway company’s budget prices (€19, €29, etc.; e.g. Nahler 

(2013)). In contrast, dynamic pricing influences demand by adapting prices over time. 

Examples include low-cost carriers like Ryanair (e.g. Malighetti et al. (2009)) or the 

end-of-season sales in fashion retailing. Mostly, non-negotiable posted prices are used.  

2.1 Capacity Control 

In the following, we introduce the stochastic, dynamic standard model of capacity 

control. We limit ourselves to the marketing of a single resource (the single-leg setting 

in airline revenue management) and independent demand, which presumes that each 

product corresponds to exactly one disjoint customer segment. For a detailed account of 

the fundamentals and the marketing of multiple resources (e.g., connecting flights, a 

network), as well as how customer choice behavior is taken into account, we refer to the 

literature. The textbook by Talluri and van Ryzin (2004, Chapters 1-3), as well as the 

recent description in Gallego et al. (2015), provide a good overview and further 

references. Besides airlines, research on the applications of capacity control includes, 

among others, car rental companies (e.g. Geraghty and Johnson (1997), Haensel et al. 
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(2012)), tour operators (e.g. Klein (2000), Xylander (2003)), passenger railways (e.g. 

You (2008), Kellermann and Cleophas (2015), Hetrakul and Cirillo (2015) and 

manufacturing (e.g. Spengler et al. (2007), Defregger and Kuhn (2007), Hintsches et al. 

(2010), Volling et al. (2012), Guhlich et al. (2015) and Seitz et al. (2016)). 

The company markets a resource with an initial capacity of 𝐶 units. Products 𝑖 ∈ ℐ =

{1,… , 𝑛} are offered at a price of 𝑟𝑖, and each unit sold requires one capacity unit from 

the resource. The sales horizon comprises 𝑇 micro periods (numbered in descending 

sequence), the length of which is chosen in such a way that at most one customer 

request arrives in each micro period 𝑡 = 𝑇, … ,1. The probability of a request for product 

𝑖 in period 𝑡 is denoted by 𝑝𝑖(𝑡). Thus, the probability that there will be no product 

request in period 𝑡 is 𝑝0(𝑡) = 1 − ∑ 𝑝𝑖(𝑡)𝑖∈𝐼 . The maximization of the expected revenue 

is formulated as a stochastic dynamic optimization problem by using the Bellman 

equation:  

𝑉(𝑐, 𝑡) = ∑ 𝑝𝑖(𝑡) ⋅ max{𝑉(𝑐, 𝑡 − 1), 𝑟𝑖 + 𝑉(𝑐 − 1, 𝑡 − 1)} + 𝑝0(𝑡) ⋅ 𝑉(𝑐, 𝑡 − 1)𝑖∈ℐ   (1) 

for all 0 ≤ 𝑐 ≤ 𝐶 and 𝑡 = 𝑇, … ,1. The value function 𝑉(𝑐, 𝑡) denotes the optimal 

expected revenue from period 𝑡 onwards with remaining capacity 𝑐. The following 

boundary conditions are required: 𝑉(𝑐, 𝑡) = −∞ for 𝑐 < 0 and 𝑉(𝑐, 0) = 0 for 𝑐 ≥ 0. 

Whenever a request arrives, a decision about its acceptance has to be made. This is 

analogous to a decision in respect of the offered products. More specifically, a request is 

accepted if and only if 𝑟𝑖 + 𝑉(𝑐 − 1, 𝑡 − 1) ≥ 𝑉(𝑐, 𝑡 − 1) or, equivalently, 𝑟𝑖 ≥

𝑉(𝑐, 𝑡 − 1) − 𝑉(𝑐 − 1, 𝑡 − 1). The term on the right-hand side denotes the opportunity 

cost of accepting a request in period 𝑡 with remaining capacity 𝑐. This means that the 

request may be rejected in the expectance that the required capacity unit can later be 

sold at a higher price (as part of a different product). We thus obtain a decision rule, or 

policy, 𝜋, which determines the products to offer in each state (𝑐, 𝑡) of the system. 

2.2 Dynamic Pricing 

The textbooks of Talluri and van Ryzin (2004, Chapter 5), as well as Philips (2005, 

Chapter 10), present the fundamentals of dynamic pricing in detail. Numerous review 
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papers classify the existing publications. Bitran and Caldentey (2003) as well as Chiang 

et al. (2007) provide classical literature reviews on dynamic pricing in general. More 

recent review papers focus on current, intensively researched aspects. Gönsch et al. 

(2013) provide an overview on dynamic pricing with strategic customers who anticipate 

that the supplier may lower the price. Den Boer (2015) summarizes the current research 

status of dynamic pricing with learning. In this area, the firm constantly updates its 

demand forecast based on past sales. Application areas of dynamic pricing include, for 

example, retailing (e.g. Zhao and Zheng (2000), Heching et al. (2002)), low cost airlines 

(e.g. Marcus and Anderson (2008)), hotels (e.g. Schütze (2008)), and make-to-order 

manufacturing (e.g. Hall et al. (2009)). 

The fundamental model in dynamic pricing has many similarities with capacity control. 

The company in question markets a given stock 𝐶 of a single product with a sales 

horizon of length 𝑇. The offer price 𝑟𝑡 can be adjusted at the start of each micro period 

𝑡 = 𝑇,… ,1 based on the current residual capacity 0 ≤ 𝑐 ≤ 𝐶. A sale will occur with 

probability 𝑝(𝑟𝑡). The maximization of the expected revenue is formulated as a 

stochastic dynamic optimization problem using the Bellman equation: 

𝑉(𝑐, 𝑡) = max𝑟𝑡 (𝑝(𝑟𝑡) ⋅ (𝑟𝑡 + 𝑉(𝑐 − 1, 𝑡 − 1)) + (1 − 𝑝(𝑟𝑡)) ⋅ 𝑉(𝑐, 𝑡 − 1)) (2) 

for all 0 ≤ 𝑐 ≤ 𝐶 and 𝑡 = 𝑇, … ,1. The value function 𝑉(𝑐, 𝑡) again denotes the optimal 

expected revenue from period 𝑡 onwards with remaining capacity 𝑐 and the following 

boundary conditions are required: 𝑉(𝑐, 𝑡) = −∞ if 𝑐 < 0 and 𝑉(𝑐, 0) = 0 if 𝑐 ≥ 0. The 

price 𝑟𝑡 can be chosen from a discrete or continuous set of possible prices. For technical 

reasons, this set usually must include a sufficiently high price for which there will be no 

requests. In dynamic pricing, the policy 𝜋 determines the price 𝑟𝑡 for each state (𝑐, 𝑡). 

3 Risk-averse Capacity Control  

There are two frequently used approaches to deal with risk-aversion: expected utility 

theory and risk-measures. Table 1 (left part) provides an overview of the research 

published. In the following subsections, we discuss the literature using these approaches 
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in detail. In each subsection, we first introduce relevant criteria and then present the 

capacity control literature using them. 

 

Table 1: Overview of research on risk-averse and robust capacity control  

3.1 Utility Functions in Capacity Control 

Expected utility theory developed by von Neumann and Morgenstern (1944) derives the 

existence of a non-decreasing utility function 𝑢: ℝ → ℝ from simple axioms. Let the 

random revenues 𝑅𝜋1  and 𝑅𝜋2 result from two different policies 𝜋1 ≠ 𝜋2. The decision 

maker is risk-averse if a deterministic payment equaling the expected value causes a 

higher utility than the expected utility: 𝑢(𝔼(𝑅𝜋)) ≥ 𝔼(𝑢(𝑅𝜋)) for all 𝜋. One can 

therefore derive, with help of Jensen’s inequality, that a decision maker with a utility 

function 𝑢 is risk-averse when 𝑢 is concave. A linear utility function implies risk-

neutrality, and a convex utility function expresses risk-seeking. 

In multi-period models, the aggregation of utility across the periods must be determined. 

With additive time-separable utility functions the total utility 𝑢(𝑅𝜋) = ∑ 𝑢𝑡(𝑅𝜋
𝑡 )1

𝑡=𝑇  is 

the sum of the utility functions 𝑢𝑇 , … , 𝑢1 for the individual periods. Atemporal utility 

Expected Utility Mean-Risk Risk Measures Maximin Regret Competitive Ratio

Weatherford (2004): 

additive

Barz (2007): additive, 

general atemporal, 

exponential

Barz/Waldmann 

(2007): atemporal 

exponential

Feng/Xiao (2008): 

atemporal exponential

Zhuang/Li (2011): 

general atemporal

Koch et al. (2016): 

exponential*

Lai/Ng (2005): 

mean abs. 

deviation

Gönsch/Hassler 

(2014): CVaR

Koenig/Meissner 

(2015a): VaR

Koch et al. (2016): 

CVaR*

Koenig/Meissner 

(2016): TPR

Birbil et al. (2009)

Perakis/Roels 

(2010)

Rusmevichientong/ 

Topaloglu (2012)

Sierag/van der Mei 

(2016)

Lan et al. (2008): 

absolute

Lardeaux et al. 

(2010): absolute

Gao et al. (2010): 

relative

Perakis/Roels 

(2010): absolute

Lan et al. (2011): 

relative

Lan et al. (2015): 

absolute

Lan et al. (2008)

Ball/Queyranne 

(2009)

Lan et al. (2015)

Gao et al. (2016)

 (*arbitrary objectives)

Risk-averse Capacity Control Robust Capacity Control

Huang/Chang (2011): no clear objective; STD and sharp ratio 

for evaluation

Koenig/Meissner (2015b): no clear objective; STD and CVaR 

used for evaluation



8 

functions model a decision maker who is indifferent between reward streams of the 

same sum. Thus, only the sum ∑ 𝑅𝜋
𝑡1

𝑡=𝑇 = 𝑅𝜋 of the period revenues 𝑅𝜋
𝑡  is relevant and 

𝑢(𝑅𝜋) = 𝑢(∑ 𝑅𝜋
𝑡1

𝑡=𝑇 ). This is used, for example, if the planning horizon is short and 

allows an arbitrary redistribution of the revenue between the individual periods without 

changing utility. There are two classes of atemporal utility functions that evaluate 

different alternatives independent of the decision maker’s current wealth and thus allow 

a decomposition by time periods. Obviously, a linear (risk-neutral) utility function is 

additive time-separable. In addition, the frequently used exponential utility function 

𝑢𝛾(𝑅𝜋) = −𝑒−𝛾𝑅𝜋 with constant absolute risk inclination 𝛾 allows the decomposition 

𝑢𝛾(𝑅𝜋) = −∏ −𝑢
𝛾 (𝑅𝜋

𝑡 )1
𝑡=𝑇 . Here, a positive value of 𝛾 implies risk-aversion.  

In practice, the determination of utility functions is unfortunately often difficult due to 

the concept’s theoretical complexity and the abstract representation in utility values 

(e.g., Gotoh and Takano (2007)), requiring the decision maker to answer a multitude of 

questions (e.g., Xu (2010)). 

The first contribution to risk-aversion in capacity control stems from Weatherford 

(2004). It is not based on the standard model described in Section 2.1, but leverages the 

classical EMSR (Expected Marginal Seat Revenue) heuristic, which is still widely used 

in industry. To incorporate risk-aversion, he simply replaced the product’s revenues 

with their utilities and obtained the EMSRU (EMSR utility) rule. While the original 

EMSR method of Belobaba (1989) clearly tries to maximize the expected revenue—and 

yields the optimal solution under certain conditions—, the intuitive EMSRU alternative 

pursues no clear target criterion. The resulting policies, although more conservative than 

with EMSR, are clearly more risk-seeking than the employed utility function suggests. 

This is because the transition from total revenue to a marginal consideration is the basis 

of EMSR but no longer possible in the case of risk-averse utility functions (see also the 

discussion in Barz (2007, p. 122-123)). 

Barz and Waldmann (2007) were the first to publish work on a risk-averse utility 

function in the stochastic dynamic standard model of capacity control (Section 2.1). 

They employe the atemporal exponential utility function 𝑢𝛾(𝑅𝜋) = −𝑒−𝛾𝑅𝜋 . By using 
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the abovementioned reformulation, the utility function is integrated into the Bellman 

equation. The authors show that all the attractive structural properties of the optimal 

policy that are well-known in the risk-neutral case carry over. It is, therefore, possible to 

describe an optimal policy by means of protection levels indicating the number of 

capacity units which a low-value product cannot use. In her PhD thesis, Barz (2007) 

extends some results to choice-based capacity control, where selling probabilities 

depend on the set of products offered to a customer and also considers the popular static 

setting, where low value demand arrives strictly before high value demand. Based on 

her numerical results, Barz (2007) also conjectures that the optimal protection levels are 

monotone in the degree of risk-aversion 𝛾. Apparently independently and in a paper 

submitted already in 2004, Feng and Xiao (2008) pursued a comparable objective and 

also employ atemporal exponential utility functions. They motivate these particular 

function type by showing that it essentially consists of the expected revenue and the 

higher-order moments of revenue, which represent risk. Rather unusual for capacity 

control, the authors work in continuous time. Their findings are consistent with Barz’ 

(2007) monotonicity conjecture. 

Regarding general concave (risk-averse) atemporal utility functions, only an evaluation 

of the cumulative revenue 𝑅𝜋 is possible in the last period. To do so, the state space of 

the Bellman equation must be expanded to include the already obtained revenue 𝑧. 

Thus, the value function 𝑉(𝑐, 𝑧, 𝑡) equals the optimal expected utility for the complete 

horizon, given a remaining capacity of 𝑐 and an already obtained revenue of 𝑧 at 𝑡. 

Unfortunately, the expansion of the state space generally increases the solution 

complexity and tractability considerably. Things are further complicated by the fact that 

some intuitively expected monotonicities (e.g. in the remaining capacity) do not hold 

(Barz (2007)). 

Zhuang and Li (2011) focus a static model with only two products (booking classes) and 

general concave atemporal utility fuctions. Their development is closely related to 

Eeckhoudt et al (1995), who consider a risk-averse newsboy, and Barz (2007). 

However, they extend the results in Eeckhoudt et al. (1995) to a static two-class revenue 
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management problem. Barz’ monotonicity conjecture is partly resolved by showing that 

the booking limit is increasing in the degree of risk-aversion in the two-class problem. 

They then identify a general sufficient condition assuring that a risk-averse manager’s 

optimal booking limit is monotone in the level of demand uncertainty measured by 

stochastic dominance. With normally distributed demands, they obtain insights on the 

impact of demand uncertainty and the risk attitude through a mean-variance analysis. 

Finally, Barz (2007) also considers concave additive time-separable utility functions. 

Tractability is no issue as basically only 𝑟𝑖 has to be replaced by 𝑢𝑡(𝑟𝑖) in (1). However, 

the use of such a function is hard to motivate, since the decision maker usually is only 

concerned about overall revenue and not about its distribution to the (arbitrary small) 

time periods. Again, some monotonicities carry over, some do not (e.g. protection levels 

are not monotone in time). 

3.2 Mean-risk in Capacity Control 

Mean-risk approaches originate from the finance sector. They weigh two criteria against 

each other: the mean (the expected value) and the risk (a scalar measure for variability). 

One therefore obtains many efficient expected value/risk combinations, which can be 

determined by maximizing the expected value for a given risk level (or vice versa). This 

approach has many advantages, because both criteria can be weighted with a specified 

parameter and the trade-off can be analyzed. In this context, the variance that 

Markowitz (1959) used to describe risk in portfolio optimization became very well 

known. However, like the mean absolute deviation (the average of the absolute 

deviations from a central point, usually the mean), it can contradict stochastic 

dominance and, thus lead to unintuitive results (Ogryczak and Ruszczynski (2002)).  

Lai and Ng (2005) focus on the hotel industry. The paper is unique as the authors also 

directly consider uncertain prices. Their stochastic model is based on demand scenarios 

with given probabilities that differ in the products’ prices and demand. The main idea 

seems to be to penalize the mean absolute deviation of the revenue from its mean with a 

parameter in the objective function. The only decision variable is the number of 

accepted bookings (as opposed to the usual maximum number, called partitioned 
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booking limits) and does not depend on the scenario. Thus, revenue deviations are only 

caused by price variation (and not demand). Moreover, feasibility is jeopardized when 

demand is less than the number of accepted bookings. These “constraint violations” are 

penalized with additional parameters, but they symmetrically penalize when not all 

demand is accepted. It remains unclear why revenue is not calculated from the number 

of bookings actually accepted in each scenario (minimum of booking limit and 

demand). The paper is not related to prior or later work, but often cited by from 

researchers in its specific field of application. 

3.3 Risk Measures in Capacity Control 

During the past years, numerous risk measures found broad acceptance, particularly in 

the finance sector, where they are used for ascertaining a bank’s risk position and thus 

target losses. Here, we introduce these risk measures directly in the context of the 

maximization objectives considered. An important advantage of risk measures—

especially with regard to utility functions—is that they are mostly measured in the same 

(monetary) unit as the underlying random variable. Owing to their comparatively simple 

definition, decision makers in the industry without a distinct theoretical background can 

also understand risk measures easily. It is important to note that the random variable the 

risk measure is based on is usually cumulative revenue over the entire booking horizon. 

In the mid-1990s, J.P. Morgan introduced the value-at-risk (VaR) indicator in the 

product RiskMetrics to estimate the aggregated risk of all positions of a bank. Today, 

VaR is widely used in practice. The VaR at level 𝛼 measures the revenue that will not 

be exceeded with a probability of 𝛼. Formally, it corresponds to the quantile function 

(inverse of the distribution function): VaR𝛼(𝑅𝜋) = 𝐹𝑅𝜋
−1(𝛼) = inf{𝑥: 𝐹𝑅𝜋(𝑥) ≥ 𝛼}. The 

VaR is positively homogeneous, monotonic, and translation invariant, but generally not 

subadditive. It thus contradicts the idea of diversification. From an intuitive perspective, 

it is often criticized because the distribution of the revenue below the quantile is not 

taken into consideration. First-order stochastic dominance is equivalent to a VaR at 

least as high for each level 𝛼 (Ogryczak and Ruszczynski (2002)).   
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The conditional value-at-risk (CVaR) stems from a pioneering article on risk measures 

by Artzner et al. (1999). They define desirable characteristics (positive homogeneity, 

monotonicity, translation invariance, and subadditivity) of risk measures, which led to 

the coherent risk measures concept. For continuous distributions, the CVaR for level 𝛼 

corresponds to the conditional expected value: CVaR𝛼(𝑅𝜋) = 𝔼(𝑅𝜋│𝑅𝜋 ≤ VaR𝛼). 

More complex, but manageable representations exist for discrete distributions. Different 

from the VaR, the CVaR takes the distribution below the critical quantile (of VaR) into 

account. A clear interpretation of CVaR𝛼 is: “What average revenues will be achieved if 

revenue is below the VaR𝛼?” As CVaR is subadditive, it rewards diversification. Owing 

to its intuitive and theoretical advantages, CVaR is now increasingly used in theory and 

practice. Second-order stochastic dominance is equivalent to a CVaR at least as high for 

each level 𝛼 (Dentcheva and Ruszczynski (2006), Noyan and Rudlof (2013)). 

Recent publications also propose the target-percentile risk (TPR, see Boda and Filar 

(2006)). Here, the goal is to exceed a given target value 𝑧 (satisfaction target) and the 

probability not to exceed this target is measured: 𝑇𝑃𝑅(𝑧) = 𝑃(𝑅𝜋 ≤ 𝑧). Hence, this 

probability is minimized. First-order stochastic dominance is by definition equivalent 

to a TPR at least as high for each target value 𝑧. 

The first risk measure optimized in capacity control was the TPR around 2010, although 

Koenig and Meissner (2016) published their paper much later. Analogous to the case of 

atemporal utility functions, the state space must be expanded here. The value function 

𝑉(𝑐, 𝑧, 𝑡) then depends on the remaining capacity 𝑐, the revenue 𝑧 still to be achieved, 

and the time 𝑡. It denotes the probability of not exceeding a cumulative revenue of 𝑧 in 

the remaining periods 𝜏 = 𝑡,… ,1. Therefore, in this formulation, 𝑧 stands for the 

revenue that must be exceeded in periods 𝜏 = 𝑡,… ,1. Accordingly, it is reduced with the 

acceptance of a request. 

Koenig and Meissner (2015a) were the first to maximize the VaR. They build on their 

paper on the TPR and employ the following relation: VaR𝛼 = sup{𝑧 ∈ ℝ: 𝑃(𝑅 ≤ 𝑧) <

𝛼} = sup{𝑧 ∈ ℝ: TPR(𝑧) < 𝛼}. By means of a binary search, they determine the 

highest target value 𝑧 for which the TPR(𝑧) is still below the level 𝛼.  
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An integration of the CVaR into the Bellman equation, and therefore an analytical 

optimization, appears impossible due to the discrete decision space in capacity control 

(Gönsch and Hassler (2014)). However, based on the approach of Pflug and Pichler 

(2016) for convex decision spaces, the authors developed an efficient heuristic. With 

their results, one can illustrate the fundamental trade-off between a high expected 

revenue and low fluctuations (Figure 1). While the expected value (EV) is maximized 

for 𝛼 = 1, the average revenue decreases with increasing risk-aversion (smaller 𝛼), until 

it eventually equals the revenue at the acceptance of each request (FCFS). It is 

interesting to see that the standard deviation (and, hence, the variance) does not 

decrease continuously.  

3.4 Other Approaches in Capacity Control 

While the papers mentioned thus far all focus on the optimization of a well-defined 

target criterion, some papers cannot be clearly categorized. Neither Huang and Chang 

(2011), nor Koenig and Meissner (2015b), follow a clear target criterion. Huang and 

Chang (2011) developed intuitive heuristics based on the stochastic standard model. 

More specifically, they extend the classical policy, where a request is accepted only 

when the resulting revenue exceeds the opportunity costs (𝑟𝑖 ≥ 𝑉(𝑐, 𝑡 − 1) − 𝑉(𝑐 −

1, 𝑡 − 1)) with a risk factor 𝛿 ∈ [0,1], and obtain 𝑟𝑖 ≥ 𝛿(𝑉(𝑐, 𝑡 − 1) − 𝑉(𝑐 − 1, 𝑡 −

1)). A more conservative policy results for 

𝛿 < 1, which tends to accept more requests 

with lower revenue. To adjust the risk factor 

over time, Huang and Chang recommend 

various intuitive formulas that are manually 

parameterized. Koenig and Meissner 

(2015b) develop this approach further and 

also incorporate the risk factor in the 

Bellman equation. Koch et al. (2016) embed 

the approaches in a framework to 

specifically optimize a target criterion. To 
Figure 1: Mean and standard deviation 

(optimization of the CVaR) 
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do so, they determine the parameters of the risk factor formula with simulation-based 

optimization, following the risk-neutral approach of Klein (2007). While most papers 

consider specific simplified problems, this approach is applicable to almost any problem 

and objective. They also consider customer choice behavior, which only Barz (2007) 

considers otherwise.  

4 Robust Capacity Control 

Robust capacity control is employed when no or only limited distributional information 

is available, for example, when a new business or product is launched or demand is 

difficult to predict. As the decision criteria described in the previous section are not 

applicable, various criteria have been developed specifically for robust decision making. 

They all have in common that some worst-case scenario is optimized. However, most 

authors also have in mind to employ these approaches to reduce revenue variability. 

Thus, often an expected revenue vs. variance trade-off is examined in numerical 

experiments. Please note that we do not consider approaches here that are model-free or 

distribution-free but aim at maximizing expected revenue. For example, literature on 

simulation-based and stochastic optimization (e.g. Gosavi et al. (2007), Topaloglu 

(2008), van Ryzin and Vulcano (2008), and Kunnumkal and Topaloglu (2009)) does not 

assume any specific demand or cancellation distribution but usually only requires that 

samples from the demand distribution are available. 

Please note that the term robust optimization is often associated with the question of 

feasibility in the sense that the chosen decision should be feasible for every environment 

state. Feasibility in this sense is, however, irrelevant in revenue management, because 

policies already contain rules that only allow a sale if there is sufficient capacity, 

independent of the optimization results. Nonetheless, we use the term ‘robust’ in line 

with the vast majority of the literature. Only two papers emphasize the lack of 

distributional information by using the terms ‘limited demand information’ (Lan et al. 

(2008)) and ‘distribution-free’ (Gao et al. (2016)) in their titles. 



15 

In the following, we briefly introduce the criteria widely-used in robust revenue 

management. Then, two subsections discuss the relevant research in detail. Table 1 

(right part) provides an overview. For literature on decision theory, robust decision 

making, and use of regret in various operations management problems we refer the 

reader to Perakis and Roels (2008), Kouvelis and Yu (1997), and the references therein. 

Central to all criteria is the set of possible environment states (uncertainty set).  

The maximin criterion prefers the policy 𝜋 with the highest worst-case revenue. This 

surmises an extreme risk-averse attitude, because only the worst scenario is considered. 

The regret-based criteria consider the difference (regret) of the revenue obtained in a 

scenario with a policy and the revenue obtained with a policy that is optimal for the 

scenario. This optimal policy is determined with complete information (perfect 

hindsight or clairvoyance) and is often denoted as ex-post in revenue management. The 

absolute minimax regret criterion (also Savage-Niehans criterion) focuses on the 

absolute difference between revenues. In contrast, the relative minimax regret criterion 

considers the ratio of the regret to the optimal (ex-post) revenue. 

The competitive ratio formally resembles the relative minimax regret criterion. 

However, it stems from the analysis of online algorithms (see, e.g., Albers (2003)). An 

online algorithm addresses a sequential decision-making problem. The algorithm 

(corresponding to a policy) processes an input stream (customer requests for the 

products) and makes an immediate decision for each input (request), without knowledge 

of future inputs. Its counterpart is a competitor, the offline algorithm, which has 

knowledge of the entire input sequence and only decides ex-post (the optimal policy). It 

is equivalent to assume that the competitor also decides immediately, but he can 

determine the input continuation. 

4.1 No Information regarding the Demand Distribution 

Ball and Queyranne (2009) are the first to use techniques from the analysis of online 

algorithms in single-leg (aka single-resource) capacity control. They derive static, 

nested booking limits and consider bid-price controls. Their policies come with 
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guarantees regarding the competitive ratio without any information about demand. For 

the static problem, they obtain closed-form optimal solutions.  

Lan et al. (2008) develop an integrated approach for the consideration of the absolute 

minimax regret criterion and the competitive ratio. For both criteria, the optimal static 

policies are nested booking limits. Dynamic booking limits are also considered. They 

generalize the aforementioned paper by considering lower and upper bounds on demand 

for each product and provide alternative proofs for some of their results. The optimal 

policies contain those of Ball and Queyranne (2009) as a special case.  

Perakis and Roels (2010) are even more general in some respects as they consider 

network revenue management with a general polyhedral uncertainty set and various 

static controls: partitioned booking limits, nested booking limits, displacement-adjusted 

virtual revenues, and bid-prices. The authors describe in detail how expert knowledge 

on demand can be used in the construction of the set of environment states and consider 

the maximin criterion, as well as the absolute minimax regret criterion. They find that 

the minimax regret approach performs very well on average and—despite its worst-case 

focus—outperforms standard controls when demand is correlated or not unconstrained. 

The maximin approach is more conservative but provides a revenue guarantee. 

Gao et al. (2010) consider competition using the relative minimax regret criterion and 

thereby indirectly also the competitive ratio without any information on demand. They 

focus on a static model with nested booking limits for two parallel, single-leg flights 

with only two products each, offered by two competing airlines and show the existence 

of a Nash equilibrium, as well as the value of a coordination. 

With Gao et al. (2016), the authors of Lan et al. (2008) extend their paper to time-

variant information on demand. More precisely, time is sliced into several time periods 

and there are now bounds on demand for each product in each time period. These time 

periods should not be confused with the micro periods of (1). The authors consider 

competitive ratio in settings with and without updating of booking limits during the 

booking horizon. Comparing the former with the results from Lan et al. (2008) shows 

the benefit of using additional (temporal) information on demand. According to the 
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numerical results, policies are more flexible and show a superior performance. While 

optimal booking limits can be efficiently derived from a MIP in the static setting, this is 

not possible in the dynamic setting because structural properties no longer hold. Thus, 

high-quality heuristics using closed-form solutions are provided. 

In the context of robust capacity control, Lan et al. (2011) are the first to incorporate 

overbooking decisions. They consider a single-leg, multiple-product setting and focus 

on relative regret. Following Lan et al. (2008), demand is characterized by bounds for 

each product. Analogously, the share of passengers that request service (show up at 

departure) is given by upper and lower bounds. The model developed has appealing 

analytical properties: the worst case scenarios are characterized, and their number is 

only 𝑛 + 1 with 𝑛 products. This allows to obtain the optimal solution in closed form. 

The optimal static policy retains the well-known structure of nested booking limits. 

Finally, the overbooking level obtained is an alternative to the existing static, heuristic 

overbooking methods. It can be coupled with existing capacity control approaches 

without overbooking like EMSR that ignore cancellations.  

In a follow-up paper, Lan et al. (2015) consider ‘hybrid’ information on demand, that is, 

demand is characterized by bounds, but distributional information regarding no-shows 

is available. They use the competitive ratio and the minimax absolute regret criterion 

and show that nested booking limits are optimal among all deterministic policies. Based 

on structural properties, the worst-case scenarios to consider are characterized, but 

closed-form solutions for the nonlinear stochastic optimization problem are not 

obtained. Thus, a model-based heuristic is provided. Again, the developed overbooking 

approach can be combined with existing capacity control approaches.  

Lardeux et al. (2010) stand out as they build on a deterministic approach and are 

primarily concerned with capturing stochastics. More precisely, they extend the 

Certainty Equivalent Control (CEC) which decides on requests’ acceptance based on 

opportunity cost approximated by the difference of two models. While stochastics is 

considered in the standard RLP (Talluri and van Ryzin (1999)) approach via the 

averaging of solutions of independent instances for different scenarios regarding total 
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demand, the authors minimize absolute regret of common partitioned booking limits 

over all scenarios. Due to the CEC approach, this calculation is repeated on every 

request’s arrival, leading to a considerable computational burden. From a theoretical 

point of view, it is interesting to observe that, thus, regret inherently relates only to the 

remaining booking horizon (see also the discussion on time consistency in Section 7.4). 

4.2 Incomplete Information regarding the Demand Distribution 

The second approach to capacity control under uncertainty assumes that demand, in 

principle, follows certain distributions, but they are not fully known. Birbil et al. (2009) 

consider static and dynamic single-leg models. In the static model, the distribution of 

the amount of demand for individual products is tainted with a certain vagueness. Thus, 

the set of potential environment states entails a continuum of discrete distributions for 

each product. In the dynamic model, the arrival probabilities (𝑝𝑖(𝑡) in (1)) are not 

exactly known, but belong to an ellipsoidal uncertainty set. The authors consider the 

maximin criterion and provide the Bellman equation. Numerical experiments show that 

the approach achieves a reduction in variability (about 1%-20% less standard deviation) 

at only a slight decline in average revenue (up to 1.5%) in comparison to a standard, 

non-robust control in static and dynamic settings where the parameters of the 

distribution are not exactly known.  

Rusmevichientong and Topaloglu (2012) also use the maximin criterion, but consider 

customer choice. The parameters of the multinomial logit (MNL) model belong to an 

uncertainty set. As usual, the size of this set reflects the degree of uncertainty. 

Alternatively, the size can be interpreted as a means to control the trade-off between 

increasing the average revenue and protecting against the worst-case scenario. In 

contrast to static revenue management models, their static model does not consider 

capacity constraints. Thus, it is a robust, parametric version of the assortment 

optimization problem and complements, for example, the nonparametric approach to 

calculate (but not optimize) revenue from an assortment in Farias et al. (2013). The 

dynamic model considers the standard single-leg setting from revenue management and 

enhances the stochastic dynamic model (1) with customer choice. The important nesting 
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by fare order property carries over. Numerical experiments show that worst case 

performance indeed improves while average revenues are slightly smaller. 

Sierag and van der Mei (2016) consider the standard, dynamic single-leg setting with 

customer choice and cancellations. They directly work with the choice probabilities of 

arbitrary choice models, which lie in an 𝜙-divergence uncertainty set and the maximin 

criterion is used. According to the authors, a major unexpected numerical finding is that 

robust methods perform better for smaller inventories. However, no further 

investigation is provided and this might also be due to other factors like a change in 

demand variability (constant number of time periods with different total demands). In 

addition, also the benchmark heuristic’s performance considerably deteriorates in 

inventory size (from -1% to -11%). Moreover, the results suggest that the approach 

performs especially well if no information about cancellations is available. 

5 Risk-averse Dynamic Pricing  

Table 2 provides an overview on the literature on risk-averse and robust dynamic 

pricing. Analogously to capacity control, risk-aversion in dynamic pricing is mostly 

incorporated via utility functions and newer papers also consider risk-measures. One 

criterion that is not considered in the context of capacity control is also used.  

 

Table 2: Overview of research on risk-averse and robust dynamic pricing 

Compliance with an aspiration level (see, e.g., Simon (1959)) can be enforced with 

constraints (see, e.g., Prékopa (2003) for an overview regarding optimization). Chance 

constraints, which, for example, limit probabilities of adverse events, are a customary 

Expected Utility Chance Constraints Mean-Risk Risk Measures Maximin Regret

Lim/Shanthikumar 

(2007): exponential

Lim et al. (2008): 

exponential

Li/Zhuang (2009): 

additive, atemporal 

exponential

Schlosser (2015, 

2016): exponential

Levin et al. (2008): 

minimum revenue

Feng/Xiao (1999): 

variance

Gönsch et al. 

(2017): CVaR

Schur et al. (2017): 

(CVaR)

Lim/Shanthikumar 

(2007)

Lim et al. (2008)

Wang/Xiao (2017): 

absolute

Risk-averse Dynamic Pricing Robust Dynamic Pricing
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tool in optimization. They can be viewed as a relaxed version of stochastic dominance. 

Many of the criteria described in Section 3 can also be applied to formulate chance 

constraints.  

Feng and Xiao (1999) were the first to focus risk-averse dynamic pricing. They consider 

the case of two preset prices and investigate the optimal moment for a one-time possible 

switch between the two. Their mean-risk approach penalizes revenue variation by 

means of a risk factor in the objective function. The continuous-time model is solved in 

closed form and the optimal policy is analyzed. Among others, a more risk-averse firm 

switches earlier to the lower price, all else being equal. 

Levin et al. (2008) maximize expected revenue in the objective function, subject to a 

chance constraint which ensures that a given minimum revenue is attained with a given 

probability. As decision makers often do not know the exact values for the minimum 

revenue and the probability, the authors suggest to construct an efficient frontier in the 

plane of probability and expected revenue. This frontier can be alternatively obtained by 

penalizing the probability of falling short of the minimum revenue in the objective 

function and varying the penalty factor. The authors formulate the model as a 

continuous-time optimal control problem, obtain optimality conditions, and analyze 

structural properties of optimal policies. Approximation techniques are provided as the 

optimal dynamic pricing policy may be hard to compute because of the size of the state 

space and the large number of steps required for time discretization. 

Li and Zhuang (2009) consider additive time-separable exponential utility functions and 

atemporal exponential utility functions in  discrete time. The authors show that well-

known monotonies regarding time and capacity still hold. The optimal price decreases 

in the risk-aversion in respect of both utility functions all else—including opportunity 

cost—equal. 

Schlosser (2015) endogenizes the decision about the advertising intensity, which, just as 

the sales price, influences sales. The author succeeds in specifying optimal closed-form 

policies for exponential utility functions in continuous time. This is the first time 
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optimal closed-form solutions are derived for risk-averse dynamic pricing, with the 

exception of the highly restricted setting of Feng and Xiao (1999). 

Schlosser (2016) considers multi-product dynamic pricing in continuous time. The 

products have independent demands and inventories, but are related through adoption 

effects. That is, sales of one product can depend on past sales of all products. In an 

extension, he also considers risk-aversion via an exponential utility function. 

Simulations show that the variance can be significantly reduced, while expected profits 

are still near optimal. Furthermore, it turns out that the expected evolutions of the risk-

averse prices are downshifted versions of their risk-neutral counterparts, but their 

overall shape remains the same. By contrast, the expected evolutions of optimal risk-

sensitive advertising rates are clenched versions of the corresponding risk-neutral path. 

Hence, he derives the following rule of thumb: Under risk aversion, a suitable absolute 

mark-down on optimal risk-neutral prices should be combined with a fixed proportion 

of optimal risk-neutral advertising rates. 

With CVaR, Gönsch et al. (2017) are the first to optimize a risk measure in dynamic 

pricing. The sale of a single-capacity unit is analytically solved in discrete time and 

various structural characteristics are shown. While it is well-known that the optimal 

price continually decreases in the risk-neutral case, it is optimal for the risk-averse 

decision maker to start with a low price and to initially keep it constant until, at one 

point in time, the risk-averse price equals the risk-neutral price. Then, one should follow 

a risk-neutral policy. This behavior is also often observed in practice, but was to date 

explained by means of price adjustment costs or similar concepts. Numerical methods 

are developed for larger start capacities. Computational results show that applying a 

risk-averse policy, even a static one, often yields a higher CVaR than applying a 

dynamic, but risk-neutral, policy. The difference is bigger for smaller capacities. 

Schur et al. (2017) also consider CVaR, but—in contrast to the aforementioned paper—

they do not consider CVaR of total revenue but employ a so-called nested formulation, 

that simply replaces the expectation in (2) with CVaR. This has some theoretical 

advantages and disadvantages (see the discussion on time consistency in Section 7.4) 
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and is much more tractable. They show that the risk-averse dynamic pricing problem 

can be easily transformed to a risk-neutral one. Only the selling probabilities used in (2) 

have to be slightly adapted. Thus, all properties and monotonicities carry over and 

existing algorithms and software systems can be reused. While Schlosser (2016) 

suggested a constant absolute markdown on risk-neutral prices as a rule of thumb in his 

setting, Schur et al. (2017) analytically show when a fixed proportion is optimal. 

6 Robust Dynamic Pricing 

Lim and Shanthikumar (2007) consider robust dynamic pricing in continuous time. The 

authors characterize the demand by means of relative entropy, a distance measure for 

distributions and model a game against an adversarial nature (maximin criterion). 

Closed-form solutions for an exponential nominal demand are derived and conditions 

under which this robust dynamic pricing problem is equivalent to the maximization of 

an exponential utility function with a given demand distribution are shown. 

Whereas all papers on dynamic pricing mentioned so far consider a single product, Lim 

et al. (2008) extend the aforementioned paper to multiple products which can have 

different levels of ambiguity. If demand functions and resources consumed are 

independent, the problem can be decomposed into risk-averse single-product problems 

where the certainty equivalent of an exponential utility function is maximized. The 

magnitude of the risk-aversion parameter depends on the level of ambiguity concerning 

the associated product’s demand. If resources are jointly used, an equivalent risk-averse 

dynamic pricing problem maximizes the sum of the certainty equivalents of the 

product’s revenue streams. It requires a revenue sharing function that stipulates the 

transfer of revenue in the instant of a sale to other product’s streams that suffer from the 

resulting decrease in available resources. Finally, a decomposition to single-product 

problems is provided, albeit still requiring independent demands. 

Wang and Xiao (2017) consider absolute regret in continuous time with a discrete set of 

predefined price points. They assume that the demand rate for each price point follows 

an unknown distribution with finite bounds and only upper and lower bounds for each 
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rate are known. Analogous to robust capacity control, numerical experiments show a 

good variation vs. average revenue trade-off. 

7 Future Research 

In this section, we develop and structure avenues for future research. Therefore, we look 

at classical, risk-neutral revenue management and directions already existing in risk-

averse and robust revenue management. The resulting classification is given in Figure 2.  

  

Figure 2: Potential avenues for future research 

7.1 Risk- and Uncertainty-aware Revenue Management 

In classical risk-neutral revenue management, most authors strictly restrict themselves 

to the consideration of expected values and do not expose the variability to the reader. 

For example, often mean values and standard deviations of simulation runs are given. 

However, the standard deviation refers to the mean and its purpose is to describe the 

accuracy of the reported mean. It does not reflect revenue variability of a single 

simulation run or a single sales process in practice. Only a few authors really point their 

readers to the fact that revenue is fluctuating and investigate the approaches considered 

in this regard. One such example is Koenig and Meissner (2010), who compare dynamic 

pricing and capacity control. Besides expected revenue, they explicitly compare the 

approaches’ ‘revenue risk’ using standard deviation and the risk-measure CVaR. 
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Petrick et al. (2010, 2012) are uncertainty-aware as they consider biased demand 

forecasts, but they only report average revenue in their simulations. 

Such risk- and uncertainty-aware revenue management is arguably neither a really 

independent research area nor completely new, as the above examples show. However, 

we put it into our list of future research to stress its importance because research is still 

very scarce. We feel that this is a new perspective with an extremely high relevance for 

practice that can be easily incorporated when simulations are used for evaluation. 

7.2 Consideration of Additional Decision Criteria 

In Sections 3-6, the multitude of decision criteria used was introduced and it became 

obvious that several criteria have been seldom or never considered in capacity control 

(chance constraints, mean-risk) and dynamic pricing (chance constraints, mean-risk, and 

competitive ratio). Thus, the consideration of these criteria is probably the most obvious 

avenue for future research. As these criteria all have been optimized in at least one 

setting, this should provide a starting point. Note that, Cooper and Gupta (2006) 

consider stochastic dominance in capacity control, but they do not use the concept as a 

decision criterion to evaluate different revenue distributions. They consider a risk-

neutral firm and compare two markets that only differ in their demand distribution. In 

this setting, the authors use stochastic comparisons of the demand distributions to 

establish conditions that guarantee a higher expected revenue in one market. 

By contrast, stochastic dominance has not been considered yet. Stochastic dominance 

relations are partial orders on the space of distributions (see also Lehmann (1955) as 

well as Hadar and Russell (1969)) and thus allow for the pairwise comparison of 

policies 𝜋. Stochastic dominance has an universal character with respect to utility 

functions. If a policy 𝜋1 (and thus the relating revenue 𝑅𝜋1) dominates 𝜋2, it intuitively 

means that, regardless of the exact preferences, no decision maker will prefer the 

dominated policy 𝜋2 and this should also be reflected in other approaches to risk-

aversion. Unfortunately, it is impossible to derive simple calculation rules for stochastic 

dominance, due to the required pairwise comparisons (e.g., Ogryczak and Ruszczynski 

(2002)). Moreover, it is a very strong concept in the sense that only comparatively few 
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pairs of distributions can be ordered and it cannot be directly used as an objective. 

Regarding constraints, the restriction to non-dominated policies seems desirable, but 

some form of non-dominance is attained by most criteria discussed in Section 3 (see 

also the references to stochastic dominance included there). The next subsection is 

closely related and discusses the topic from the decision-makers’ point-of-view. 

7.3 Support User’s Choice of Decision Criteria  

Currently, the literature on risk-aversion assumes that a risk criterion and the degree of 

risk-aversion is given. However, this is an extremely challenging issue for practitioners, 

especially managers with a scarce background in statistics. Thus, research could focus 

more on the “determination” of risk-aversion and the models sensitivity regarding this 

choice. Moreover, behavioral/experimental research could investigate how well 

managers can understand and use various criteria.  

The literature on robust revenue management is more advanced in this regard, as it also 

gives some hints on how to select the uncertainty set. 

However, the most important question underlying all this is about the real goal of the 

decision maker. Is it about optimizing a certain criterion? Is she really concerned about 

the worst case in some uncertainty set? Or just about (vaguely defined) ‘good and 

stable’ results, as numerical studies considering the expected revenue vs. standard 

deviation trade-off suggest? How should these goals be brought together? The well-

developed literature (see, e.g., Durbach and Stewart (2012) or Greco et al. (2016) and 

the references therein) on multi-criteria decision making provides ample possibilities, 

depending on individual preferences. However, a universally adopted operational 

measure would be desirable, at least for evaluation purposes. While standard deviation 

is widely used, it has same disadvantages (see Section 3.2) and a convex combination of 

expected value and some coherent risk-measure might be a path to follow. In this case, 

optimality with regard to some surrogate criterion might lose its appeal. 

While considering additional criteria is clearly relevant and necessary basic work, this 

all might fairly limit the benefit of just ticking the box next to another criterion. 
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Moreover, the different risk-averse and robust policies can be very similar regarding 

these measures, as a comparison of numerous types of 𝜙-divergence uncertainty sets by 

Sierag and van der Mei (2016) for low quality demand forecasts suggests. As outlined 

above, progress in this regard requires some conceptual thoughts but mostly relates to 

evaluations and, thus, should be feasible. 

7.4 Time Consistency 

There is still no consensus in the literature on stochastic optimization regarding the 

definition of time consistency in a dynamic setting. Several definitions exist, all with 

some intuitive appeal. 

 First, one approach is to consider a criterion for total revenue over the entire horizon 

(see, e.g. Pflug and Pichler (2016)). In revenue management, the firm is usually 

interested only in total revenue of one instance of the sales process (e.g. the revenue 

obtained from selling a flight throughout its booking horizon. Thus, almost all 

authors have this in mind when designing their models and evaluations. The only 

exceptions are time-separable utility functions and Schur et al. (2017) for CVaR. 

 Second, another approach is based on risk measures which are considered time 

consistent if the following statement holds: If some random revenue 𝑅1 is always 

(i.e. for every state of the system) riskier than another random revenue 𝑅2 

conditioned to a given time period 𝑡, then 𝑅1 is also riskier than 𝑅2 conditioned to 

the preceding time period 𝑡 + 1. Or, more formally, knowing the value of the risk 

measure for all conditional distributions is sufficient to calculate its unconditional 

value (Artzner et al. (2007)). 

 A third approach focuses on policies. According to Shapiro (2009), an optimal policy 

is time consistent when decisions in a given time period do not depend on future 

scenarios that are already known to be impossible at that point in time.  
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 Fourth, Rudloff et al. (2014) deem a policy “time consistent if and only if the future 

planned decisions are actually going to be implemented”.  

Whereas the classical, risk-neutral optimization of expected values satisfies all four 

definitions, risk measures usually do not. Often, the first and third definition contradict. 

For example, the VaR considered by Koenig and Meissner (2015a) obviously satisfies 

the first and fourth and violates the second and third decision. Regarding CVaR, 

approaches satisfying the first and fourth (Gönsch et al. (2017)) as well as the third and 

fourth definition (Schur et al. (2017)) exist. 

This issue is not even mentioned in most of the literature on revenue management. Only 

very few authors motivate their choice of decision criterion using some of the above 

definitions. Ideally, future research on time consistency with regard to revenue 

management should provide guidance how to navigate this issue, for example by 

pointing out which definitions are important and when (e.g. in what 

situations/industries). This should go beyond risk-measures and include risk-averse 

criteria as well as robust approaches because at least some definitions (number 3 and 4) 

seem very general. Showing whether criteria are time-consistent should be easy to 

accomplish, but the feasibility of developing tractable, time-consistent alternatives 

where necessary is an open question. 

7.5 More Detailed Modelling 

Compared to the classical, risk-neutral approaches, research incorporating risk-aversion 

and robustness is still in its infancy regarding the modelling of the sales process. In 

capacity control, for example, almost all authors still consider the basic single-leg 

setting without customer choice. Bridging this gap is an obvious avenue for future 

research and developing manageable models and heuristics that include extensions like 

resource networks and customer choice behavior will be necessary to render these 

approaches applicable to a wider range of settings in practice. The feasibility of this 

direction is proved by recent research like Schlosser (2015), who incorporates 

advertising in a dynamic pricing model. 
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However, there is no clear picture in this regard. On the one hand, a more detailed 

model itself might reduce uncertainty from misspecifications. On the other hand, an 

overly detailed model can be very demanding regarding the forecast and might, 

therefore, require robust approaches.  

7.6 Change of Decision-Making Scenario 

The abovementioned extensions aim at capturing the selling process in more detail. By 

contrast, other approaches ultimately target a change of the decision-making scenario, 

that is, for example, the information status or the selling process with its products are 

improved. This is probably the most promising avenue for future research, as these 

approaches have only been considered from the risk-neutral point of view until now, 

where they were already shown to have a big potential to deal with uncertain and 

stochastic demand. Moreover, changing the scenario should also improve the expected 

revenue vs. risk aversion trade-off. While optimizing decision criteria for risk-aversion 

and robustness will be demanding, simply moving these approaches to the stage of risk-

aware revenue management and simply evaluating these criteria will already yield 

important insights regarding their potential to improve the risk profile of a sales process. 

In the following, we briefly describe three groups of approaches. The first group 

improves the information status by reducing uncertainty with learning, while the second 

improves the reaction to occurring events through creating flexibilities on the supplier 

side. The third calls for the consideration of sources of variability other than demand. 

7.6.1. Reducing Risk and Uncertainty through Learning 

All approaches considered thus far assume an exogenously given information status that 

needs to be created with suitable forecasting instruments (see, e.g. Talluri and van Ryzin 

(2004, Chapter 9) for an overview) before the application of the optimization method. 

The methods described in this subsection abolish the strict separation between 

forecasting and optimization and improve the knowledge of demand by learning during 

the sales period. 
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Learning is intensively researched in dynamic pricing, as the almost 400 references in 

the literature overview by den Boer (2015) demonstrate impressively. The basic concept 

is the improvement in demand forecasts during the sales period by observing the past 

price and sales data. If the optimal price is determined only against the background of 

the respective current forecasts, this is called passive learning. Active learning, on the 

other hand, also considers the information gained by setting the current price and the 

value of this information for future optimization. Thus, short-term suboptimal prices, 

e.g. either extremely low or high, may be set. These, however, lead to a substantial 

improvement in the forecast and, thus, to a higher revenue in the long run. This field is 

methodically demanding and considers various objectives. 

In contrast, learning is almost not considered in capacity control. Van Ryzin and McGill 

(2000), however, develop an approach that overcomes the separation of forecast and 

optimization, and determines protection levels directly from the historical data of a 

recurring sales process. The authors show that the algorithm converges to the optimal 

protection levels. Maglaras and Eren (2015) propose a procedure that iteratively 

estimates demand using maximum entropy distributions and uses the estimate for 

capacity control. Both approaches employ passive learning. 

7.6.2. Creation of Supply-side Flexibilities 

One way to create supply-side flexibility are capacity adjustments during the sales 

period. For example, an airline has various possibilities for short-term capacity 

adjustment. Ringborn and Shy (2002) consider the so-called moving curtain in an 

optimization model. Such a moving curtain keeps the total number of seats in an 

airplane constant, but changes the sectioning of the cabin classes. In contrast, 

convertible seats, which Pak et al. (2003) consider, simultaneously change the 

sectioning and the total number of seats. It is also possible to switch to another aircraft 

with a different seat configuration at short notice to better match demand and capacity. 

Berge and Hopperstad (1993) pursue this flight refleeting or demand driven dispatch 

approach. De Boer (2004) proposes EMSR-d, a variant of the popular EMSR-b 
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heuristic. Wang and Regan (2006) focus on revenue management for two flights whose 

aircraft can be swapped once at a given point in time.  

Furthermore, a supplier can create flexibility through flexible products, which offer 

substitution possibilities with regard to the resources used to provide a product. Gallego 

and Phillips (2004), as well as the influential paper of Gallego et al. (2004), introduced 

this concept to the literature on capacity control. Examples here are upgrades, which, for 

example, allow a car rental company to use higher value vehicles to serve demand for 

lower value vehicles (Steinhardt und Gönsch (2012)). Gönsch et al. (2014) provide 

additional examples of flexible products from practice as well as an extensive literature 

overview. Koch et al. (2017) show how to transform a setting with flexible products to 

the standard setting and thus render all existing network revenue management models 

applicable. 

7.6.3. Additional Sources of Variation 

In line with the classical revenue management setting, where demand is the only 

stochastic variable, the literature on risk-averse and robust revenue management almost 

solely focuses on variability caused by demand. Although demand is clearly hard to 

predict, there are of course additional sources of uncertainty like capacities and prices.  
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