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assumption of risk-neutrality lies at the heart of the classical approaches, which aim at maximizing 

expected revenue. In this paper, we give a comprehensive overview of the existing approaches, 

most of which were only recently developed, and discuss the need to take risk-averse decision 

makers into account. We then present a heuristic that maximizes Conditional Value-at-Risk 

(CVaR). Although CVaR has become increasingly popular in finance and actuarial science due to 

its beneficial properties, this risk measure has not yet been considered in the context of revenue 

management. We are able to efficiently solve the optimization problem inherent in CVaR by 

taking advantage of specific structural properties that allow us to reformulate this optimization 

problem as a continuous knapsack problem. In order to demonstrate the applicability and 

robustness of our approach, we conduct a simulation study that shows that the new approach can 

significantly improve the risk profile in various scenarios.  
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1 Introduction 

Revenue management is “a method which can help a firm to sell the right 

inventory unit to the right type of customer, at the right time and for the right 

price” (Kimes 2000). It combines results from areas like demand modeling and 

forecasting as well as mathematical optimization with the goal of maximizing 

expected revenue (or profit). The resulting models and procedures are usually 

integrated into automated systems seeking to manage demand by restricting the 

availability of products through some kind of capacity control. 

All the classical approaches have in common that the assumption of a risk-neutral 

decision maker lies at their heart. This was justified by the large number of similar 

decisions in typical fields of application like airlines and hotel chains. Although 

many people who are new to revenue management consider this assumption 

counter-intuitive and many industry partners question it at first, it has been taken 

for granted for a long time. One reason is that it leads to mathematically simpler 

models, maximizing expected values. 

The contribution of this paper is twofold: On the one hand, we introduce the topic 

and provide the first comprehensive, up-to-date overview of existing approaches 

that consider risk-aversion in revenue management’s capacity control. On the 

other hand, we present a new approach that – to the best of our knowledge – is the 

first one aiming at maximizing Conditional Value-at-Risk (CVaR) and conduct a 

simulation study, showing how the heuristic improves the risk profile of the 

resulting policy in different scenarios. 

The remainder of this paper is organized as follows: In Section 2, we give an 

introduction to revenue management and point out some further literature to the 

reader. Section 3 discusses when the assumption of risk-neutrality is and is not 

appropriate and provides a comprehensive overview of the existing approaches to 

incorporating risk. The new approach that optimizes CVaR is presented in Section 

4. The design of our simulation study is described in Section 5 and the results are 

discussed in Section 6. We conclude with a summary and an outlook on avenues 

of further research in Section 7.  
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2 Revenue Management 

The deregulation of the US airline industry in the 1970s gave rise to revenue 

management as a number of new competitors offering cheap ticket prices entered 

the market. Whereas business customers largely remained loyal to the established 

airlines because of their extensive flight networks with carefully orchestrated 

connection flights and high frequencies, leisure travelers switched to the new low-

cost airlines wherever they offered a point-to-point service between two cherry-

picked cities. This left the traditional airlines in a dilemma: to stay profitable, they 

had to regain leisure travelers, but because of the high cost resulting from 

operating a complex flight network, they could not lower their prices to the low-

cost airlines’ price level. American Airlines was the first to solve this problem 

with the introduction of an additional “Super Saver Fare” aimed solely at leisure 

travelers. This fare was subjected to purchase restrictions, preventing business 

travelers from switching to the new, competitively priced tickets: for example, 

tickets had to be purchased 30 days in advance and required a minimum stay of 

seven days. However, the popularity of these new fares with leisure customers 

raised a new question. Clearly, the new approach would not be beneficial if the 

sale of a low-price ticket replaced a high-paying business customer. Thus, how 

many seats on each flight should be sold at the “Super Saver Fare”? This question 

led to the development of revenue management. 

Despite its birth in practice, revenue management has been extensively researched 

over the past 20 years, as, for example, the surveys by Weatherford and Bodily 

(1992), McGill and van Ryzin (1999), Tscheulin and Lindenmeier (2003) or 

Chiang et al. (2007) show. Furthermore, the standard textbooks by Talluri and van 

Ryzin (2004) and Phillips (2005) give an overview of the field as well as an in-

depth discussion.  

Revenue management instantly became a must-have in the airline industry (see 

Cross 1997). It spread to other service industries where firms have a largely fixed 

capacity and face stochastic demand of inhomogeneous value. Examples are car 

rental companies (see, e.g., Carrol and Grimes 1995, Geraghty and Johnson 
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1997), tour operators (see, e.g., Hoseason and Johns 1998, Klein 2000, Xylander 

2003), passenger railways (see, e.g., Ciancimino et al. 1999, Hood 2000, Bharill 

and Rangaraj 2008, You 2008) to name but a few. More recently, revenue 

management has also been considered in manufacturing (see, e.g., Barut and 

Sridharan 2005, Rehkopf 2006, Spengler et al. 2007, Defregger and Kuhn 2007, 

Wiggershaus 2008, Hintsches et al. 2010, and Volling et al. 2012).  

Following Lautenbacher and Stidham (1999), the standard revenue management 

problem of capacity control is usually formulated as a markov decision process 

(see also the abovementioned surveys and textbooks). In this problem, a firm 

disposes of a perishable resource with a capacity of   units. Products         

each make use of one unit of this capacity and are sold during a selling horizon of 

finite length  . Any capacity that remains thereafter is worthless. Without loss of 

generality, the products are priced at                and variable costs 

are generally neglected (although they could be integrated straightforwardly). 

Regarding demand, the selling horizon is divided into a sufficiently large number 

of   micro periods such that, in each micro period, no more than one customer 

requests a product. Time is indexed forwards, so micro periods   and   mark the 

beginning respectively the end of the selling horizon. Furthermore, the common 

independent demand (ID) assumption holds; that is, the probability       that 

product   is requested in micro period         is given ex ante and       

  ∑      
 
    denotes the probability that no product is requested. The optimal 

expected revenue   
     from period   onwards with remaining capacity   is now 

given by the Bellman equation  

  
     ∑         

    {   }
{           

        }

 

   

           
      

   
   {   } 

∑      (           
        )            

    

 

   

 

(1) 

with the boundary conditions   
        for     and         and 

  
       for    . The variable     {   } describes the denial (     ) or 

acceptance (     ) of a request for product  . This formulation can be explained 
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as follows: In each micro period, a request for product   arrives with probability 

     . If a request for product   arrives, the firm can either accept or reject it. If it 

is accepted (     ), the firm immediately collects revenue   , but goes into the 

next period with one fewer unit of capacity, where it obtains an expected revenue 

of     
      . If the request is rejected (     ), or no request arrives, the firm 

expects a future revenue of     
    , calculated with an unchanged capacity. Thus, 

we obtain the optimal expected revenue with full capacity   over the entire selling 

horizon by recursively calculating   
    . 

It is now easy to see that our firm should accept a request in micro period   if and 

only if        
           

     or, equivalently,  

       
         

        (2) 

Here, the right hand side is the opportunity cost or marginal value of capacity and 

(2) states that a request is accepted only if the associated revenue exceeds the 

opportunity cost. By calculating (1) for every         and        , the 

firm obtains a decision rule (policy) that guides decision making in every state 

      in order to maximize the expected revenue.  

3 Considering Risk in Revenue Management 

In this section, we review the consideration of risk in the revenue management 

literature. For an overview of research incorporating risk in adjacent areas like 

newsvendor problems or dynamic pricing, see, for example, Barz (2007, Chapter 

1.2) and Gönsch et al. (2013, Chapter 4.8). 

In revenue management, the consideration of expected values is generally justified 

by the large number of similar selling processes. For example, airlines have 

hundreds, major ones even several thousands of take-offs every day. Thus, given 

this large number of similar repetitions, a single realization has a low impact, and 

the law of large numbers ensures that the average revenue per repetition is 

maximized and is also quite stable when using a risk-neutral model. As Barz 

(2007) points out, if the number of repetitions is too small, the assumption of both 
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costless insurance markets and perfect capital markets is necessary to convert the 

uncertain revenue stream into a certain one with the same present value.  

Lancaster (2003) was the first to raise the issue of risk and revenue management. 

Interestingly, most authors cite consultants’ experiences in practice to underline 

the relevance of risk-aversion. A consultant who worked with smaller airlines 

asked Weatherford (2004) about risk-averse capacity control. Barz (2007) reports 

that another consultant’s clients were not comfortable with their risk-neutral 

revenue management system. They manually altered the forecast to obtain less 

aggressive (and risky) results. In an experiment conducted at a cruise line 

company, Singh (2011) observed that analysts’ individual risk-aversion has a 

huge impact on their decisions when overriding a revenue management system’s 

output. He attributes this behavior largely to their personality because they made 

decisions about exactly the same issues and possessed identical information. 

Levin et al. (2008) describe two other frequently cited examples. Event promoters 

may organize only a few large events per year in stadiums or concert halls that are 

very expensive to rent. Thus, their first priority would be to recover this fixed 

cost. In other industries, a manager’s primary concern might be to provide stable 

results, because negative news can lead to negative stock market assessments that 

can far outweigh the marginal revenue advantages of a risk-neutral policy.  

Weatherford (2004) was the first to bring revenue management and risk-aversion 

together. He modified the famous EMSR-b heuristic of Belobaba (1992) by 

substituting revenues with a risk-averse utility function. Barz and Waldmann 

(2007) also use an additive time-separable exponential utility function to model 

risk-aversion, but work with the dynamic programming formulation. They show 

that several well-known properties regarding the structure of an optimal policy 

carry over from the risk-neutral dynamic program. In her dissertation, Barz (2007) 

considers additional function types, such as atemporal utility functions that render 

the model less tractable. Moreover, she gives a general introduction to modeling 

risk attitudes with utility functions and how to integrate them into sequential 

decision problems. Feng and Xiao (2008) focus on an atemporal utility function 



 7 

and show, among others, that higher risk-aversion leads to a more conservative 

policy. More specifically, a larger capacity is made available for cheaper products 

instead of waiting for customers who are willing to buy the expensive ones. 

Zhuang and Li (2011) also use an atemporal utility function but restrict 

themselves to only two products, which are sold one after another. In this context, 

they show structural properties regarding the degree of risk-aversion and demand 

volatility. 

Apparently without being aware of Feng and Xiao’s result, Huang and Chang 

(2011) constructed a straightforward heuristic that was directly derived from the 

exact dynamic program by artificially decreasing capacity’s future value and, 

thus, selling more cheap products. Two variants of this approach are shown to 

yield more stable revenues than the standard risk-neutral dynamic program in the 

sense of a lower standard deviation. König and Meissner (2009a) have further 

refined this approach. 

While the aforementioned research aims at optimizing utility, dispersion 

parameters, like standard deviation, are also widely used to evaluate the resulting 

policies. More recently, risk measures, such as Value-at-Risk (VaR) and 

Conditional Value-at-Risk (CVaR), have also been considered for evaluation in 

König and Meissner (2009a) as well as König and Meissner (2010). König and 

Meissner (2009b) remember the event promoter of Levin et al. (2008), who has to 

recover his fixed costs, and modify the dynamic program to minimize the Target 

Percentile Risk (TPR), which is the probability of obtaining less than a given 

target revenue. König and Meissner (2010) point out the need to “compute an 

optimal policy for the common risk measures, such as standard deviation, Value-

at-Risk, or Conditional Value-at-Risk” and focus on the VaR. They determined 

the VaR-optimal policy by performing a binary search that repeatedly calculates 

TPR-optimal policies until the probability of failing the target revenue closely 

resembles the VaR’s level. 

VaR has its roots in finance and was first proposed by the global financial services 

firm J.P. Morgan Chase as an acceptability measure for a financial position with 
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random returns (Wozabal 2012). For a given probability level  , the VaR is the 

lowest revenue that will not be exceeded with a probability greater than or equal 

to  . Not least because of this simple definition as a quantile function, VaR is 

widely used in academia as well as in practice, where it has been incorporated into 

the Basel II and Solvency II regulations. However, despite its popularity, VaR has 

certain drawbacks. Obviously, it completely neglects the distribution of revenue 

below the quantile. Moreover, VaR does not belong to the important class of 

coherent risk measures, proposed in a seminal paper by Artzner et al. (1999), 

since it lacks certain desirable and intuitive properties. For example, it fails to 

satisfy the subadditivity property required for coherent risk measures, and, 

furthermore, the set of acceptable revenues may not be convex. Therefore, VaR 

should not be used to control multiple risky positions, as the individual control of 

each position does not allow for the control of their sum. The risk of a combined 

position may be deemed greater than the sum of the individual risks, and 

diversification may be penalized. In addition, VaR also fails to recognize the 

concentration of risks (Artzner et al. 1999). Owing to these shortcomings, VaR is 

increasingly being replaced by the Conditional Value-at-Risk (CVaR, also called 

Average VaR or Tail VaR). For continuous distributions, CVaR is simply the 

expectation below the VaR and, thus, considers “how bad is bad” (Artzner et al. 

1999). In addition, it is a coherent risk measure (Pflug 2001). Despite these 

advantages, to the best of our knowledge, no work has been conducted that 

directly aims at optimizing CVaR in revenue management until now. 

4 Modeling CVaR in Revenue Management 

In this section, we present the new heuristic approach to optimizing CVaR in the 

context of revenue management. To this end, we state formal definitions of CVaR 

(Section 4.1) and discuss challenges when maximizing CVaR in a multistage 

revenue management environment together with a solution approach recently 

proposed in the literature (Section 4.2). Based on this, we develop a heuristic that 

is computationally efficient. To this end, we first reformulate the value function to 
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reduce its state space (Section 4.3). Furthermore, in Section 4.4, we show how the 

exploitation of the value function’s structural properties facilitates solving the 

minimization problem, which occurs in each state. By reformulating this 

optimization problem as a continuous knapsack problem, we are able to give an 

efficient algorithm for the computation of the new approach. 

4.1 General representations of CVaR 

The first building block we need is a formal definition of CVaR. As the most 

intuitive definition of CVaR relies on the VaR, we start with a formal definition of 

the latter. Given a confidence level   [   ] and random variable   on a 

probability space (       with distribution function            , we use 

the following definition of VaR:  

           {        }        , (3) 

where   denotes a profit; that is, bigger values of   are preferred. With (3), CVaR 

is now straightforwardly defined as  

          [           ]   [          ]  (4) 

From a theoretical point of view, (4) is valid only if considering probability spaces 

without atoms. But clearly, in the problem defined above, revenue is a discrete 

random variable for each given policy. Thus, we turn to the more common, but 

less intuitive definition 

            { [  ]  [ ]         
 

 
}  

                    

(5) 

As Pflug and Pichler (2012) explain, the infimum in (5) is among all nonnegative 

random variables     with expectation  [ ]    (densities), which satisfy the 

additional truncation constraint   
 

 
. This representation is also known as 

CVaR’s dual representation. To give some intuition on this formula, the   can be 

viewed as weights that indicate whether an event (atom) falls below      and is 

thus included in or excluded from the CVaR’s expectation. Loosely speaking, 
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what distinguishes (5) from (4), is that it is now possible to divide an atom and 

include only part of it in CVaR’s expectation. 

4.2 CVaR in a multistage environment 

Given (4) and (5),       is well defined for a given policy as described in 

Section 2. The authors mentioned in Section 3 use this in order to – mostly 

empirically – evaluate their policies. But how can we find a      -optimal 

policy? At first, it might seem intuitive to simply substitute the expectation in (1) 

with (5). Although such a calculation of       at every time step seems 

straightforward, it is unfortunately not the same as calculating       over the 

whole selling horizon (see Artzner et al. 2007). The same holds for the 

optimization of       in a multi-stage decision problem, as shown in this simple 

example: Assume that the level   is smaller than the probability that no customer 

arrives (     ) for every micro period. Then, obviously, only the case of no arrival 

in every period would be considered in such a step-wise CVaR, and, thus, the 

optimization. This completely ignores that the probability of no arrival throughout 

the whole selling horizon may be much smaller than  . Moreover, the number of 

micro periods is somewhat arbitrary, rendering a CVaR that is related to single, 

artificial micro periods less desirable. 

As a recent result by Pflug and Pichler (2012) shows, the level   indeed cannot 

remain constant in multistage evaluations of CVaR, and changes with the 

probability of obtaining an atom included in the CVaR. One can use this result to 

obtain a value function that represents the maximum attainable       from micro 

period   onwards: 

    
               

       
  

      
  

∑          

 

   

      
                  

         
                        , 

(6) 

where the         is over all   with  [ ]            and    depends on 

              , the complete history of past decisions and               , 
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the history of past customer arrivals as well as                   
 . The total 

revenue depends on the complete history of past decisions and customer arrivals 

and is denoted by             . This shows how the stage-wise optimization can 

be retained while optimizing CVaR, but at the cost of a level   that is no longer 

constant, but becomes a random variable. The value of   in micro period     

depends on       , which is a random variable in earlier periods but becomes 

known in period  .  

However, this formulation requires convexity of the action space      . As 

capacity control’s decisions on the acceptance of requests are discrete, and 

therefore    {   } , this condition is obviously not met and the aforementioned 

value function only serves as an approximation to the actual CVaR.  

4.3 Reformulation of the value function 

In the following section, we use Equation (6) as a starting point to construct our 

heuristic. Calculating (6) in the context of revenue management poses two 

challenges: the intractably large state space and the computationally expensive 

minimization problem for each stage. 

The first challenge, the high dimensionality of its state space, results from the 

inclusion of the decision history      as well as the past demand realizations     , 

which are necessary to calculate              at the final stage. Fortunately, the 

state space can be simplified as follows: First, observe that in (6) past decisions 

and demand realizations are only needed to calculate the revenue obtained in the 

past and to determine what additional requests can be accepted; for the latter, 

knowing the remaining capacity is sufficient. Moreover, revenues can be 

considered directly at each stage owing to CVaR’s translation equivariance, 

namely: 

                       

for a random variable   and    . Thus, similar to (1), it suffices to include the 

remaining capacity in the state space in addition to the level   and (6) can be 

written as 
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∑          

 

   

                           

                        , 

(6) 

subject to the boundary conditions:            for     and           for 

   . As in (2), the firm should accept a request for product   if and only if  

                          

where, as stated above, the value of   becomes known in period  .  

4.4 Efficient implementation 

For a straightforward implementation of (6), we employed the fmincon function, 

which is part of the Optimization Toolbox for MATLAB, in order to solve the 

optimization problem in each state. The function performs a constrained 

minimization without requiring any information about the objective function and 

therefore takes no advantage of any inherent structural properties.  

To calculate (6) more efficiently, we exploit structural properties that come to 

light when we transform the value function        , which seems to possess no 

clear structure besides the obvious monotonicity. In contrast, the function 

 ̃                  (7) 

is also convex in   (see Pflug and Pichler 2012). Additionally, in the context of 

capacity control,  ̃       is piecewise linear in   due to the discrete distribution 

of revenues. This structure can be used to considerably simplify the optimization 

problem and, as it is necessary to solve it in each state, this has a large impact on 

the overall run-time. Below, we present an algorithm that efficiently solves the 

minimization problem to optimality.  

First, by substituting (6) into (7), we obtain  

 ̃             
  

      
  

∑     

 

   

               ̃                   

       ̃             . 

Now, let  



 13 

              ∑      

 

   

               ̃                  

         ̃            . 

(8) 

Moreover, as we consider only discrete random variables with compact support, 

the         is in fact a minimum. Therefore, at each state       and for each 

decision   , we have to solve the minimization problem  

    
  

              (9) 

s. t.   
       (10) 

 
      

 

 
         

(11) 

         (12) 

where    (             )
 
. With   ̃      , we combine the level   and    

to rewrite (8) as  ̃ (      ̃ )  ∑        
     ̃           ̃   (       ̃  )  

       ̃   (   ̃  ). Using this, the abovementioned problem can be rewritten as 

    
 ̃ 

 ̃ (      ̃ ) (13) 

s. t.   
  ̃    (14) 

    ̃             (15) 

  ̃      ,  (16) 

where  ̃  is piecewise linear in  ̃          , which is obvious when  ̃  is 

written as  ̃ (      ̃ )  ∑        
    ̃  (      ̃  )         ̃  (      ̃  ) with 

 ̃  (      ̃  )   ̃           ̃   (       ̃  )         and  ̃  (      ̃  )  

 ̃   (   ̃  ) due to the piecewise linearity of  ̃   . 

As       {   } , the evaluation of  ̃  (      ̃ ) only involves  ̃           if 

requests for product   are accepted (     ) and  ̃         if requests for product   

are rejected (     ) in period  , including the case of no customer arrival. 

Subsequently, we denote by                 
   the set of points, 

where  ̃           is not differentiable, including the endpoints 0 and 1. 



 14 

Likewise, we denote by                 
   the set of points, where 

 ̃         is not differentiable, again including the endpoints 0 and 1. Thus, with 

     we can denote the slope of  ̃   in segment   that is between     and        for 

requests accepted (     ) and between     and        for requests rejected 

(     ). This structure enables us to partition each variable  ̃   into variables 

 ̃    corresponding to segment   of  ̃   and write  ̃   as  ̃  (      ̃  )  

∑  ̃       
  
    with ∑  ̃     ̃  

  
   , for      , where    is replaced by    for 

     . From the convexity of  ̃     it follows that           . Thus, (9)–(12) 

can be expressed as the following linear program: 

   
 ̃ 

∑ ∑ ̃    (         )

  

          

 ∑ ∑ ̃    (         )

  

          

 (17) 

s. t.    ̃                            (18) 

    ̃                            (19) 

 
∑ ∑ ̃         

  

          

 ∑ ∑ ̃         

  

          

   (20) 

Moreover, Problem (17)–(20) is in fact a continuous knapsack problem where  ̃    

is the number of items selected of type         and       represents the items’ 

weight. Constraints (18) and (19) represent the amount available of each item, and 

constraint (20) is the weight restriction of the knapsack. Thus, Problem (17)–(20) 

can be solved efficiently by using a simple greedy procedure (Dantzig 1957). 

The basic idea of such a procedure is to sort the items according to their relative 

value per unit weight, which is 
(         )

     
     in this case. As we have a 

minimization problem, the items are subsequently considered in the order of 

increasing relative value. As much as possible is selected from each item with 

respect to constraints (18) and (19). The procedure terminates when our knapsack 

is full and condition (20) is satisfied. 

We provide the formal algorithm, which we call lowest-ascent, in the following. 

Steps 1–3 involve some initializations. The core of the algorithm is Step 4. Here, 

we iterate over the slopes until the knapsack is full; that is, condition (20) is 
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satisfied with  [ ̃ ]   . In each iteration  , we select as much as possible from 

every item with relative value      (Steps 4.1 and 4.2). This amount is restricted 

by the amount available (Steps 4.2.1 and 4.2.2) and, for the last item, by the 

knapsack’s maximum weight (Step 4.2.3), whichever is less. As we are only 

interested in the  ̃   to obtain a solution for Problem (13)–(16), we directly add the 

increase to  ̃   (Step 4.2.4). 

Algorithm lowest-ascent: 

1.  ̃              

2.      

3. sort all unique slopes     in ascending order                  

4. while  [ ̃ ]     

4.1.   {              } 

4.2. for          

4.2.1. if      :               

4.2.2. else:               

4.2.3.    
   [ ̃ ]

     
 

4.2.4.  ̃  = ̃              

4.2.5. if  [ ̃ ]   : break 

4.3.       

5 Simulation experiment design 

In this section, we describe the design of simulation experiments used to compare 

the new approach developed in Section 4 to standard benchmark approaches. All 

implementations were done in MATLAB version R2012b and were run on a PC 

with a 2.8 GHz Intel Core i7 processor and 8 GB of RAM, running on Microsoft 

Windows Server 2008 Enterprise SP2 64 bit. We outline the approaches and 

control mechanisms considered in the simulation study in Section 5.1 and describe 

the settings considered in Section 5.2. In Section 5.3, we determine the grid size 

for   based on an analysis of how different grid sizes influence the accuracy and 
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runtime of the algorithm. The subsequent Section 6 contains the results of the 

simulation study. 

5.1 Control mechanisms 

In the simulation study, we compare the new approach to several standard control 

mechanisms. The following mechanisms are considered:  

 CVAR denotes the new control mechanism developed in Section 4. We 

discretized the state space and used an equidistant grid with a grid size of 

  , i.e.   {              }, together with a linear interpolation in order 

to compute the value function via dynamic programming. In Section 5.3, 

we show that this is a reasonable compromise between accuracy and 

runtime. 

 EV implements the control mechanism given by Equation (2) and uses the 

opportunity cost calculated by the classical dynamic program (Equation 

(1)). This mechanism is optimal in that it maximizes the revenue’s 

expected value.  

 FCFS is a very simple mechanism that accepts all requests in a first come, 

first served manner until no more capacity is left. 

 EXPOST is a mechanism that uses perfect hindsight information on 

incoming demand to pick ex post the requests to accept from each demand 

stream. Thus, it calculates the maximum revenue that can be obtained 

from each demand stream and thereby maximizes expected revenue and 

Conditional Value-at-Risk. The obtained values serve as an upper bound 

for all other mechanisms. 

5.2 Settings 

The design of our simulation experiments is based on a classical example by Lee 

and Hersh (1993). Their setting is widely used in revenue management (see, e.g., 

Subramanian et al. 1999), especially in the context of risk-aversion (see, e.g., Barz 
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2007, Barz and Waldmann 2007 and König and Meissner 2009a). The example 

consists of an airplane with a capacity of      seats and four products (booking 

classes)     {     } with revenues of                      and 

     . As it is often the case in practice, demand for more expensive products 

tends to arrive later. The selling horizon consists of    micro periods and is 

partitioned into five intervals. Our first setting is the original setting from Lee and 

Hersh (1993) and, thus, denoted as Setting Lee/Hersh. The request probabilities 

for each interval are shown in Table 1, where       denotes the probability of a 

request for product   in micro period  . These probabilities reflect the fact that in 

passenger air transportation, higher value demand (often business customers) 

tends to arrive later in the selling horizon. 

Table 1 Request probabilities for Setting Lee/Hersh 

Request probability 

Micro period   

                           

                               

                               

                            

                            

To further evaluate the robustness of our results, we use two additional variants of 

this setting that differ in their arrival of demand over time. In the first variant, 

denoted as Setting LBH, demand follows the classical low-before-high assumption 

and customers demanding lower value products arrive strictly before customers 

asking for more expensive products. Table 2 shows the request probabilities. We 

chose the probabilities such that total expected demand for each product is the 

same as in Lee and Hersh’s example. The length of the time intervals is set such 

that the total number of micro periods remains at 30 and the demand intensity 

increases towards the end of the selling horizon. Again, this effect is widely 

observed in airline practice. 
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Table 2 Request probabilities for Setting LBH 

Request probability 

Micro period   

                       

                 

                 

                 

                 

In the third setting, we consider the time-homogeneous arrival probabilities shown 

in Table 3 (Setting Flat). Again, 30 micro periods are used and the probabilities 

are set such that total expected demand is the same as in Setting Lee/Hersh. 

Table 3 Request probabilities for Setting Flat 

Request probability 

Micro period   

     

             

             

             

             

To evaluate our approach’s performance, we generated 10,000 customer streams 

for each setting and used the abovementioned mechanisms to decide on the 

acceptance of requests and calculate the resulting revenue for each stream. 

5.3 Grid size and runtime 

We started the numerical experiments with a preliminary investigation of the grid 

size used in CVAR to discretize the state space with regard to  . For this purpose, 

we performed CVAR with five different grid sizes,     ,     ,     ,     , and 

    , to compute the value function given by Equation (6). For each grid size, we 

evaluated the demand streams 101 times, optimizing the CVaR at levels   
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{             }. Figure 1 shows the CVaRs obtained in Setting Lee/Hersh. As 

the results for other settings are very similar, they were omitted.  

Whereas very low and high values of   have similar results, they vary 

considerably for intermediate levels. For values of   between about     and    , 

the difference in CVaR is up to nearly   . Obviously, a finer grid size leads to 

higher CVaRs, but the difference between a grid size of 0.05 and 0.01 is 

negligible for all values of  .  

In addition to these results, which were obtained using our lowest-ascent 

algorithm from Section 4.4, we also tested a straightforward implementation using 

the fmincon function provided by MATLAB’s Optimization Toolbox version 

6.2.1 with a grid size of 0.05. Compared to our algorithm with the same grid size, 

this implementation performed slightly worse in respect to the attained CVaR and 

was therefore excluded from further analysis. The weaker performance is 

probably due to the numerical approximations used by fmincon. 

 

Figure 1 Attained CVaR (Setting Lee/Hersh) 

Lowest-ascent’s advantage over fmincon is even more obvious when runtimes are 

considered (Table 4). For a grid size of 0.05, lowest-ascent is about 90x faster 



 20 

than fmincon. Jointly considering the attained CVaR and runtime, we think that a 

grid size of 0.05 offers a reasonable tradeoff and continue to use it in the 

following. Nonetheless, the new approach requires the solution of a continuous 

knapsack problem in every state. This leads to longer runtimes when compared to 

the risk-neutral dynamic program. As the settings only differ in the arrival 

probabilities, and therefore the computational complexity of each approach (risk-

averse and risk-neutral) is the same in all settings, we explicitly state the runtimes 

only for Setting Lee/Hersh. 

Please note that the values given in Table 4 refer to the time necessary to calculate 

the value function, which is necessary only once and can be done upfront, prior to 

the selling horizon. In all the approaches, the same time is needed to actually 

decide on whether or not to accept an arriving request. Moreover, to obtain results 

that are easy to compare and owing to very short runtimes, our implementation 

does not use parallelization. However, due to the specific structure of the dynamic 

program, the algorithm could easily be implemented using parallel computing. 

Consequently, the number of threads could easily reach the full initial capacity.  

Table 4 Runtimes in Setting Lee/Hersh  

Control 

mechanism 
Grid size 

Runtime 

[mm:ss.ms] 

CVAR      10:17.514 

CVAR      00:24.882 

CVAR      00:06.490 

CVAR      00:03.260 

CVAR      00:02.000 

CVAR with 

fmincon 0.05 35:51.545 

EV – 00:00.156 
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6 Numerical Results 

In this section, we present the main results of an extensive simulation study that 

compares the new approach developed in Section 4 to standard benchmark 

approaches. In Section 6.1, we compare the CVaR obtained by the new approach 

with the benchmark mechanisms’ results. In Section 6.2, we discuss the influence 

of demand’s temporal distribution and compare the mechanisms to results 

obtained with perfect hindsight information. Finally, we take a look at the 

capacity utilization (Section 6.3) and the tradeoff between risk-aversion (i.e. 

maximizing CVaR) and expected revenue (Section 6.4). 

6.1 Comparison of control mechanisms’ CVaRs 

In this section, we compare the revenue performance of the new approach with the 

benchmarks in each of the three settings described above. We first compare the 

CVaR of the revenues obtained with our approach with the benchmarks’ CVaR. 

Second, focusing on the influence of demand’s arrival order, we use the same 

method to compare the revenues obtained in the different settings. Finally, we 

take a look at capacity utilization to investigate how the observed revenues are 

attained. 

Figures 2–4 show the CVaR obtained using the four control mechanisms outlined 

in Section 5.1. For each setting, we calculated the       for 

  {             }. As the acceptance decisions of EV, FCFS, and EXPOST do 

not depend on the level  , we first processed all demand streams using these 

mechanisms and subsequently calculated the       using the resulting per-

stream revenues. In contrast, CVAR’s decisions depend on the level   and we 

have to process the streams for each   to determine the distribution of total 

revenue and calculate the CVaR. 

CVAR clearly outperforms FCFS for all levels of   in all three settings and 

outperforms EV for       in Setting Lee/Hersh (Figure 2) and Setting Flat 

(Figure 4). In Setting LBH (Figure 3), CVAR is superior to EV for all      . For 

higher values of  , there is essentially no difference. This behavior is intuitive, 
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because as    ,       approaches the expected value and CVAR’s policy 

increasingly resembles that of EV. For low levels of   (approximately below    ), 

FCFS performs better than EV and almost as well as CVAR. This is due to the fact 

that a low confidence level means considering only the worst outcomes, which 

usually are the ones with no or very weak demand. Thus, with decreasing  , 

CVAR accepts more requests upfront and becomes more similar to FCFS, which 

accepts all requests. In contrast, EV denies some requests for products with lower 

revenues and rather waits for requests for products with higher revenues. 

Therefore, FCFS can be considered a policy for an extremely risk-averse decision 

maker. Please note that, while CVAR is formally equivalent to EV for    , it is 

not fully equivalent to FCFS for     because CVAR involves waiting for high 

revenue requests that will arrive for sure. In sum, in realistic settings, FCFS and 

EV can be considered two extremes between one can vary by choosing a level 

  [   ] for CVAR. 

 

Figure 2 Attained CVaR (Setting Lee/Hersh)

 

Figure 3 Attained CVaR (Setting LBH) 
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Figure 4 Attained CVaR (Setting Flat) 
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6.2 The influence of demand’s temporal distribution 

Next, we focus on the influence of demand’s arrival order. For each control 

mechanism, we compare the CVaR obtained when demand is low-before-high 

(Setting LBH), somewhere in-between (Setting Lee/Hersh), and time-

homogeneous (Setting Flat). Figures 5–7 show the resulting CVaR for EV, FCFS, 

and CVAR relative to the CVaR obtained with EXPOST. This benchmark is 

widely used in numerical studies in revenue management, even though it disposes 

of perfect hindsight demand information and, therefore, provides only an easy-to-

calculate upper bound on the expected revenue. This bound is usually not 

attainable through control methods disposing of only distributional information. 

Thus, the gap between a control mechanism and EXPOST usually consists of two 

components: the value of information and what we call the optimality gap that 

stems from the mechanisms’ heuristic nature. Moreover, in this context, EXPOST 

is useful because it does not depend on the setting; it ignores demand’s temporal 

distribution and only uses information on total expected demand, which is equal 

in all three settings. As CVaR equals the expected value at    , the expected 

revenue is displayed at the right of all figures.  

Figure 5 displays the performance of EV, which is optimal in terms of expected 

revenue. Thus, at    , we have the optimal expected revenue that can be 

obtained. Here, the difference between EV and EXPOST is solely the value of 

information and there is no optimality gap. Not surprisingly, revenues decline and 

this gap increases when lower value products are requested earlier and capacity 

control becomes more challenging. Regarding smaller values of  , the difference 

between EV and EXPOST increases because, besides the information value, there 

is also an optimality gap between them as we still follow a policy that optimizes 

the expected value instead of the evaluated CVaR depicted in the figure.  

The results for CVAR are shown in Figure 6. CVAR performs best in the time-

homogeneous case (Setting Flat), where it delivers at least     of EXPOST. Its 

performance is slightly lower in Setting Lee/Hersh, but still quite impressive; it 
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delivers at least     of EXPOST. CVAR performs worst in Setting LBH where 

demand arrives strictly low-before-high, delivering at least     of EXPOST. 

When comparing CVAR and EV, it is important to remember that Figures 5 and 6 

display the same values for the level    . However, whereas the relative 

CVaRs obtained through EV decline with decreasing   (from right to left), CVAR 

yields constant results. Only Setting Flat shows a slight decline of about      

from     to      . Beginning at about      , the relative CVaR rises until 

it reaches      in all three settings at    . Regarding the optimality of the 

policy calculated with CVAR, the comparison to EXPOST is only of limited 

explanatory power because, with our heuristic approach, we are not able to 

determine an optimal policy or confirm that our policy is optimal. Therefore, we 

do not know how much of the difference is due to the information value. 

However, for    , we know that the difference equals the information value. As 

the difference is the biggest for      we are quite confident that the policy is 

quite good, although we do not know how the value of information declines with 

decreasing  .  

For the sake of completeness, Figure 7 shows the results for FCFS. In general, the 

picture is quite similar to that of CVAR, but the attained CVaRs are considerably 

lower at about 90%, 87%, and 77% for the three settings. 

 

Figure 5 Percentage of EXPOST (EV) 

 

Figure 6 Percentage of EXPOST (CVAR) 



 

 26 

 

Figure 7 Percentage of EXPOST (FCFS) 

The value of     is a special case. According to (5), the       only reflects 

the worst outcome, that is the simulation run with the least revenue. Thus, the 

result is more or less arbitrary, even with a very large number of simulation runs. 

In Settings Lee/Hersh and LBH, as expected, EV obtains quite a small revenue in 

the worst customer stream compared to EXPOST’s revenue in the stream where 

EXPOST obtains the lowest revenue (The worst streams are not necessarily the 

same for different control mechanisms). But surprisingly, EXPOST and EV obtain 

identical revenues in the worst stream of Setting Flat. A detailed analysis shows 

that these worst streams for EXPOST and EV are identical and only contain 3 

customer requests. Obviously, EXPOST accepts all 3 requests, even though they 

are for low value products. But EV also accepts the requests, because they arrive 

quite late in the selling horizon. Thus, we get identical values for       for both 

methods, although this result is quite unusual because the probability that such a 

stream is generated is extraordinarily low. 

6.3 Capacity utilization 

To investigate how CVAR achieves its results, we consider the mean capacity 

utilization for each setting, shown in Figure 8. At first, we notice that the capacity 

utilization declines in  : The less risk-averse we become, that is, the higher  , the 
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longer CVAR waits for higher revenue requests that may (or may not) arrive in the 

future. More precisely, early arriving lower revenue requests are rejected and the 

lowest capacity utilization is attained for    , which is the same policy as EV. 

In Setting Flat and Setting Lee/Hersh, the capacity utilization declines rather 

smoothly in  , whereas in Setting LBH, it seems to decline in three steps. This 

seemingly odd behavior is caused by demand arriving strictly low before high. 

The average number of accepted requests in all three settings is shown in Figure 

9–Figure 11 and Table 5 in the Appendix. Figure 10 reveals that in Setting LBH, 

CVAR seems to follow some kind of protection level approach, at least regarding 

the earliest (lowest revenue) product 4. The steps correspond to (from left to right) 

accepting a maximum of 3, 2, 1 or 0 requests for that product. The effect of this 

protection level approach for product   on total capacity utilization is larger than 

the influence of the other products, and determines the prevalent structure of 

capacity utilization. Note that average numbers are smaller than these integers as 

they reflect the probability that the respective number of requests will actually 

arrive. 

 

Figure 8 Capacity Utilization 
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Figure 9 Average number of accepted  

requests (CVAR, Setting Lee/Hersh) 

 

Figure 10 Average number of accepted  

requests (CVAR, Setting LBH) 

 

Figure 11 Average number of accepted requests (CVAR, Setting Flat) 

6.4 Tradeoff between risk-aversion and expected revenue 

Although our primary goal is to maximize CVaR for a certain level of  , we 

briefly consider revenue’s standard deviation in this section. Figures 12–14 show 

scatter plots of the standard deviation against the mean of total revenues for the 

three settings considered. Each of the 21 points in a plot represents employing 
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CVAR with a specific value for   and computing the sample mean and standard 

deviation of total revenues across all customer streams. In addition, the values 

obtained with EV and FCFS are indicated. As already discussed in Section 6, they 

are identical to the values obtained with CVAR for     and    , respectively. 

We notice a large reduction in the standard deviation when using CVAR with 

    compared to EV (   ). As the confidence level   declines, the standard 

deviation also declines further. However, this trend only holds for      . For 

smaller values of  , the standard deviation increases again and reaches the value 

of FCFS for    . While capacity control decisions for intermediate values of   

apparently smooth the revenues obtained from the stochastic customer streams, 

this does not hold for very low values of  . Here, the worst outcomes are 

increasingly considered and capacity control increasingly resembles FCFS which 

accepts all requests until the capacity is fully occupied. Using FCFS, we obtain 

simply the mean and the standard deviation of the sum of the first ten requests’ 

prices. 

Not surprisingly, all three figures clearly show that the optimization of CVaR for 

a level     and, thus, the reduction in standard deviation comes at the price of a 

decrease in expected revenue. Note that while the points are quite evenly spread in 

Setting Lee/Hersh and Setting Flat, they are clustered into about four groups in 

Setting LBH. This again reflects that there are only a few major policy changes as 

  is varied.  
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Figure 12 Comparison of expected value and 

standard deviation (Setting Lee/Hersh)

 

Figure 13 Comparison of expected value and 

standard deviation (Setting LBH) 

 

Figure 14 Comparison of expected value and standard deviation (Setting Flat) 

7 Conclusions 

As revenue management increasingly spreads to industries other than the large 

airlines where it was born some 30 years ago, new challenges arise. One issue is 

the assumption of risk-neutrality that lies at the heart of traditional revenue 

management. While this assumption is, on average, perfectly appropriate in the 

long run, based on a high number of flight departures, hotel room bookings, etc., 

it does not take into account that decision makers may prefer stable results in the 
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short term rather than accepting the volatility caused by risk-neutral models. 

While users’ acceptance of automated systems is always an issue in practice, we 

observed in our consulting practice that even highly trained analysts with a 

mathematical background (rightly?) mistrust risk-neutral systems. However, as 

Singh (2011) observed in an experiment conducted at a cruise line company, 

analysts following only their intuition make very different and contradicting 

decisions when overriding a revenue management system’s output. 

As a result, risk-averse models have been considered in revenue management 

since about a decade ago and a variety of risk indicators have been used. 

However, although research on risk and revenue management has recently gained 

momentum, our literature review shows that the body of scientific publications is 

still quite limited. 

This paper contributes to that research by proposing – to the best of our 

knowledge – the first approach that directly aims at maximizing CVaR, an 

intuitively appealing risk measure that is widely used in finance due to its 

desirable theoretical properties. The exploitation of the underlying value 

function’s structure allows us to reformulate the inherent optimization problem as 

a continuous knapsack problem and provide an algorithm that allows for an 

efficient implementation. Thus, the runtime is reduced to a fraction of the time 

needed by a straightforward implementation that uses standard optimization 

functions. In a simulation study based on an example widely used in the literature, 

we show that the new approach delivers very good results. Moreover, we give 

insights into how these results are obtained and discuss the approach’s 

relationship to widely used benchmark approaches.  

In our opinion, there are two main avenues for further research on this topic. The 

first specifically relates to our approach and includes extensions to other risk 

measures that admit a Choquet representation, and, thus, are closely related to 

CVaR. Moreover, it may be worthwhile to obtain upper bounds that are tighter 

than our variant of the standard benchmark using hindsight information. The 

second avenue relates to research on risk-averse revenue management in general, 
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where the consideration of a single resource and so-called independent demand is 

standard. This is justified by risk-aversion being most relevant to smaller firms. 

Moreover, these assumptions allow for focusing on the effects of risk-aversion in 

models with an improved mathematical tractability. Nonetheless, resource 

networks and customer choice are highly relevant in some industries and 

increasingly considered in research on classical risk-neutral revenue management. 

Therefore, we think that bringing these elements and risk-aversion together would 

be an interesting avenue for future research. The extension of our approach to 

resource networks is quite straightforward, although all the difficulties known 

from classical network revenue management will come into play. Similarly, the 

inclusion of customer choice is a possibility but the challenge will be to develop a 

model that is computationally tractable. 
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Appendix 

Table 5 CVAR’s average number of accepted requests per product 

Setting Product 

  

                                                                                          

Lee/Hersh 

  2.04 2.07 2.12 2.17 2.24 2.29 2.34 2.39 2.44 2.48 2.53 2.57 2.61 2.66 2.69 2.72 2.75 2.78 2.8 2.83 2.84 

  2.01 2.04 2.09 2.14 2.2 2.25 2.29 2.34 2.39 2.43 2.47 2.51 2.54 2.58 2.61 2.64 2.66 2.68 2.7 2.71 2.72 

  2.89 2.91 2.93 2.96 2.98 3 3.03 3.04 3.06 3.07 3.08 3.08 3.11 3.11 3.11 3.1 3.08 3.06 3.04 3.02 3 

  2.91 2.83 2.7 2.55 2.39 2.24 2.1 1.97 1.84 1.72 1.6 1.49 1.35 1.23 1.15 1.07 1.01 0.97 0.93 0.9 0.88 

LBH 

  0.77 1.35 1.43 1.56 1.6 1.9 2.09 2.13 2.18 2.24 2.28 2.4 2.4 2.41 2.42 2.42 2.42 2.42 2.64 2.67 2.7 

  2.16 2.61 2.54 2.78 2.75 2.73 2.52 2.49 2.55 2.69 2.76 2.86 2.86 2.85 2.84 2.84 2.84 2.84 2.97 3.01 3.04 

  3.43 3.21 3.2 2.82 2.8 3.15 3.15 3.14 3.01 2.8 2.77 3.13 3.13 3.13 3.13 3.13 3.13 3.12 3.3 3.2 3.13 

  3.51 2.64 2.64 2.64 2.64 1.9 1.9 1.9 1.9 1.88 1.77 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0 0 0 

Flat 

  2.3 2.31 2.33 2.37 2.41 2.44 2.48 2.52 2.56 2.59 2.63 2.66 2.69 2.72 2.75 2.78 2.81 2.83 2.85 2.87 2.89 

  2.33 2.34 2.37 2.4 2.44 2.47 2.51 2.54 2.58 2.61 2.64 2.68 2.7 2.74 2.77 2.79 2.81 2.83 2.84 2.86 2.87 

  2.59 2.6 2.62 2.65 2.68 2.71 2.73 2.76 2.78 2.81 2.83 2.85 2.86 2.89 2.91 2.91 2.9 2.88 2.86 2.84 2.82 

  2.63 2.6 2.52 2.42 2.29 2.19 2.08 1.96 1.85 1.73 1.63 1.53 1.44 1.31 1.21 1.13 1.07 1.03 1 0.98 0.96 
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