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Abstract 

In deregulated markets, electricity is usually traded in advance and the advance commitments have a time 

lag of several periods. For example, in the German intraday market, the seller commits to providing 

electricity 45 minutes before the 15-minute interval in which delivery has to be made. We consider the 

problem of a producer that generates energy from stochastic, renewable sources, such as solar or wind, 

and uses a storage device with conversion losses.  

We model the problem as a Markov Decision Process and consider lagged commitments for the first time 

in the literature. The problem is solved using an innovative approximate dynamic programming approach. 

Its key elements are the analytical derivation of the optimal action based on the value function 

approximation, and a new combination of approximate policy iteration with classical backward induction. 

The new approach is quite general with regard to the stochastic processes describing the energy 

production and price evolution. We demonstrate the application of our approach by considering a wind 

farm/storage combination. 

A numerical study using real world data shows the applicability and performance of the new approach 

and investigates how the storage device’s parameters influence profit.  

 

Keywords: electricity, renewable energy, storage, dynamic programming 

 

 



2 

1 Introduction 

Today, the integration of a steadily increasing amount of electricity from renewable 

sources is a major challenge for many countries’ power systems. However, energy 

production from these sources is often stochastic as it depends on, for example, the wind 

blowing and the sun shining. In practice, two approaches are predominantly employed 

to balance supply and demand at all times, which is essential for a stable power grid. 

The first approach seeks to temporally shift demand through demand side management 

(see, e.g., Strbac (2008) for an overview of the techniques, as well as the benefits and 

challenges). It uses, for example, smart meters and corresponding tariffs, with higher 

prices charged when energy is scarce. The second approach aims at the supply side and 

is based on storing excess energy for later usage. In fact, energy producers with 

renewable, stochastic sources increasingly consider adding a storage device to obtain 

higher prices for their energy, and to avoid being constrained by power grid congestions 

limiting their feed-in into the network. For example, Bosch, the German technology and 

service supplier, recently added a storage device to a community wind farm in Northern 

Germany (Robert Bosch GmbH (2014)).  

This paper contributes to the second approach. We consider a profit-maximizing firm 

that generates electrical energy from stochastic, renewable sources, such as solar or 

wind. The energy is sold on a market and can be stored in a storage device with 

conversion losses. As in all modern energy markets―with the exception of special 

regulating markets that jump in if a party fails to comply with its contracts―there is a 

considerable time lag between the commitment and the actual delivery of energy. For 

example, at the EPEX SPOT intraday market, which is the major European power 

exchange covering France, Germany, Austria, and Switzerland, contracts can be traded 

until 45 minutes before the 15-minute interval in which delivery has to be made. In the 

day-ahead market, the time lag may, at a minimum, comprise several hours. Hence, the 

commitment is decided well before the relevant energy production becomes known and 

the producer faces a tradeoff. On the one hand, if the firm overcommits and cannot 

deliver later as promised, because the energy production and the storage fall short of the 

commitment, the missing energy must be obtained at a possibly very high cost on the 

regulating market. On the other hand, if it undercommits and could have delivered 

more, the firm might forfeit its profit due to conversion losses, or because the storage is 
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full and cannot absorb the excess energy. Moreover, the power feed-in into the grid is 

constrained due to, for example, limited transmission line capacity. 

In keeping with the trading process’s structure, we formulate a Markov Decision 

Process (MDP) in discrete time with a finite time horizon. To the best of our 

knowledge, this is the first paper to consider real markets’ lagged commitments. The 

resulting state space with numerous continuous dimensions inhibits the use of classical 

backward induction to solve this MDP to optimality, thus making approximate dynamic 

programming (ADP) techniques self-evident.  

This paper’s major contribution is the development of an innovative ADP framework 

based on autoregressive stochastic processes describing the energy production and price 

evolution. We analytically derive the optimal commitment for an approximation of the 

value function. Based on this, we develop an algorithm called HAPI (Hybrid 

Approximate Policy Iteration) to approximate the value function, using a new 

combination of approximate policy iteration and classical backward induction. In 

numerical experiments, we show that this framework can be used for a wind farm with a 

storage device. As there is no optimal solution available for the problem considered, we 

compare HAPI with another approximate solution of the MDP and with several intuitive 

heuristics based on the energy production’s expected value. Conducted with real world 

data, the numerical experiments indicate that our ADP approach shows a better profit 

and runtime performance. 

The paper is organized as follows: In Section 2, we briefly review the literature. 

Sections 3 and 4 contain the general framework. The generic decision problem is 

modeled as an MDP in Section 3. We develop our new ADP approach regarding 

arbitrary stochastic processes in Section 4. Sections 5 and 6 contain the application to 

the wind farm/storage combination, with Section 5 presenting the algebra required for 

usage with the specific processes considered, and Section 6 presenting numerical 

experiments. Section 7 concludes the paper. The appendix contains the analytical 

derivations referred to in Sections 4 and 5.  
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2 Literature review 

In the following, we outline the stream of literature most relevant to our setting, i.e., 

publications modeling problems involving the optimal control or valuation of energy 

storage as an MDP.  

Mokrian and Stephen (2006) focus on the use of storage for intraday arbitrage, 

developing a stochastic optimization problem and a dynamic program for optimizing the 

operation of storage over a 24-hour period. Costa et al. (2008) consider the combination 

of a storage device and a wind farm, formulating the optimal scheduling problem as a 

dynamic program. Lai et al. (2010) develop an ADP method that computes the lower 

and upper bounds of natural gas storage capacity’s value. Hannah and Dunson (2011) 

apply ADP to the day-ahead commitment problem of a wind farm in combination with 

energy storage. Löhndorf et al. (2013) study the optimization of hydro-storage systems 

when participating in both the intraday and day-ahead markets. Sioshansi et al. (2014) 

determine the capacity value of energy storage by means of dynamic programming. 

Zhou et al. (2015) assess the value of storage for trading on a real-time market and 

derive structural results regarding the MDP’s optimal policy. Surprisingly, in numerical 

experiments with real world prices, they show that a very inefficient battery, which 

more or less only burns energy, has the highest value, because it exploits negative 

prices. Jiang et al. (2014) directly compare different ADP approaches’ performance for 

the optimal control of an energy storage device. Jiang and Powell (2015) focus on one 

of these approaches and exploit the monotonicity of the value function. In addition, the 

same group has published a number of (working) papers on similar topics (see, e.g., 

Nascimento and Powell (2009), Salas and Powell (2013) and Scott and Powell (2012)).  

Closest to our paper are Zhou et al. (2014), Kim and Powell (2011), and Löhndorf and 

Minner (2010), all of whom address a profit-maximizing power producer with 

renewable sources. The producer utilizes a storage device and makes energy 

commitments on the market. In contrast to our work, none of these publications 

considers a time lag between making the commitment and the delivery of energy. Zhou 

et al. (2014) consider transmission line capacity and analytically characterize the 

optimal policies for a discretized version of the problem. In contrast, Kim and Powell 

(2011), as well as Löhndorf and Minner (2010), do not incorporate a constrained feed-in 

into the grid, and model the optimization problem by an MDP with continuous states. 
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The former authors analytically derive an optimal policy for an infinite horizon under 

certain assumptions, whereas the latter use ADP to approximately solve the problem for 

a finite horizon. However, Löhndorf and Minner (2010) only consider perfectly efficient 

storage. An additional key difference between our study and that of Kim and Powell 

(2011) is that instead of deriving a solution for specific stochastic processes, our 

approach allows a broad range of processes for modeling market prices and energy 

production through the use of ADP. However, we are no longer able to analytically 

characterize the optimal policy for the exact MDP. 

3 Generic model formulation 

We assume a profit-maximizing power producer that generates electricity from a 

renewable power source and possesses a storage device with conversion losses. This 

firm operates in two markets. The energy produced is sold on the intraday market. 

Additionally energy may be bought on a regulating market to compensate for an 

unexpected shortfall of production. 

On the intraday market, a commitment is made in advance. If the commitment cannot be 

met by means of actual energy production and energy stored in the storage device, 

energy has to be bought at a higher price on the regulating market. The producer thus 

pays an a priori unknown penalty for not meeting its commitment. On both markets, the 

producer is assumed to act as a price taker, because the firm’s trading volume is small—

think of an individual wind farm operator. 

The basic sequence of events is illustrated in Figure 1: Energy is produced continuously, 

but decisions are only taken at discrete points in time. Thus, we only consider the 

system at these points in time. At time 𝑡, the producer learns about the energy 

production 𝑌𝑡 during the interval between time 𝑡 − 1 and time 𝑡 and the resulting 

storage level 𝐿𝑡. Moreover, the producer takes note of the current selling price 𝑃𝑡 and 

the penalty price 𝑄𝑡. Using this information, the producer decides on 𝑥𝑡, the advance 

commitment sold now and delivered with a time lag of 𝜏 between time 𝑡 + 𝜏 − 1 and 

𝑡 + 𝜏. If, in this time interval, supply 𝑌𝑡+𝜏 falls short of the commitment 𝑥𝑡, the producer 

first resorts to the storage, where a storage level of 𝐿𝑡+𝜏−1 remains at time 𝑡 + 𝜏 − 1. If 

the stored energy does not suffice, the producer incurs a penalty payment of 𝑄𝑡+𝜏 per 

unit, as energy is automatically bought on the regulating market. On the other hand, if 
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the supply exceeds the commitment, the excess energy is stored. The new storage level 

at time 𝑡 + 𝜏 is denoted by 𝐿𝑡+𝜏.  

  

Figure 1  Sequence of events with lagged advance commitment 

In the following subsections, we model the decision problem outlined above as an MDP 

with the common elements from literature (see, e.g., Powell (2011) Chapter 5 and 

Puterman (2005)). We begin the description with the exogenous processes governing 

the prices and the energy production in Section 3.1. The state of the system and the 

transition function are defined in Section 3.2 and the evolution of the storage is stated in 

Section 3.3. In Section 3.4, the contribution earned from a commitment is formalized. 

Finally, the resulting value function is given in Section 3.5. Table 1 provides an 

overview of the notation introduced in this section. 

Table 1  Notation introduced in Section 3 

Parameters 

𝐿𝑚𝑎𝑥  storage capacity 

𝜌𝑅 efficiency when energy is stored 

𝜌𝐸 efficiency when energy is taken from the storage 

Δ𝑡 length of a time interval  

𝜏 time lag between commitment and delivery of energy 

𝑇 number of time intervals 

𝛽 discount factor 

𝑥𝑚𝑎𝑥 maximum commitment 

ℎ𝑌 order of the autoregressive process describing the energy production  

ℎ𝑃 order of the autoregressive process describing the selling price for electricity 

ℎ𝑄 order of the autoregressive process describing the penalty price for electricity 

(𝛼𝑖
𝑌)𝑖=1,…,ℎ𝑌

 parameters of the autoregressive process describing the energy production 

(𝛼𝑖
𝑃)𝑖=1,…,ℎ𝑃

 parameters of the autoregressive process describing the selling price for electricity 

𝑡 − 1 𝑡 𝑡 + 𝜏 − 1 𝑡 + 𝜏

production 𝑌𝑡 production 𝑌𝑡+𝜏

storage level 𝐿𝑡

prices 𝑃𝑡, 𝑄𝑡

decision on 𝑥𝑡 delivery of 𝑥𝑡

lag 𝜏

storage level 𝐿𝑡+𝜏−1

prices 𝑃𝑡+𝜏−1, 𝑄𝑡+𝜏−1

storage level 𝐿𝑡+𝜏

prices 𝑃𝑡+𝜏, 𝑄𝑡+𝜏
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(𝛼𝑖
𝑄)

𝑖=1,…,ℎ𝑄
  parameters of the autoregressive process describing the penalty price for electricity 

Decision (action) variable 

𝑥𝑡 = 𝜋𝑡(𝑆𝑡) commitment decided at time 𝑡 in state 𝑆𝑡 for delivery between time 𝑡 + 𝜏 − 1 and 𝑡 + 𝜏 

State variables 

𝑡 discrete time index with actual time 𝑡 ⋅ Δ𝑡 

𝐿𝑡 storage level at time 𝑡  

𝑌𝑡 total energy production between time 𝑡 − 1 and 𝑡  

𝑃𝑡 (selling) price for electricity committed at time 𝑡 and delivered between time 𝑡 + 𝜏 − 1 and 𝑡 + 𝜏 

𝑄𝑡 (penalty) price for electricity bought at the regulating market at time 𝑡  

𝑊𝑡 = ((𝑌𝑡′)𝑡−ℎ𝑌+1≤𝑡′≤𝑡  , (𝑃𝑡′)𝑡−ℎ𝑃+1≤𝑡′≤𝑡  , (𝑄𝑡′)𝑡−ℎ𝑄+1≤𝑡′≤𝑡) exogenous state of the system at time 𝑡 

𝑆𝑡 = (𝐿𝑡 , 𝑥𝑡−𝜏+1, … , 𝑥𝑡−1, 𝑊𝑡) state of the system at time 𝑡 

Additional notation 

�̂�𝑡  random variable capturing the noise of 𝑌𝑡 

�̂�𝑡  random variable capturing the noise of 𝑃𝑡 

�̂�𝑡  random variable capturing the noise of 𝑄𝑡 

𝐿𝑡(𝐿𝑡−1, 𝑌𝑡 , 𝑥𝑡−𝜏) evolution of the storage from time 𝑡 − 1 to time 𝑡  

𝑇(𝑆𝑡 , 𝑥𝑡 , 𝑌𝑡+1, 𝑃𝑡+1, 𝑄𝑡+1) transition function describing the transition from state 𝑆𝑡 to state 𝑆𝑡+1 

Φ(⋅ |𝜇, 𝜎2) cumulative distribution function of the normal distribution with mean 𝜇 and variance 𝜎2 

𝐶(𝑆𝑡 , 𝑥𝑡) contribution function: expected profit obtained from commitment 𝑥𝑡 in state 𝑆𝑡 

𝜋 = (𝜋0, … , 𝜋𝑇−1) policy providing a decision for each time period and each state 

𝑉𝑡(𝑆𝑡) value function: total expected profit obtained in state 𝑆𝑡 from time 𝑡 onwards  

 

3.1 Exogenous processes 

As the producer is a price taker, we consider exogenous autoregressive processes for the 

total energy production 𝑌𝑡 between time 𝑡 − 1 and 𝑡, for the price 𝑃𝑡 of selling energy 

on the intraday market at time 𝑡, and for the penalty price 𝑄𝑡 incurred if energy is 

bought on the regulating market at time 𝑡. With these processes, the exogenous state of 

the system at time 𝑡 is 𝑊𝑡 = ((𝑌𝑡′)𝑡−ℎ𝑌+1≤𝑡′≤𝑡 , (𝑃𝑡′)𝑡−ℎ𝑃+1≤𝑡′≤𝑡  , (𝑄𝑡′)𝑡−ℎ𝑄+1≤𝑡′≤𝑡) 

where the order of the respective autoregressive stochastic processes is given by ℎ𝑌, ℎ𝑃, 

and ℎ𝑄.  

Specifically, 

 𝑌𝑡+1 = ∑ 𝛼𝑖
𝑌𝑌𝑡−𝑖+1

ℎ𝑌
𝑖=1 + �̂�𝑡+1  

 𝑃𝑡+1 = ∑ 𝛼𝑖
𝑃𝑃𝑡−𝑖+1

ℎ𝑃
𝑖=1 + �̂�𝑡+1  

 𝑄𝑡+1 = ∑ 𝛼𝑖
𝑄𝑄𝑡−𝑖+1

ℎ𝑄

𝑖=1
+ �̂�𝑡+1   (1) 
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with noise terms �̂�𝑡+1, �̂�𝑡+1 and �̂�𝑡+1 following a specific distribution. More complex 

autoregressive models are easily integrated into this framework. This includes, but is not 

limited to, the consideration of seasonalities by the integration of further deterministic 

components as well as allowing for heteroscedasticity. A detailed description of these 

extensions is excluded to keep the presentation concise but can be found in basic 

textbooks on time series analysis (see, e.g., Brockwell and Davis (2013) or Shumway 

and Stoffer (2013)). 

In the beginning of the time horizon, the exogenous state has either not reached its full 

size as there is not enough data yet (yielding the same result in the autoregressive 

models as setting the relevant values to zero) or, if the model is applied in rolling 

horizon based planning, past values from before the considered time horizon may be 

available and can be used. In the following, we assume full size of 𝑊𝑡 to keep the 

notation concise. 

Some rather mild conditions are necessary to derive the analytical solution used in the 

ADP approach in Section 4: 

 (𝑌𝑡), (𝑃𝑡) and (𝑄𝑡) need not be stochastically independent, but their joint 

distribution must be known.  

 The first and second moment of each random variable have to exist. Moreover, this 

condition must also hold for the three pair-wise second lower partial moments, i.e., 

∫ 𝑦𝑝 𝑑𝐹(𝑌𝑡,𝑃𝑡)(𝑦, 𝑝)
[0,𝑧]×ℝ

, ∫ 𝑝𝑞 𝑑𝐹(𝑃𝑡,𝑄𝑡)(𝑝, 𝑞)
ℝ2 , and ∫ 𝑦𝑞 𝑑𝐹(𝑌𝑡,𝑄𝑡)(𝑦, 𝑞)

[0,𝑧]×ℝ
, 

where always 𝑧 > 0. 

3.2 State of the system and transition function 

We represent the state of the system at time 𝑡 as 𝑆𝑡 = (𝐿𝑡, 𝑥𝑡−𝜏+1, … , 𝑥𝑡−1, 𝑊𝑡) ∈

ℝ1+(𝜏−1)+ℎ𝑌+ℎ𝑃+ℎ𝑄. For 𝑡 < 𝜏 − 1, either past values are used for 𝑥𝑡 if available or 𝑥𝑡 is 

set to zero (analogous to the initialization of 𝑊𝑡 described in Section 3.1). The transition 

from state 𝑆𝑡 to state 𝑆𝑡+1 when committing 𝑥𝑡 is then given by the following  transition 

function: 

 𝑆𝑡+1 = 𝑇(𝑆𝑡, 𝑥𝑡 , 𝑌𝑡+1, 𝑃𝑡+1, 𝑄𝑡+1) =

(𝐿𝑡+1(𝐿𝑡, 𝑌𝑡+1, 𝑥𝑡−𝜏+1), 𝑥𝑡−𝜏+2, … , 𝑥𝑡, 𝑊𝑡+1(𝑊𝑡, 𝑌𝑡+1, 𝑃𝑡+1, 𝑄𝑡+1))    
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where 𝐿𝑡+1(𝐿𝑡, 𝑌𝑡+1, 𝑥𝑡−𝜏+1), the evolution of the storage, is given below in Section 3.3 

and 𝑊𝑡+1(𝑊𝑡, 𝑌𝑡+1, 𝑃𝑡+1, 𝑄𝑡+1) =

((𝑌𝑡′)𝑡−ℎ𝑌+2≤𝑡′≤𝑡+1 , (𝑃𝑡′)𝑡−ℎ𝑃+2≤𝑡′≤𝑡+1 , (𝑄𝑡′)𝑡−ℎ𝑄+2≤𝑡′≤𝑡+1), i.e., the oldest 

information is discarded and new information revealed at time 𝑡 + 1 is included. Please 

note that the transition function yields the next state 𝑆𝑡+1. The probability of this 

transition is given by the transition probability function (Puterman (2005)), which we do 

not explicitly state here as it directly follows from the transition function and the 

exogenous processes. 

3.3 Evolution of the storage 

The storage level at time 𝑡 is given by 

 𝐿𝑡(𝐿𝑡−1, 𝑌𝑡, 𝑥𝑡−𝜏) = {
min{𝐿𝑚𝑎𝑥 , 𝐿𝑡−1 + 𝜌𝑅(𝑌𝑡 − 𝑥𝑡−𝜏)} if 𝑥𝑡−𝜏 < 𝑌𝑡

max {0, 𝐿𝑡−1 −
1

𝜌𝐸
(𝑥𝑡−𝜏 − 𝑌𝑡)} if 𝑥𝑡−𝜏 ≥ 𝑌𝑡

 (2) 

If the total energy production between time 𝑡 − 1 and 𝑡 exceeds the commitment to be 

delivered in this time interval (𝑥𝑡−𝜏 < 𝑌𝑡), the excess energy 𝑌𝑡 − 𝑥𝑡−𝜏 is stored with a 

conversion factor 𝜌𝑅, but the storage level 𝐿𝑡 cannot exceed the maximum capacity 

𝐿𝑚𝑎𝑥. On the other hand, if the energy production falls short of the commitment (𝑥𝑡−𝜏 ≥

𝑌𝑡), we have to extract 
1

𝜌𝐸
(𝑥𝑡−𝜏 − 𝑌𝑡) from the storage, again with a conversion factor 

𝜌𝐸. If the storage level is not sufficient, we fail to meet the commitment and energy is 

bought on the regulating market, which incurs a penalty cost of 𝑄𝑡 as described in 

Section 3.4.  

3.4 Contribution (revenue) function 

We use the following contribution function:  

 𝐶(𝑆𝑡, 𝑥𝑡) = 𝑃𝑡𝑥𝑡 − 𝛽𝔼[𝑄𝑡+1[𝑥𝑡−𝜏+1 − (𝜌𝐸𝐿𝑡 + 𝑌𝑡+1)]+|𝑆𝑡, 𝑥𝑡] (3) 

for 𝑡 ≤ 𝑇 − 1. At time 𝑡, this contribution includes the revenue obtained from selling 

the commitment 𝑥𝑡 minus an eventual penalty payment at time 𝑡 + 1. The revenue only 

depends on values known at time 𝑡 (𝑃𝑡 , 𝑥𝑡). The penalty payment is discounted with a 

factor 0 < 𝛽 ≤ 1 and is not incurred after the end of the horizon. Its calculation 



10 

necessitates an expectation, because—besides 𝐿𝑡 and 𝑥𝑡−𝜏+1, which are known at 𝑡—it 

depends on values that realize after 𝑡 (𝑌𝑡+1, 𝑄𝑡+1).  

3.5 Objective function and value function 

The power producer’s goal is to maximize the expected discounted profit. Thus, the 

objective function is the sum of the contributions over the time horizon: 

 max
𝜋

𝔼[∑ 𝛽𝑡𝐶(𝑆𝑡, 𝜋𝑡(𝑆𝑡))𝑇−1
𝑡=0 ]    

Here, the maximization is over all policies 𝜋 = (𝜋0, … , 𝜋𝑇−1). A policy is a function of 

the current state 𝑆𝑡 that tells us what decision to take in that state, i.e., 𝑥𝑡 = 𝜋𝑡(𝑆𝑡). A 

maximum feed-in into the grid is considered by 𝜋𝑡(𝑆𝑡) ∈ [0, 𝑥𝑚𝑎𝑥]. 

Next, we formulate the value function (also known as the Bellman equation) to solve 

the problem in a dynamic programming framework. The maximum expected profit 

obtained in state 𝑆𝑡 from time 𝑡 onwards is given by 

 𝑉𝑡(𝑆𝑡) = max
𝑥𝑡∈[0,𝑥𝑚𝑎𝑥]

{𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[𝑉𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡]}                                   (4) 

with the boundary conditions 𝑉𝑇(𝑆𝑇) = 0 ∀ 𝑆𝑇. The optimal commitment is 𝜋𝑡
∗(𝑆𝑡) =

argmax
𝑥𝑡∈[0,𝑥𝑚𝑎𝑥]

{𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[𝑉𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡]}. The value function captures the revenue 

from selling the current and all the future commitments, minus eventual penalty costs 

incurred in the future, including those due to past commitments.  

Please note that we do not explicitly constrain the power flow into/out of the storage. 

However, the maximum production and the maximum feed-in into the grid 𝑥𝑚𝑎𝑥 are 

implicit constraints. A tighter limit can be modeled by an adequate modification of 

equation (2) for inflows and equations (2)–(3) for outflows. 

4 Approximate solution of the generic model 

Roughly speaking, three issues complicate solving the value function (4) (see also the 

three classical curses of dimensionality in Powell (2011)): (i) The state space with 

several continuous dimensions complicates the representation and calculation of the 

value function 𝑉𝑡(𝑆𝑡). (ii) The expectation in 𝑉𝑡(𝑆𝑡) can be difficult to compute, due to 

the continuous outcome space of 𝑊𝑡. Moreover, (iii) the continuous action space only 
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allows for approximately determining the optimal action by using the common hands-on 

discretization and by enumerating possible actions; further, the finer the discretization 

the more expensive the process. 

In the following subsections, we tackle these challenges. We (i) start by simplifying the 

value function’s representation through an approximation with basis functions, which 

(ii) also simplifies the calculation of the expectation (Section 4.1). This (iii) allows us to 

derive a closed-form solution for the commitment that is optimal with regard to the 

approximation (Section 4.2). Finally, we present the new policy iteration algorithm to fit 

this approximation in Section 4.3. Table 2 contains the notation additionally introduced 

in this section. 

Table 2: Notation introduced in Section 4 

Parameters 

𝑛𝑃𝐼 maximum number of policy iteration steps performed for each point in time 

𝑛𝑝𝑎𝑡ℎ𝑠 number of sample paths evaluated in each policy evaluation step 

𝑛𝑐𝑜𝑛𝑣 number of states sampled for convergence check 

𝜀𝑐𝑜𝑛𝑣 threshold for convergence check 

Additional notation 

𝐹 set of basis functions 

�̃�𝑡(𝑆𝑡) value function approximation: �̃�𝑡(𝑆𝑡) ≈ 𝑉𝑡(𝑆𝑡) 

𝜽 = (𝜃𝑡
𝑖𝑗

) coefficients used in the approximation �̃�𝑡(𝑆𝑡) 

𝒗 = (𝑣𝑡
𝑚) accumulated contributions obtained in sample path 𝑚 from time 𝑡 onwards  

 

4.1 Approximation of the value function 

Following a common technique in ADP, we approximate the value function at time 𝑡 by 

using a linear architecture consisting of a linear combination of (time-dependent) basis 

functions (features) (𝜙𝑓)
𝑓∈𝐹

, i.e., 𝑉𝑡(𝑆𝑡) ≈ �̃�𝑡(𝑆𝑡) = ∑ 𝜃𝑡
𝑓

𝜙𝑓(𝑆𝑡)𝑓∈𝐹 . Specifically, we 

use second degree polynomials. Set 𝑁 ≔ 1 + (𝜏 − 1) + ℎ𝑌 + ℎ𝑃 + ℎ𝑄, so that 𝑆𝑡 ∈ ℝ𝑁, 

let 𝑆𝑡
𝑖 denote the 𝑖-th component of 𝑆𝑡 = (𝐿𝑡, 𝑥𝑡−𝜏+1, … , 𝑥𝑡−1, 𝑊𝑡) as defined in Section 

3.2, and denote by 𝜽 = (𝜃𝑡
𝑖𝑗

) the coefficients of the basis functions. Then  

 �̃�𝑡(𝑆𝑡) = 𝜃𝑡
00 + 𝜃𝑡

𝑁+1,0𝑡 + ∑ [𝜃𝑡
𝑖0𝑆𝑡

𝑖 + 𝜃𝑡
𝑖𝑖(𝑆𝑡

𝑖)
2

+ ∑ 𝜃𝑡
𝑖𝑗

𝑆𝑡
𝑖𝑆𝑡

𝑗𝑁
𝑗=𝑖+1 ]𝑁

𝑖=1 , (5) 

Note that time is included linearly with coefficient 𝜃𝑡
𝑁+1,0

 to allow the same set of 

coefficients to be used for several points in time. 
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4.2 Derivation of the best commitment 

Now, the best action in state 𝑆𝑡 at time 𝑡 is to commit 

 𝜋𝑡
∗(𝑆𝑡) = argmax

𝑥𝑡∈[0,𝑥𝑚𝑎𝑥]
{𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡]}  (6) 

Given the approximation (5) and the conditions established in Section 3.1, this optimal 

commitment can be calculated as  

𝜋𝑡
∗(𝑆𝑡) =  

{
�̅�𝑡

∗(𝑆𝑡)                                                                        if 𝜃𝑡+1
𝜏𝜏 < 0 ∧ �̅�𝑡

∗ ∈ [0, 𝑥𝑚𝑎𝑥]

argmax
𝑥𝑡∈{0,𝑥𝑚𝑎𝑥}

{𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡]}  otherwise  (7) 

with �̅�𝑡
∗(𝑆𝑡) = −

1

2𝜃𝑡+1
𝜏𝜏 (

1

𝛽
𝑃𝑡 + 𝜃𝑡+1

𝜏0 + ∑ 𝜃𝑡+1
𝜏𝑖 𝔼[𝑆𝑡+1

𝑖 |𝑆𝑡, 𝑥𝑡]𝑖∈{1,…,𝑁}\𝜏  ). See Appendix 

A.1 and A.2 for a respective detailed derivation of 𝜋𝑡
∗(𝑆𝑡) and 𝔼[𝑆𝑡+1

1 |𝑆𝑡, 𝑥𝑡] =

𝔼[𝐿𝑡+1|𝑆𝑡, 𝑥𝑡]). If argmax
𝑥𝑡∈{0,𝑥𝑚𝑎𝑥}

{𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡]} has to be computed, 

then 𝔼[(𝐿𝑡+1)2|𝑆𝑡, 𝑥𝑡] is necessary, whose derivation is similar to that of 𝔼[𝐿𝑡+1|𝑆𝑡, 𝑥𝑡] 

given in Appendix A.2. All the other expressions required for this case are known 

according to the conditions stated in Section 3.1. 

The closed-form solution for 𝜋𝑡
∗(𝑆𝑡) is key for an efficient ADP algorithm. The faster 

the calculation of the (partial) moments, the faster the evaluation of (7). This reduces the 

computational burden tremendously compared to the numerical solution approaches 

widely used in ADP, as we will show in our numerical experiments. 

4.3 Approximate Policy Iteration 

In this section, we present the new algorithm for approximately solving the MDP 

defined in Section 3. We call it Hybrid Approximate Policy Iteration (HAPI), because it 

blends elements from approximate policy iteration (API) with classical backward 

induction. 

The basic structure of API algorithms (see, e.g., the textbooks by Powell (2011) and 

Bertsekas (2012) for a dynamic programming perspective, as well as that by Wiering 

and van Otterlo (2012) for a reinforcement learning perspective) is as follows: An inner 

loop evaluating a policy (policy evaluation step) is combined with an outer loop seeking 

to improve the policy (policy iteration step). Before starting the algorithm, the basis 
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function coefficients are set to an initial value. This also determines the initial policy, 

which is obtained by calculating the optimal action, given the current value function 

approximation. Thereafter, in the policy evaluation step, the value of the current policy 

is estimated using a set of sample paths. Each sample path consists of an initial state of 

the system at the first point in time and the realizations of the exogenous processes until 

the end of the horizon. The system’s evolution is simulated for each sample path. The 

process starts with the initial state. A decision is then made by following the current 

policy, and, given the decision and the realization of the exogenous process, the process 

moves on to the next state. Thereafter, a decision is again made, and so on. While this is 

done along the sample path, the accumulated contributions are calculated, representing 

the value of each state visited. Finally, these values are used to update the value 

function approximation, from which a new policy is derived in the policy iteration step. 

The next iteration starts with a new policy evaluation step.  

1. 𝜽 = 𝟎 

2. for 𝑡 = 𝑇 − 1 to 0 

2.1. for 𝑘 = 1 to 𝑛𝑃𝐼 

2.1.1. 𝒗 = 𝟎 

2.1.2. compute sample realizations 𝑌𝑚,𝑡′ , 𝑃𝑚,𝑡′ , 𝑄𝑚,𝑡′  ∀ 𝑡′ = 𝑡 + 1, … , 𝑇,

𝑚 = 1, … , 𝑛𝑝𝑎𝑡ℎ𝑠 

2.1.3. for 𝑚 = 1 to 𝑛𝑃𝑎𝑡ℎ𝑠 

2.1.3.1. sample initial state 𝑆𝑚,𝑡 

2.1.3.2. for 𝑡′ = 𝑡 to T-1 

2.1.3.2.1. determine optimal action 𝑥𝑡′
∗ (𝑆𝑚,𝑡′ , 𝜽) 

2.1.3.2.2. 𝑆𝑚,𝑡′+1 = 𝑇(𝑆𝑚,𝑡′ , 𝑥𝑡′
∗ (𝑆𝑚,𝑡′ , 𝜽), 𝑌𝑚,𝑡′+1, 𝑃𝑚,𝑡′+1, 𝑄𝑚,𝑡′+1) 

2.1.3.3. end for 

2.1.3.4. 𝑣𝑚,𝑡1
= ∑ 𝛽𝑡2−𝑡1𝐶 (𝑆𝑚,𝑡2

, 𝑥𝑡2
∗ (𝑆𝑚,𝑡2

, 𝜽))𝑇−1
𝑡2=𝑡1

 ∀𝑡1 = 𝑡, … , 𝑇 − 1 

2.1.4. 𝜽 =Update_Coefficients(𝒗, 𝜽) 

2.1.5. if Policy_Converged(𝑛𝑐𝑜𝑛𝑣, 𝜀𝑐𝑜𝑛𝑣) 

2.1.5.1. break  

2.1.6. end if 

2.2. end for 

3. end for 

Figure 2  Hybrid Approximate Policy Iteration (HAPI) Algorithm 

In the following, we outline the key differences between the new HAPI algorithm 

shown in Figure 2 and standard API algorithms. The parameters 𝑛𝑃𝐼 and 𝑛𝑝𝑎𝑡ℎ𝑠 
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respectively denote the number of policy iteration steps and the number of sample paths 

used for each policy evaluation. The tolerance used to determine the convergence is 

𝜀𝑐𝑜𝑛𝑣 and the accumulated contributions obtained in the sample path 𝑚 from time 𝑡 

onwards are stored in 𝒗 = (𝑣𝑚,𝑡′) 𝑡′=𝑡,…,𝑇
𝑚=1,…,𝑛𝑝𝑎𝑡ℎ𝑠

. 

 Instead of starting every sample path in 𝑡 = 0, accumulating the contributions, and 

updating 𝜃𝑡
𝑖𝑗

 for all 𝑡 in each policy iteration, we employ a procedure working 

backwards in time, mimicking backward induction. This is reflected in the 

additional for-loop (Step 2). Only after estimating the value function at time 𝑡 as 

best as possible (and, more importantly, obtaining a good policy), we move on to 

time 𝑡 − 1. Again, the initial states are sampled (now in 𝑡 − 1) and for each sample 

path 𝑚, the value 𝑣𝑚,𝑡−1 of using the current policy is determined by following the 

sample path from 𝑡 − 1 until 𝑇 − 1. Moreover, we obtain 𝑣𝑚,𝑡′ for all states visited 

on the path. All these values are then used to update the value function 

approximation. In doing so, we take advantage of the good policy already 

determined for all the following stages 𝑡, 𝑡 + 1, … , 𝑇 − 1. Thus, the approach 

simultaneously ensures both broad exploration by sampling the initial states for 

every point in time 𝑡 and emphasis on the regions of the state space often visited. 

 To fit the value function approximation (5), we use an approach initially proposed 

by Lagoudakis and Parr (2003). Specifically, we take advantage of the linear 

architecture and perform ordinary least squares to minimize the 𝐿2-norm between 

the true (sampled) value function and the approximation. In this context, we use 

recursive least squares to minimize the computational burden incurred by updating 

the basis function coefficients in Step 2.1.4. This technique is quite popular, but 

every new estimate of a state’s value is usually immediately used to update the 

coefficients (see, e.g., Powell (2011)). We speed up the process considerably by 

collecting the accumulated contributions for all the sample paths and performing 

recursive least squares in a batch after each policy evaluation, which is formally 

equivalent.  

 The policy convergence is checked in Step 2.1.5 and, if the policy has converged, 

the algorithm moves on to time 𝑡 − 1. The convergence check works as follows: A 

given number of 𝑛𝑐𝑜𝑛𝑣 states is sampled. In these states, the policy at time 𝑡 − 1 

resulting from the new coefficients is compared to the one resulting from the 
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previous coefficients, as the coefficients 𝜃𝑡
𝑖𝑗

 determine the policy at time 𝑡 − 1. If 

the mean absolute deviation of the policy over all the states is less than the 

parameter 𝜀𝑐𝑜𝑛𝑣, the policy is assumed to have converged and we move on to the 

next point in time 𝑡 − 1. 

5 Optimizing a wind farm’s commitments 

In this section, we use our approach to optimize the policy of a wind farm with a storage 

device. In the following subsections, we explain the specific form of the exogenous 

processes used for 𝑊𝑡 in detail, and show that the conditions in Section 3.1 are satisfied. 

We begin with the exogenous processes governing the prices (Section 5.1) and 

thereafter describe the process for the generation of electricity (Section 5.2). The model 

resulting from these specific stochastic processes is described in Section 5.3. Table 3 

provides an overview of the notation newly introduced in this section. 

Table 3  Notation introduced in Section 5 

Parameters 

𝜇𝑃 mean of the market price  

𝜅𝑃 mean-reversion parameter of the market price  

𝜎𝑃 standard deviation of the change in market price  

𝑚 slope of the penalty cost with regard to the market price 

𝑠𝑐𝑖  cut-in speed 

𝑠𝑐𝑜 cut-out speed 

𝑠𝑟  rated speed 

𝑟 rated power 

𝜆 scale parameter of the Weibull distribution for wind speed 

𝑘 shape parameter of the Weibull distribution for wind speed 

Additional notation 

𝒩(𝜇, 𝜎2) normal distribution with mean 𝜇 and variance 𝜎2 

𝑊𝐵(𝜆, 𝑘) Weibull distribution with scale parameter 𝜆 and shape parameter 𝑘 

𝑤𝑠𝑡  wind speed between time 𝑡 + 𝜏 − 1 and 𝑡 + 𝜏 

𝑎, 𝑏 auxiliary parameters for wind turbine 

𝑠𝑝(𝑦) wind speed providing the energy production 𝑦 
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5.1 Exogenous process for electricity prices 

In the literature, the standard way to model electricity prices is by a mean-reverting 

process (Möst and Keles (2010)). Accordingly, we assume a discrete-time version of the 

popular Ornstein-Uhlenbeck process (used, among others, by Kim and Powell (2011)): 

 𝑃𝑡+1 = 𝑃𝑡 + 𝜅𝑃(𝜇𝑃 − 𝑃𝑡)Δ𝑡 + �̂�𝑡+1.   (8) 

The mean-reversion parameter 𝜅𝑃 governs how fast the price returns to the mean price 

𝜇𝑃 and is proportional to the expected frequency at which it crosses its mean per unit 

time. The random variables �̂�𝑡 are i.i.d. with distribution 𝒩(0, 𝜎𝑃
2) and capture the noise 

in the evolution of 𝑃𝑡. Transferred into the notation in Section 3.1 this leads to ℎ𝑃 =

1, 𝛼1
𝑃 = 1 − 𝜅𝑃 ⋅ Δ𝑡 and �̂�𝑡+1~𝒩(𝜇𝑝 ⋅ 𝜅𝑝 ⋅ Δ𝑡 , 𝜎𝑝

2). 

Regarding the penalty payment incurred when a commitment cannot be met and energy 

is bought on the regulating market, we follow the simple and widely-used assumption 

that the price depends linearly on the price on the intraday market with slope 𝑚 > 1 

(see, e.g., Kim and Powell (2011) or Löhndorf and Minner (2010)): 

 𝑃𝑡 = 𝑚 ⋅ 𝑄𝑡    (9) 

However, our commitments are delivered with a time lag of 𝜏. Thus, the commitment 𝑥𝑡 

is sold at price 𝑃𝑡, but the penalty price relevant when commitment 𝑥𝑡 cannot be met 

between time 𝑡 + 𝜏 − 1 and 𝑡 + 𝜏 is 𝑄𝑡+𝜏, which in turn depends on 𝑃𝑡+𝜏.  

5.2 Exogenous process for energy production 

For ease of presentation and in line with the literature (see, e.g., Kim and Powell 

(2011)), we assume that the production of our small wind farm is independent of prices 

(wind has zero marginal cost). The wind turbine’s production 𝑌𝑡 depends only on the 

realized wind speed 𝑤𝑠𝑡 with 𝑌𝑡 = 𝑌(𝑤𝑠𝑡), and is modeled using the following 

formula: 

 𝑌(𝑤𝑠𝑡) = {

0 if 𝑤𝑠𝑡 < 𝑠𝑐𝑖 or 𝑤𝑠𝑡 ≥ 𝑠𝑐𝑜

(𝑎 + 𝑏 ⋅ 𝑤𝑠𝑡
3) ⋅ 𝛥𝑡 if 𝑤𝑠𝑡 ∈ [𝑠𝑐𝑖 , 𝑠𝑟)

𝑟 ⋅ 𝛥𝑡 if 𝑤𝑠𝑡 ∈ [𝑠𝑟 , 𝑠𝑐𝑜)
 (10) 

Since the production values of 0 and 𝑟 ⋅ 𝛥𝑡 are linked to intervals of wind speeds, the 

cdf of 𝑌𝑡 is not continuous but exhibits jumps at these values.  
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The wind turbine only operates at wind speeds between its cut-in speed 𝑠𝑐𝑖 and the cut-

out speed 𝑠𝑐𝑜. Above its rated speed 𝑠𝑟, the turbine produces its rated power 𝑟. Between 

the cut-in speed 𝑠𝑐𝑖 and the rated speed, the power output at wind speed 𝑤𝑠𝑡 is 

determined by 𝑎 + 𝑏 ⋅ 𝑤𝑠𝑡
3 for 𝑤𝑠𝑡 ∈ [𝑠𝑐𝑖, 𝑠𝑟) with 𝑎, 𝑏 ∈ ℝ. Here, the linear equations 

𝑎 + 𝑏 ⋅ 𝑠𝑐𝑖
3 = 0 and 𝑎 + 𝑏 ⋅ 𝑠𝑟

3 =  𝑟 give the values 𝑎 and 𝑏. 

We again follow the standard assumption of a Weibull distribution regarding the wind 

speed, i.e., 𝑊𝑆𝑡~𝑊𝐵(𝜆, 𝑘) (see, e.g., Justus et al. (1976) or Seguro and Lambert 

(2000)) with pdf and cdf denoted by 

𝑓𝑊𝐵(𝜆,𝑘)(𝑤𝑠) = 𝜆𝑘(𝜆 ⋅ 𝑤𝑠)𝑘−1𝑒−(𝜆⋅𝑤𝑠)𝑘
,  𝐹𝑊𝐵(𝜆,𝑘)(𝑤𝑠) = 1 − 𝑒−(𝜆𝑤𝑠)𝑘

 ∀ 𝑤𝑠 ≥ 0 (11) 

From (10) and (11), we obtain the cdf of 𝑌𝑡: 

𝐹𝑌𝑡
(𝑦) =

{

0 if 𝑦 < 0

(1 − 𝑒−(𝜆𝑠𝑐𝑖)𝑘
+ 𝑒−(𝜆𝑠𝑐𝑜)𝑘

) + 𝐹𝑊𝐵(𝜆,𝑘)(𝑠𝑝(𝑦)) − 𝐹𝑊𝐵(𝜆,𝑘)(𝑠𝑐𝑖) if 0 ≤ 𝑦 < Δ𝑡 ⋅ 𝑟

1 if 𝑦 ≥ Δ𝑡 ⋅ 𝑟

 (12) 

where the wind speed providing the energy production 𝑦 is denoted by 𝑠𝑝(𝑦) =

(
𝑦

Δ𝑡
−𝑎

𝑏
)

1

3

 ∀ 𝑦 ∈ [0, Δ𝑡 ⋅ 𝑟). Note that we assume that the wind speeds 𝑤𝑠𝑡, and, thus, the 

energy productions 𝑌𝑡 are i.i.d. This assumption leads to a tractable benchmark 

mechanism for HAPI by reducing the dimension of the state space. However, in this 

framework, it is also possible to use more complex stochastic processes as shown in 

Sections 3 and 4.  

The derivations of the first and second partial moments of 𝑌𝑡 can be found in 

Appendices A.3 and A.4. Thus, the stochastic processes for prices and energy 

production satisfy the conditions stated in Section 3.1. All moments can be evaluated 

easily and quickly. 

5.3 State space, optimal action, and contribution 

As energy production is assumed to be i.i.d., we do not have to include its history in the 

state space, i.e., ℎ𝑌 = 0. Market price 𝑃𝑡 is an autoregressive process of order 1, and 

𝑃𝑡+1 and 𝑄𝑡+1 only depend on 𝑃𝑡, because 𝑄𝑡 = 𝑚 ⋅ 𝑃𝑡, i.e., ℎ𝑃 = 1 and ℎ𝑄 = 0. In our 

numerical experiments, we consider a time lag of 𝜏 = 4. Therefore, we have to consider 
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the last three commitments made and the state definition is 𝑆𝑡 =

( 𝐿𝑡, 𝑥𝑡−3, 𝑥𝑡−2, 𝑥𝑡−1, 𝑃𝑡) ∈ ℝ5 as 𝑊𝑡 = (𝑃𝑡).  

Regarding the optimal action 𝜋𝑡
∗(𝑆𝑡) given by (7), we now have 

𝜋𝑡
∗(𝑆𝑡) =  

{
�̅�𝑡

∗(𝑆𝑡)                                                                         if 𝜃𝑡+1
44 < 0 ∧ �̅�𝑡

∗ ∈ [0, 𝑥𝑚𝑎𝑥]

argmax
𝑥𝑡∈{0,𝑥𝑚𝑎𝑥}

{𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡]}  otherwise  (13) 

with �̅�𝑡
∗(𝑆𝑡) = −

1

2𝜃𝑡+1
44 (

1

𝛽
𝑃𝑡 + 𝜃𝑡+1

40 + 𝜃𝑡+1
41 𝔼[𝐿𝑡+1|𝑆𝑡, 𝑥𝑡] + 𝜃𝑡+1

42 𝑥𝑡−2 + 𝜃𝑡+1
43 𝑥𝑡−1 +

𝜃𝑡+1
45 𝔼[𝑃𝑡+1|𝑆𝑡, 𝑥𝑡] ).  

Remember that the first moment of 𝐿𝑡+1, which is required to calculate (13), is given in 

Appendix A.2. Additional terms are needed to calculate the expected value  in the 

second line: The first and second moments of 𝑃𝑡+1 and 𝑄𝑡+1, as well as the second 

moment of 𝐿𝑡+1. We omit these straightforward calculations to keep our presentation 

concise. Additionally, we use the analytical expression for the contribution 𝐶(𝑆𝑡, 𝑥𝑡) 

stated in Appendix A.5. As all these expressions are quickly computable, the optimal 

commitment 𝜋𝑡
∗(𝑆𝑡) can be determined efficiently. 

6 Numerical experiments 

We performed numerical experiments to test the new HAPI approach using real world 

data. All the implementations were done with MATLAB version R2013a, and were run 

on a PC with a 2.8 GHz Intel Core i7 processor and 8 GB of RAM, running on 

Microsoft Windows Server 2008 R2 64 bit. We did not use parallelization, although the 

structure of the algorithms clearly allows this. In the following, we first consider the 

setup (Section 6.1) and describe the tested methods (Section 6.1.1), as well as the data 

(Section 6.1.2). Thereafter, we turn to the results (Section 6.2) and analyze the methods’ 

performance (Section 6.2.1). Finally, we investigate the influence of two major storage 

parameters: size and efficiency (Section 6.2.2). Again, the new notation is summarized 

in Table 4. 
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Table 4  Notation introduced in Section 6 

Parameters 

𝑠𝑠𝑙 safety stock level of the certainty-equivalent heuristic CE 

𝜇𝑊𝑆 mean of the wind speed 

𝜎𝑊𝑆 standard deviation of the wind speed 

 

6.1 Simulation experiment design 

6.1.1. Methods tested 

The following methods, of which several are benchmark procedures, were implemented 

to determine the policy (i.e., the commitments) in order to compare the new approach’s 

performance: 

 HAPI(𝜀𝑐𝑜𝑛𝑣) is the approach described in Sections 4 and 5 with the tolerance used 

to determine convergence set to 𝜀𝑐𝑜𝑛𝑣. To improve the convergence, we used 

identical sets of coefficients for several points in time. Different coefficients were 

only used for the last 𝜏 + 1 points in time to better capture the end-of-horizon 

effects. The states were sampled by adopting a space-filling design, i.e., a low-

discrepancy Faure sequence. 

 DISC is probably the most important benchmark and is also used in most of the 

literature cited in Section 2. Following the standard hands-on approach, the 

continuous dimensions of the state and action space of the original MDP described 

in Section 3 are discretized. The resulting discrete MDP is solved to optimality by 

using the common backward induction. Thus, we have an approximation of the 

underlying continuous problem. In preliminary tests not reported here, we 

determined a compromise between the runtime and the solution quality and, thus, 

discretize each of the five dimensions with five equidistant points, resulting in 3125 

states. The discretization of energy production does not influence the number of 

states and we used a finer equidistant grid with 100 points here.  

 EV is a very simple heuristic that always commits the expected value of energy 

production. If the selling price is negative, the commitment is zero.  

 CE(ssl) is a certainty-equivalent heuristic that aims at a safety stock level of 𝑠𝑠𝑙 ⋅

𝐿𝑚𝑎𝑥. The evolution of the storage level is predicted for the next 𝜏 points in time 

under the assumption that energy production will be equal to the expected value. 



20 

Taking past commitments into account, the commitment is then chosen such that 

the predicted storage after the commitment’s delivery is equal to 𝑠𝑠𝑙 ⋅ 𝐿𝑚𝑎𝑥. Again, 

if the selling price is negative, the commitment is zero. 

Please note that we did not investigate a purely myopic policy. This method only 

considers the immediate contribution on each stage, i.e., maximizes 𝑃𝑡𝑥𝑡 in (3) as this is 

the only part of the contribution depending explicitly on 𝑥𝑡. Obviously, this yields 𝑥𝑚𝑎𝑥 

for 𝑃𝑡 > 0 and, thus, very high penalty payments in future periods. Preliminary tests 

confirmed this and indicated large negative overall profits for all test instances. 

6.1.2. Data used 

Table 5  Parameter values shared by all instances 

 Parameter Value 

Wind turbine 𝑠𝑐𝑖  3 𝑚/𝑠 

 𝑠𝑐𝑜 25 𝑚/𝑠 

 𝑠𝑟  12 𝑚/𝑠 

 𝑟 20 𝑀𝑊 

Storage 𝐿𝑚𝑎𝑥  2.5 𝑀𝑊ℎ 

 𝜌𝑅 √0.9 

 𝜌𝐸 √0.9 

Other parameters 𝑇 20 

 Δ𝑡 0.25 ℎ 

 𝛽 1 

 𝑚 2 

 𝑥𝑚𝑎𝑥 6.25 𝑀𝑊ℎ 

 

Our numerical experiments are geared to the German intraday market, i.e., energy is 

traded in 15-minute periods until 45 minutes before delivery (Δ𝑡 = 0.25 and 𝜏 = 4). 

Regarding the storage size and rated energy production, we emulate the wind 

farm/storage combination of the earlier mentioned German technology and service 

supplier Bosch (see Section 1). Accordingly, we consider a storage device with a 

capacity of 𝐿𝑚𝑎𝑥 = 2.5 MWh and a roundtrip efficiency of 𝜌𝑅 ⋅ 𝜌𝐸 = 90%. The 

properties of the wind turbine are based on the Siemens SWT-3.0-113 turbine with a 

hub height of 99.5 m. We assume a maximum power output of 𝑟 = 20 MW and a 
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25 MW connection to the grid, resulting in a maximum commitment of 𝑥𝑚𝑎𝑥 =

6.25 MWh. All the parameter values are summarized in Table 5. 

We next describe the parameters used for the stochastic processes. Price and weather 

data were available for the eight months from January to August 2013. Wind data was 

obtained from a meteorological station at our university in Augsburg, where a 

considerable number of wind farms already operate. The wind speeds were scaled to the 

hub height of 99.5 m of the considered turbine. The price data was obtained from EPEX 

SPOT for 15-minute contracts with delivery in the German TSO zone. We split the data 

per month and estimated the stochastic processes for price and energy production for 

each month, obtaining a total of eight problem instances. The parameters estimated for 

each instance (rounded to three decimal places) are shown in Table 6, where the mean 

and standard deviation of the wind speed (𝜇𝑊𝑆 and 𝜎𝑊𝑆, respectively) are also included 

for illustration. 

Table 6  Price and wind speed parameters 

 Wind Speed [𝑚/𝑠] Price [Euro/MWh] 

𝜆 𝑘 𝜇𝑊𝑆 𝜎𝑊𝑆 𝜅𝑃 𝜇𝑃 𝜎𝑃 

January (Instance 1) 0.127 1.430 7.145 5.072 1.035 40.712 12.693 

February (Instance 2) 0.135 1.499 6.663 4.527 0.899 44.357 11.300 

March (Instance 3) 0.143 1.598 6.289 4.030 1.150 39.112 18.475 

April (Instance 4) 0.132 1.712 6.757 4.065 1.114 38.993 17.593 

May (Instance 5) 0.129 1.677 6.943 4.257 1.441 34.981 16.075 

June (Instance 6) 0.150 1.632 5.981 3.758 1.244 30.401 17.036 

July (Instance 7) 0.148 1.653 6.052 3.760 1.700 38.202 16.199 

August (Instance 8) 0.165 1.553 5.438 3.576 1.433 35.824 15.015 

 

We evaluated the policies determined by the methods described in Section 6.1.1 by 

means of simulation and report average profits obtained from 10,000 simulation runs 

performed for each combination of method and problem instance described above. A 

simulation run mimics the real-world problem described in Section 3. At time 𝑡, the 

producer knows the total energy production between time 𝑡 − 1 and 𝑡 and the resulting 

storage level, as well as the past commitments that have to be delivered in the future. 

Moreover, the current selling price and the penalty price are observed. Using this 

information, the producer decides on the commitment. At time 𝑡 + 1, again new 
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information is revealed; a new decision is made, and so on. Identical random numbers 

were used to evaluate all the methods on a particular problem instance. 

6.2 Numerical Results 

6.2.1. Performance of HAPI 

A number of preliminary tests were performed to determine the parameters of the HAPI 

method. To avoid overfitting, these tests also included additional artificial problem 

instances. The maximum number of policy iterations was set to 𝑛𝑃𝐼 = 50, but this value 

was almost never limiting. The number of sample paths per policy evaluation was set to 

𝑛𝑝𝑎𝑡ℎ𝑠 = 500 and convergence was determined using 𝑛𝑐𝑜𝑛𝑣 = 100 sample states. As in 

all iterative algorithms, the threshold value of convergence 𝜀𝑐𝑜𝑛𝑣 was the key to 

influencing the tradeoff between the runtime and the solution quality. 

Figure 3 visualizes the tradeoff between the average profit and the runtime for 

determining the policy of HAPI relative to DISC. It considers different values of the 

convergence threshold 𝜀𝑐𝑜𝑛𝑣 and displays results averaged over all eight instances. To 

consider extreme cases, we also included fixed numbers of 1, 10 and 50 policy iterations 

(1 PI, 10 PI, 50 PI) without performing a convergence check. Overall, the results were 

as expected for 𝜀𝑐𝑜𝑛𝑣 ≥ 0.05: As this value increases, fewer policy iterations are 

performed, and the runtime decreases, but profits also tend to decrease. HAPI performs 

best for 0.05 ≤ 𝜀𝑐𝑜𝑛𝑣 ≤ 0.2. The runtime is between 12%–20% of DISC’s and profits 

are about 1.5% higher. 

Using a fixed number of only 1 policy iteration is fast, but clearly not enough and yields 

a low profit. On the other hand, using a lower value of 𝜀𝑐𝑜𝑛𝑣 = 0.01, or performing 

constant numbers of 𝑛𝑃𝐼 = 10 and 𝑛𝑃𝐼 = 50 policy iterations, takes much longer. 

However, surprisingly, profit is also low, with more policy iterations leading to lower 

profits in each of the eight instances considered. This counter-intuitive observation can 

be explained as follows: Mimicking backward induction, the current period’s entire 

state space is sampled using a space-filling design to obtain a good exploration. When 

HAPI moves on and subsequently does the same for prior periods, these periods’ state 

space is again sampled. Each sample is used as the initial state of a sample path 

corresponding to a possible evolution of the system and observations are obtained for all 

the periods until the end of the horizon. These observations are used to update the value 
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function. In doing so, the approximation becomes better in areas of the state space that 

are more likely to be visited. While this generally improves the profit, the results 

depicted, as well as additional tests, hint that a certain balance is important and visiting 

similar states over and over again can offset the initial sampling.  

 

Figure 3  Runtime and profit of HAPI relative to DISC for different values of 𝜀𝑐𝑜𝑛𝑣, averaged over all 8 

instances. 

Next, we compare in detail HAPI(0.125) and HAPI(0.175) with DISC, as well as the 

additional heuristics EV and CE (Figure 4). Regarding CE, we considered the safety 

stock levels of 𝑠𝑠𝑙 = 0 and 𝑠𝑠𝑙 = 0.75, the value that performed best in a preliminary 

experiment using the eight instances.   

Whereas Figure 3 already shows that the profits of HAPI and DISC are, on average, 

very close, Figure 4 shows that the corresponding profits are also close in each problem 

instance. However, there is considerable variation between different instances. Instance 

6 and Instance 8 seem to be somehow worse for the wind farm than the others, probably 

due to a combination of low average prices and low average wind speeds. To a lesser 

extent, this also applies to Instance 7. The profit of the additional heuristics EV, CE(0), 

and CE(0.75) also reflect this general trend, although there is a huge gap between it and 

the dynamic programming approaches. In each instance, the heuristics obtain only about 

29–53% of the aforementioned approaches’ profit. Of the additional heuristics, EV 
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consistently obtains the highest profit (37%–53% of DISC), CE(0.75) follows closely 

(37%–52%), and CE(0) obtains the lowest profit (29%–46%). 

 

Figure 4  Comparison of HAPI, DISC, and additional heuristics EV and CE 

 

 

Figure 5  Runtime with analytical and numerical derivation of optimal action 

Finally, we investigate the advantage of analytically determining the optimal action (see 

Section 4.2), a key contribution of this paper. We therefore modified HAPI and used 

Matlab’s optimization routine fmincon (part of the Optimization Toolbox) to find the 

maximum of (6) instead of using (7). Figure 5 displays the runtime of HAPI(0.125) with 
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fmincon. We also included the runtime of the original HAPI(0.125) using (7) and 

DISC for comparison. The runtime of the heuristics EV and CE is negligible and, thus, 

not given here. The figure is impressive, showing the 15 to 20-fold speedup due to the 

analytical maximization. Moreover, the figure depicts the eight problem instances’ 

variations in runtime. With fmincon, the slowest instance takes about 1.3 times as 

long as the fastest. With the original algorithm, the factor is 1.5, but the absolute 

runtimes are also strikingly lower here. Finally note that both the variants’ profits are 

virtually the same. 

6.2.2. Value added by the storage 

In this section, we investigate the influence of two important properties of an electricity 

storage on the profit: size and efficiency. In particular, we consider the storage sizes 

𝐿𝑚𝑎𝑥 ∈ {0, 1.25, 2.5, 3.75, 5, 6.25, 7.5} and the charge/discharge efficiencies 𝜌𝑅 = 𝜌𝐸  

with 𝜌𝑅𝜌𝐸 ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}. 

 

Figure 6  Profit influence of storage efficiency and size 

Figure 6 shows the profit obtained by HAPI(0.125) for all combinations of 𝐿𝑚𝑎𝑥 and 

𝜌𝑅𝜌𝐸 , averaged over all eight problem instances. As expected, the profit increases with 

the storage size and efficiency, albeit at a decreasing rate, and the value of additional 

storage is higher if the efficiency is high. Combined with possible storage devices’ 

parameters, or with the marginal cost of size vs. efficiency, this analysis can support the 

decision for appropriate power storage. But even without these specifications, we can 
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conclude that a small storage with very poor efficiency (lower left corner of the figure) 

already increases profits considerably in the problem instances considered. 

7 Conclusions 

In this paper, we have developed an ADP approach to the problem of making advance 

commitments for a producer with a renewable, intermittent energy source and a finite 

storage device with conversion losses. In particular, we modeled the problem as an 

MDP and specifically considered the lagged advance commitments typical of modern 

electricity markets, where energy is traded in advance. To efficiently solve this MDP, 

we proposed an innovative ADP framework. Its major advantage is the efficient 

calculation of the best action, requiring only mild conditions on the stochastic processes 

describing the energy production and price evolution. We use the framework to consider 

a wind farm/storage combination with energy production sold on an intraday market 

where wind speed and prices respectively follow a Weibull distribution and an Ornstein-

Uhlenbeck process. An extensive numerical study shows that our approach needs only a 

fraction of the runtime of the common MDP-based approximation with a discretized 

state and action space, and even obtains slightly higher profits. Moreover, a small 

storage with a very low efficiency can already increase the profit considerably. 

We consider these results promising for the application of ADP approaches. Our 

approach scales much better than an MDP-based discrete approximation. This enables 

extensions of the state space and allows, for example, the consideration of higher-order 

autoregressive processes and an increased number of past commitments due to specific 

market structures. 

There are basically two avenues for future research. The first avenue is application 

oriented. As this paper focused on developing the framework and the new HAPI 

approach, a key aspect of the numerical study was HAPI’s performance. Future work 

could, for example, concentrate on the actual outcome/benefit and also consider more 

sophisticated processes, like non-i.i.d. wind conditions or constrained power flows 

into/out of the storage (see also Hassler (2016)). The second avenue extends the 

methodology itself and combines the approach presented with building blocks that have 

performed well in similar problems. In particular, concepts and algorithms from the 

field of reinforcement learning might prove useful (see, e.g., Wiering and van Otterlo 
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(2012) for an overview). This may include actor-critic algorithms that use separate 

approximations for the policy (the actor) and the value function (the critic) which were 

introduced by Barto et al. (1983) and Sutton (1984). These algorithms provably 

converge to a local optimum under certain conditions (for details see Konda and 

Tsitsiklis (1999)) and could enhance the performance of HAPI. HAPI itself can be 

classified in this framework as a critic-only algorithm as it solely uses an approximation 

of the value function but not a separate approximation of the policy. Other 

modifications of HAPI could include, for example, the usage of different basis 

functions, such as higher order polynomials (see, e.g., Löhndorf and Minner (2010)), 

and Gaussian radial basis functions (see, e.g., Jiang et al. (2014)). Likewise, researchers 

could investigate adapting this approach to a direct policy search (see, e.g., Scott and 

Powell (2012), Nascimento and Powell (2013)), or to an approximate value iteration 

(AVI, see, e.g., Jiang and Powell (2015)). Finally, future studies could consider the 

preservation and exploitation of the monotonicities inherent in the value function 

(Nascimento and Powell (2013) and Jiang and Powell (2015)). 
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Appendix 

A.1 Derivation of 𝒙𝒕
∗ 

In the following, we derive the optimal commitment 𝜋𝑡
∗(𝑆𝑡) used in (7) in Section 4.2. 

In particular, we show that  

𝜋𝑡
∗(𝑆𝑡) = argmax

𝑥𝑡∈[0,𝑥𝑚𝑎𝑥]
{𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡]}  

is given by  

𝜋𝑡
∗(𝑆𝑡) =  

{
�̅�𝑡

∗(𝑆𝑡)                                                                        if 𝜃𝑡+1
𝜏𝜏 < 0 ∧ �̅�𝑡

∗ ∈ [0, 𝑥𝑚𝑎𝑥]

argmax
𝑥𝑡∈{0,𝑥𝑚𝑎𝑥}

{𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡]}  otherwise   

with �̅�𝑡
∗(𝑆𝑡) = −

1

2𝜃𝑡+1
𝜏𝜏 (

1

𝛽
𝑃𝑡 + 𝜃𝑡+1

𝜏0 + ∑ 𝜃𝑡+1
𝜏𝑖 𝔼[𝑆𝑡+1

𝑖 |𝑆𝑡, 𝑥𝑡]𝑖∈{1,…,𝑁}\𝜏  ). 

Set 𝑁 ≔ 1 + (𝜏 − 1) + ℎ𝑌 + ℎ𝑃 + ℎ𝑄, so that 𝑆𝑡+1 ∈ ℝ𝑁 and remember that 𝑆𝑡+1
𝑖  is the 

𝑖-th component of 𝑆𝑡+1 =

(𝐿𝑡+1(𝐿𝑡, 𝑌𝑡+1, 𝑥𝑡−𝜏+1), 𝑥𝑡−𝜏+2, … , 𝑥𝑡, 𝑊𝑡+1(𝑊𝑡, 𝑌𝑡+1, 𝑃𝑡+1, 𝑄𝑡+1)). We are searching for 

a global optimum of 𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[�̃�𝑡+1(𝑆𝑡+1) |𝑆𝑡, 𝑥𝑡] on the interval [0, 𝑥𝑚𝑎𝑥]. 

Taking the derivative with respect to 𝑥𝑡, we obtain 
𝜕

𝜕𝑥𝑡
{𝐶(𝑆𝑡, 𝑥𝑡) +

𝛽𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡]} =
𝜕

𝜕𝑥𝑡
𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽

𝜕

𝜕𝑥𝑡
𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡].  

Regarding the first summand, we directly obtain 
𝜕

𝜕𝑥𝑡
𝐶(𝑆𝑡, 𝑥𝑡) = 𝑃𝑡 from equation (3). 

Regarding 
𝜕

𝜕𝑥𝑡
𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡], we have 
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𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡] = 𝜃𝑡
00 + 𝜃𝑡+1

𝑁+1,0(𝑡 + 1) + ∑ 𝜃𝑡+1
𝑖0 𝔼[𝑆𝑡+1

𝑖 |𝑆𝑡, 𝑥𝑡] +𝑁
𝑖=1

∑ 𝜃𝑡+1
𝑖𝑖 𝔼 [(𝑆𝑡+1

𝑖 )
2

|𝑆𝑡, 𝑥𝑡] + ∑ ∑ 𝜃𝑡+1
𝑖𝑗

𝔼[𝑆𝑡+1
𝑖 𝑆𝑡+1

𝑗
|𝑆𝑡, 𝑥𝑡]𝑁

𝑗=𝑖+1
𝑁
𝑖=1

𝑁
𝑖=1 .  

As 𝑥𝑡 = 𝑆𝑡+1
𝜏  is known at time 𝑡 we continue with 

𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡] = 𝜃𝑡
00 + 𝜃𝑡+1

𝜏0 𝑥𝑡 + 𝜃𝑡+1
𝜏𝜏 𝑥𝑡

2 + ∑ 𝜃𝑡+1
𝜏𝑖 𝑥𝑡𝔼[𝑆𝑡+1

𝑖 |𝑆𝑡, 𝑥𝑡]𝑖∈{1,…,𝑁}\𝜏 +

𝜃𝑡+1
𝑁+1,0(𝑡 + 1) + ∑ 𝜃𝑡+1

𝑖0 𝔼[𝑆𝑡+1
𝑖 |𝑆𝑡, 𝑥𝑡]𝑖∈{1,…,𝑁}\𝜏 + ∑ 𝜃𝑡+1

𝑖𝑖 𝔼 [(𝑆𝑡+1
𝑖 )

2
|𝑆𝑡, 𝑥𝑡]𝑖∈{1,…,𝑁}\𝜏 +

∑ ∑ 𝜃𝑡+1
𝑖𝑗

𝔼[𝑆𝑡+1
𝑖 𝑆𝑡+1

𝑗
|𝑆𝑡, 𝑥𝑡]𝑁

𝑗=𝑖+1,𝑗≠𝜏𝑖∈{1,…,𝑁}\𝜏 . 

Thus, 
𝜕

𝜕𝑥𝑡
𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡] = 𝜃𝑡+1

𝜏0 + 2𝜃𝑡+1
𝜏𝜏 𝑥𝑡 + ∑ 𝜃𝑡+1

𝜏𝑖
𝑖∈{1,…,𝑁}\𝜏 𝔼[𝑆𝑡+1

𝑖 |𝑆𝑡, 𝑥𝑡] is 

obtained.  

Summing up, we have 
𝜕

𝜕𝑥𝑡
{𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡]} = 𝑃𝑡 + 𝛽𝜃𝑡+1

𝜏0 +

2𝛽𝜃𝑡+1
𝜏𝜏 𝑥𝑡 + 𝛽 ∑ 𝜃𝑡+1

𝜏𝑖 𝔼[𝑆𝑡+1
𝑖 |𝑆𝑡, 𝑥𝑡]𝑖∈{1,…,𝑁}\𝜏  and the second derivative is obviously 

𝜕2

𝜕𝑥𝑡
2 {𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡]} = 2𝛽𝜃𝑡+1

𝜏𝜏 .  

Next, depending on the sign of 𝜃𝑡+1
𝜏𝜏 , two cases have to be distinguished. 

 If 𝜃𝑡+1
𝜏𝜏 < 0, 𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡] is a strictly concave function of 𝑥𝑡. 

So, 𝜋𝑡
∗(𝑆𝑡) is equal to −

1

2𝜃𝑡+1
𝜏𝜏 (

1

𝛽
𝑃𝑡 + 𝜃𝑡+1

𝜏0 + ∑ 𝜃𝑡+1
𝜏𝑖 𝔼[𝑆𝑡+1

𝑖 |𝑆𝑡, 𝑥𝑡]𝑖∈{1,…,𝑁}\𝜏  ) if this 

is a valid commitment or 𝜋𝑡
∗(𝑆𝑡) ∈ {0, 𝑥𝑚𝑎𝑥}. 

 If 𝜃𝑡+1
𝜏𝜏 ≥ 0, 𝐶(𝑆𝑡, 𝑥𝑡) + 𝛽𝔼[�̃�𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡] is either an affine linear, or a strictly 

convex function of 𝑥𝑡 for 𝜃𝑡+1
𝜏𝜏 = 0 or 𝜃𝑡+1

𝜏𝜏 > 0, respectively. In this case, 𝜋𝑡
∗(𝑆𝑡) ∈

{0, 𝑥𝑚𝑎𝑥}. 

A.2 Derivation of 𝔼[𝑳𝒕+𝟏|𝑺𝒕, 𝒙𝒕] 

The computation of the optimal action 𝜋𝑡
∗(𝑆𝑡) in Section 4.2 necessitates determining 

the expected value of the storage level at time 𝑡 + 1. We derive 𝔼[𝐿𝑡+1|𝑆𝑡, 𝑥𝑡] in the 

following:  

𝔼[𝐿𝑡+1|𝑆𝑡, 𝑥𝑡] = 0 ⋅ 𝐹𝑌𝑡+1
(𝑥𝑡−𝜏+1 − 𝜌𝐸𝐿𝑡) + 𝐿𝑚𝑎𝑥 ⋅ (1 − 𝐹𝑌𝑡+1

(
𝐿𝑚𝑎𝑥−𝐿𝑡

𝜌𝑅
+ 𝑥𝑡−𝜏+1) +

ℙ (𝑌𝑡+1 =
𝐿𝑚𝑎𝑥−𝐿𝑡

𝜌𝑅
+ 𝑥𝑡−𝜏+1)) + ∫ (𝐿𝑡 −

1

𝜌𝐸
(𝑥𝑡−𝜏+1 −

(𝑥𝑡−𝜏+1−𝜌𝐸𝐿𝑡,𝑥𝑡−𝜏+1]
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𝑦)) 𝑑𝐹𝑌𝑡+1
(𝑦) + ∫ (𝐿𝑡 + 𝜌𝑅(𝑦 − 𝑥𝑡−𝜏+1))𝑑𝐹𝑌𝑡+1

(𝑦)
(𝑥𝑡−𝜏+1,

𝐿𝑚𝑎𝑥−𝐿𝑡
𝜌𝑅

+𝑥𝑡−𝜏+1)
=  

𝐿max ⋅ (1 − 𝐹𝑌𝑡+1
(

𝐿𝑚𝑎𝑥−𝐿𝑡

𝜌𝑅
+ 𝑥𝑡−𝜏+1) + ℙ (𝑌𝑡+1 =

𝐿𝑚𝑎𝑥−𝐿𝑡

𝜌𝑅
+ 𝑥𝑡−𝜏+1)) + (𝐿𝑡 −

1

𝜌𝐸
𝑥𝑡−𝜏+1) (𝐹𝑌𝑡+1

(𝑥𝑡−𝜏+1) − 𝐹𝑌𝑡+1
(𝑥𝑡−𝜏+1 − 𝜌𝐸𝐿𝑡)) +

1

𝜌𝐸
∫ 𝑦𝑑𝐹𝑌𝑡+1

(𝑦)
(𝑥𝑡−𝜏+1−𝜌𝐸𝐿𝑡,𝑥𝑡−𝜏+1]

+ (𝐿𝑡 − 𝜌𝑅𝑥𝑡−𝜏+1) (𝐹𝑌𝑡+1
(

𝐿𝑚𝑎𝑥−𝐿𝑡

𝜌𝑅
+ 𝑥𝑡−𝜏+1) −

ℙ (𝑌𝑡+1 =
𝐿𝑚𝑎𝑥−𝐿𝑡

𝜌𝑅
+ 𝑥𝑡−𝜏+1) − 𝐹𝑌𝑡+1

(𝑥𝑡−𝜏+1)) + 𝜌𝑅 ∫ 𝑦𝑑𝐹𝑌𝑡+1
(𝑦)

(𝑥𝑡−𝜏+1,
𝐿𝑚𝑎𝑥−𝐿𝑡

𝜌𝑅
+𝑥𝑡−𝜏+1)

  

Thus, 𝔼[𝐿𝑡+1|𝑆𝑡, 𝑥𝑡] is reduced to the marginal distributions and lower partial moments 

required in Section 3.1. Regarding the specific distributions considered in Section 5, the 

results in Appendix A.3 and Section 5.2 can be plugged in directly to efficiently 

compute 𝔼[𝐿𝑡+1|𝑆𝑡, 𝑥𝑡]. We do not state the derivation of 𝔼[(𝐿𝑡+1)2|𝑆𝑡, 𝑥𝑡] here as it is 

very similar to that of 𝔼[𝐿𝑡+1|𝑆𝑡, 𝑥𝑡]. 

A.3 Derivation of ∫ 𝒚𝒅𝑭𝒀𝒕
(𝒚) 

In this section, we derive the first partial moment of 𝑌𝑡 (∫ 𝑦𝑑𝐹𝑌𝑡
(𝑦) ∀ 0 ≤ 𝑐 ≤ 𝑑 < ∞

𝑑

𝑐
) 

under the assumption that energy production stems from a wind turbine and wind speed 

follows a Weibull distribution as defined in Section 5.2. This satisfies one requirement 

in Section 3.1.  

First, assume 0 < 𝑐 ≤ 𝑑 < Δ𝑡 ⋅ 𝑟. Then the power output of the wind turbine equals 𝑐 

and 𝑑 at a wind speed of 𝑠𝑝(𝑐) = √
𝑐

Δ𝑡
−𝑎

𝑏

3

 and 𝑠𝑝(𝑑) = √
𝑑

Δ𝑡
−𝑎

𝑏

3

, respectively, and we have   

∫ 𝑦𝑑𝐹𝑌𝑡
(𝑦)

𝑑

𝑐
= ∫ Δ𝑡 ⋅ (𝑎 + 𝑏𝑤3)𝑓𝑊𝐵(𝜆,𝑘)(𝑤)𝑑𝑤

𝑠𝑝(𝑑)

𝑠𝑝(𝑐)
=  

[𝑎Δ𝑡 ⋅ (−𝑒(−𝜆⋅𝑠𝑝(𝑑))
𝑘

+ 𝑒(−𝜆⋅𝑠𝑝(𝑐))
𝑘

)] + 𝑏Δ𝑡 ⋅ ∫ 𝑤3𝑓𝑊𝐵(𝜆,𝑘)(𝑤)𝑑𝑤
𝑠𝑝(𝑑)

𝑠𝑝(𝑐)
. 

We rewrite the integral as ∫ 𝑤3𝜆𝑘(𝜆𝑤)𝑘−1𝑒−(𝜆𝑤)𝑘
𝑑𝑤

𝑠𝑝(𝑑)

𝑠𝑝(𝑐)
 and substitute 𝑢 = (𝜆𝑤)𝑘: 

∫ 𝑤3𝜆𝑘(𝜆𝑤)𝑘−1𝑒−(𝜆𝑤)𝑘
𝑑𝑤

𝑠𝑝(𝑑)

𝑠𝑝(𝑐)
= ∫ (

1

𝜆
⋅ 𝑢

1

𝑘)
3

𝑒−𝑢𝑑𝑢
(𝜆⋅𝑠𝑝(𝑑))

𝑘

(𝜆⋅𝑠𝑝(𝑐))
𝑘 =  

1

𝜆3 ⋅ [γ (1 +
3

𝑘
, (𝜆 ⋅ 𝑠𝑝(𝑑))

𝑘
) − γ (1 +

3

𝑘
, (𝜆 ⋅ 𝑠𝑝(𝑐))

𝑘
)], where 𝛾 denotes the lower 

incomplete gamma function, i.e., 𝛾(𝑠, 𝑥) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡
𝑥

0
.  
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Summing up, for 0 < 𝑐 ≤ 𝑑 < Δ𝑡 ⋅ 𝑟, we have  

∫ 𝑦𝑑𝐹𝑌𝑡
(𝑦)

𝑑

𝑐
= Δ𝑡 ⋅ [𝑎 (−𝑒(−𝜆⋅𝑠𝑝(𝑑))

𝑘

+ 𝑒(−𝜆⋅𝑠𝑝(𝑐))
𝑘

)]  

+
Δ𝑡⋅𝑏

𝜆3 ⋅ [γ (1 +
3

𝑘
, (𝜆 ⋅ 𝑠𝑝(𝑑))

𝑘
) − γ (1 +

3

𝑘
, (𝜆 ⋅ 𝑠𝑝(𝑐))

𝑘
)]. 

Second, if 𝑑 ≥ Δ𝑡 ⋅ 𝑟, then the atom of the distribution of 𝑌𝑡 at 𝑦 = Δ𝑡 ⋅ 𝑟 has to be 

taken into account, i.e., Δ𝑡 ⋅ 𝑟 ⋅ ℙ(𝑌𝑡 = Δ𝑡 ⋅ 𝑟) = Δ𝑡 ⋅ 𝑟 ⋅ (𝑒−(𝜆𝑠𝑟)𝑘
− 𝑒−(𝜆𝑠𝑐𝑜)𝑘

) has to be 

added to the expression above. 

Finally, for 0 ≤ 𝑐 < 𝑑 < ∞, we have 

∫ 𝑦𝑑𝐹𝑌𝑡
(𝑦)

𝑑

𝑐
= Δ𝑡 ⋅ [𝑎 (−𝑒(−𝜆⋅𝑠𝑝(𝑑))

𝑘

+ 𝑒(−𝜆⋅𝑠𝑝(𝑐))
𝑘

)] +
Δ𝑡⋅𝑏

𝜆3 ⋅ [γ (1 +
3

𝑘
, (𝜆 ⋅

𝑠𝑝(𝑑))
𝑘

) − γ (1 +
3

𝑘
, (𝜆 ⋅ 𝑠𝑝(𝑐))

𝑘
)] + 𝟏[Δ𝑡⋅𝑟,∞)(𝑑) (Δ𝑡 ⋅ 𝑟 ⋅ (𝑒−(𝜆𝑠𝑟)𝑘

− 𝑒−(𝜆𝑠𝑐𝑜)𝑘
))  

A.4 Derivation of ∫ 𝒚𝟐𝒅𝑭𝒀𝒕
(𝒚) 

This derivation of the second partial moment of energy production, ∫ 𝑦2𝑑𝐹𝑌𝑡
(𝑦) ∀ 0 ≤

𝑑

𝑐

𝑐 ≤ 𝑑 < ∞, is very similar to Appendix A.3. Therefore, we only state the final result 

here. This satisfies the remaining requirement in Section 3.1. 

For 0 ≤ 𝑐 ≤ 𝑑 < ∞, we have 

∫ 𝑦2𝑑𝐹𝑌𝑡
(𝑦)

𝑑

𝑐
= (Δ𝑡)2 [𝑎2 (−𝑒(−𝜆⋅𝑠𝑝(𝑑))

𝑘

+ 𝑒(−𝜆⋅𝑠𝑝(𝑐))
𝑘

)] + 2𝑎𝑏 [
1

𝜆3 ⋅ [γ (1 +

3

𝑘
, (𝜆 ⋅ 𝑠𝑝(𝑑))

𝑘
) − γ (1 +

3

𝑘
, (𝜆 ⋅ 𝑠𝑝(𝑐))

𝑘
)]] + 𝑏2 [

1

𝜆6
⋅ [γ (1 +

6

𝑘
, (𝜆 ⋅ 𝑠𝑝(𝑑))

𝑘
) −

γ (1 +
6

𝑘
, (𝜆 ⋅ 𝑠𝑝(𝑐))

𝑘
)]]  + 𝟏[Δ𝑡⋅𝑟,∞)(𝑑) ((Δ𝑡 ⋅ 𝑟)2 ⋅ (𝑒−(𝜆𝑠𝑟)𝑘

− 𝑒−(𝜆𝑠𝑐𝑜)𝑘
))  

A.5 Analytical expression for the contribution 

In the following, we give the analytical expression of the contribution used in Section 

5.3. Under the assumptions concerning the exogenous processes made in Section 5, the 

general contribution given by equation (3) in Section 3.4 reduces to  

𝐶(𝑆𝑡, 𝑥𝑡) = 𝑃𝑡𝑥𝑡 − 𝛽𝔼[𝑚 ⋅ 𝑃𝑡+1[𝑥𝑡−𝜏+1 − (𝜌𝐸𝐿𝑡 + 𝑌𝑡+1)]+|𝑆𝑡, 𝑥𝑡]  

for 𝑡 ≤ 𝑇 − 1 where 𝔼[𝑚 ⋅ 𝑃𝑡+1[𝑥𝑡−𝜏+1 − (𝜌𝐸𝐿𝑡 + 𝑌𝑡+1)]+|𝑆𝑡, 𝑥𝑡] =   

𝔼[𝟏[0,𝑥𝑡−𝜏+1−𝜌𝐸𝐿𝑡](𝑌𝑡+1)(𝑚 ⋅ 𝑃𝑡+1 ⋅ (𝑥𝑡−𝜏+1 − 𝜌𝐸𝐿𝑡) − 𝑚 ⋅ 𝑃𝑡+1 ⋅ 𝑌𝑡+1)|𝑆𝑡, 𝑥𝑡] =  
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𝐹𝑌𝑡+1
(𝑥𝑡−𝜏+1 − 𝜌𝐸𝐿𝑡)(𝑚 ⋅ 𝔼[𝑃𝑡+1|𝑆𝑡, 𝑥𝑡] ⋅ (𝑥𝑡−𝜏+1 − 𝜌𝐸𝐿𝑡)) − 𝑚 ⋅

𝔼[𝑃𝑡+1|𝑆𝑡, 𝑥𝑡] ∫ 𝑦𝑑𝐹𝑌𝑡+1
(𝑦)

[0,𝑥𝑡−𝜏+1−𝜌𝐸𝐿𝑡]
  

Expressions for 𝐹𝑌𝑡+1
(𝑥𝑡−𝜏+1 − 𝜌𝐸𝐿𝑡) and ∫ 𝑦𝑑𝐹𝑌𝑡+1

(𝑦)
[0,𝑥𝑡−𝜏+1−𝜌𝐸𝐿𝑡]

, are given in 

Section 5.2, and Appendix A.3, respectively. 
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