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Abstract 

Many industries use dynamic pricing on an operational level to maximize revenue from selling a fixed capacity over a finite hori-

zon. Classical risk-neutral approaches do not accommodate the risk aversion often encountered in practice. We add to the scarce 

literature on risk aversion by considering the risk measure Conditional Value-at-Risk (CVaR), which recently became popular in 

areas like finance, energy or supply chain management. A key aspect of this paper is selling a single unit of capacity, which is 

highly relevant in, for example, the real estate market. We analytically derive the optimal policy and obtain structural results. The 

most important managerial implication is that the risk-averse optimal price is constant over large parts of the selling horizon, 

whereas the price continuously declines in the standard setting of risk-neutral dynamic pricing. This offers a completely new ex-

planation for the price-setting behavior often observed in practice. For arbitrary capacity, we develop two algorithms to efficiently 

compute the value function and evaluate them in a numerical study. Our results show that applying a risk-averse policy, even a 

static one, often yields a higher CVaR than applying a dynamic, but risk-neutral, policy. 
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1 Introduction 

Dynamic pricing considers the problem of selling a fixed capacity of a perishable product during a given selling hori-

zon. Demand is stochastic and the aim is to “dynamically” adjust the price during the selling horizon based on remain-

ing time and capacity, such that the total expected revenue is maximized. In practice, dynamic pricing was first ap-

plied in, for example, the airline, hotel, and car rental industries (Talluri and van Ryzin 2004). Today, it is increasingly 

used for many more products, including, for example, professional sports and concert tickets (e.g., Rovell 2011, Econ-

omist 2011). Dynamic pricing is also relevant for the real estate industry (e.g., Berkovec and Goodman 1996, Meng et 

al. 2007, Besbes and Maglaras 2012).  

In the first industries using dynamic pricing, the high repetition of events justified risk neutrality. Moreover, the result-

ing maximization of the expected revenue led to more tractable models. However, the assumption of risk neutrality is 

not always appropriate (Feng and Xiao 1999). There are industries in which the selling process is rarely repeated. A 

large percentage of (private) sellers who only have one house for sale characterizes the market for private homes. An-

other example is an event promoter who organizes very few, but large, concerts per year (Levin et al. 2008). She 

therefore invests a great deal of her capital to present each event, and it is rational that she should lower her expecta-

tions about revenue to safeguard against adverse situations, for example, poor ticket sales, because each concert is a 

matter of economic existence. Furthermore, a risk-neutral model might be insufficient if a steady stream of revenue 

has to be ensured to, for example, match the financial liabilities (Lancaster 2003), or please shareholders. In addition 

to the issues raised above regarding the appropriateness of risk neutrality in certain settings, the literature (e.g., Bitran 

and Caldentey 2003, Weatherford 2004), as well as our own consulting experience, suggests that, in practice, decision 

makers tend to be generally risk averse.  

Recently, coherent risk measures (Artzner et al. 1999) became a popular tool to capture risk aversion in various areas 

(e.g. finance) because of their desirable properties. These integrated measures comprise both the mean and variability 

measures. Four axioms (convexity, monotonicity, translation equivariance, and positive homogeneity) are imposed to 

guarantee consistency with intuition about rational risk-averse decision making. The most popular coherent risk meas-

ure is the Conditional Value-at-Risk (CVaR). For continuous distributions, CVaR is simply the expectation below a 

given quantile, the Value-at-Risk (VaR) at a certain probability level 𝛼.  

In practice, a main feature of CVaR is the fact that risk is measured in monetary units. Its popularity and the simple 

definition make the risk measure and its probability level 𝛼 easy to communicate to senior management or, more gen-

erally, to people with a scarce background in probability (see, e.g., Luciano et al. 2003 or Koenig and Meissner 

2015b). Thus, CVaR is comparatively easy to interpret. For a level of 𝛼 = 0, only the worst case is considered, 

whereas for 𝛼 = 1, the expected value is considered. By contrast, utility functions are hard for practitioners to under-

stand (Gotoh and Takano 2007) and difficult to interpret. For example, the exponential utility function widely used in 

academia has one parameter whose actual value is almost impossible to interpret besides the fact that risk-aversion 

decreases with the parameter’s value. However, both CVaR and utility functions are difficult to calibrate. Although 

there are some approaches to calibrate utility functions, they are not really applicable in practice (see, e.g., Xu 2010 or 

Choi and Ruszczyński 2008). Likewise, we are not aware of any method to measure a decision-maker’s probability 

level 𝛼 for CVaR. In academia, a given risk-aversion is assumed. In practice, CVaR is often calibrated by imposing a 

maximum cost of risk-aversion. For example, in the Basel II framework VaR’s 𝛼 was chosen to obtain “approaches 
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which are both more comprehensive and more sensitive to risks than the 1988 Accord, while maintaining the overall 

level of regulatory capital.” (Bank for International Settlements 2001, p. 2).  

Accordingly, coherent risk measures and especially CVaR are increasingly used to consider risk aversion in operations 

management models. For example, Gotoh and Takano (2007) show that it is usually very hard to obtain analytical 

solutions when using CVaR in a newsvendor problem. Subsequently, inventory and newsvendor problems are opti-

mized by several authors including Ahmed et al. (2007), Choi and Ruszczyński (2008), Chen et al. (2009), Xu (2010), 

Choi et al. (2011), as well as Chen et al. (2015). CVaR is also applied in the risk-averse management of energy 

sources and/or storage (see, e.g., García-González et al. 2007, Pousinho et al. 2012, and González et al. 2014). 

This paper makes the following contributions: We consider dynamic pricing with a risk-averse seller maximizing 

CVaR over the selling horizon (see Section 3.4 for a formal problem statement). Therefore, we present a dynamic 

model by means of the Bellman equation of the corresponding value function. We then reformulate the value function, 

which leads to a convex function. For one unit of capacity, this allows us to analytically derive and analyze the CVaR-

optimal policy with some mild assumptions. The most interesting property is that a fixed price policy is optimal in the 

beginning of the selling horizon, whereas the price declines from the beginning in the standard risk-neutral setting 

(see, e.g., Talluri and van Ryzin 2004, (Chapter 5)). In terms of arbitrary capacity, we develop two efficient algorithms 

for computing the value function. An important result of our extensive numerical study is that applying a risk-averse 

policy, even a static one, is far better than applying a dynamic, but risk-neutral, policy.  

Please note that the maximization of CVaR of total revenue (that is, over the entire booking horizon) comes at a price. 

There is no meaningful interpretation of the decision problems considered during the booking horizon, other than that 

they are consistent with this goal (Pflug and Pichler 2016). However, we think this is only a slight caveat in the con-

text of dynamic pricing, where the time horizon considered is generally rather short (see, e.g., Gallego and van Ryzin 

1994 or Barz 2007, p. 95) and only total revenue and its distribution are considered in practice and literature. 

The structure of this paper is as follows: Section 2 provides a review of the relevant literature. Section 3 presents the 

model we use to optimize the CVaR in a dynamic pricing environment. Section 4 presents the structural properties of 

the optimal policy for the special case of one unit of capacity, as well as the corresponding analytical formulation of 

the value function. Section 5 presents two algorithms that numerically solve the problem efficiently for arbitrary ca-

pacities. In Section 6, we conduct an extensive numerical study, showing the efficiency of our newly developed algo-

rithms, and comparing them with several benchmark mechanisms. Finally, we conclude with a discussion of our re-

sults in Section 7. An online supplement contains the proofs. 

2 Literature review 

In the following, we briefly discuss the literature most relevant to this research. For an extensive overview on revenue 

management with risk-aversion we refer to Gönsch (2017).  

2.1 Risk-averse dynamic pricing 

Authors who studied inter-temporal price discrimination (e.g., Stokey 1979, Landsberger and Meilijson 1985, and 

Wilson 1988) about 30 years ago laid the basis of dynamic pricing. Research on dynamic pricing gained momentum 
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with the seminal paper by Gallego and van Ryzin (1994), who considered optimal dynamic pricing of a single product 

with stochastic demand over a finite selling horizon. In the two decades since then, hundreds of follow-up papers have 

been published. Several review articles (e.g., Bitran and Caldentey 2003, Chiang et al. 2007, and, with a special focus, 

den Boer 2015 and Gönsch et al. 2013) and textbooks (e.g. Talluri and van Ryzin 2004 (Chapter 5) and Phillips 2005 

(Chapter 10)) have structured and summarized this research. 

Feng and Xiao (1999) were the first to introduce risk aversion in a dynamic pricing framework. They considered a 

model with a pair of pre-determined prices, but instead of maximizing just the expected revenue, used an objective 

function that takes business risk into account by adding a penalty for revenue variance. In addition to the primary ob-

jective of optimizing the expected revenue, Levin et al. (2008) also require a fixed minimum revenue with at least a 

given probability. A drawback of this target criterion is that it neglects the distribution of revenue below the minimum 

revenue, whereas our approach takes the complete tail distribution into account. Another group of authors captures 

risk attitudes via utility functions. Lim and Shanthikumar (2007) show the equivalence of risk-averse, single-product 

dynamic pricing with an exponential utility function and robust dynamic pricing which takes demand model errors 

into account (see Wang and Xiao 2017 for a recent paper from that stream). Li and Zhuang (2009) show that the well-

known monotonicities from risk-neutral dynamic pricing are preserved under risk aversion with additive general utili-

ty and atemporal exponential utility functions. Moreover, these authors show that the optimal price decreases in risk 

aversion. Schlosser (2015, 2016) consider atemporal exponential utility functions. Schlosser (2015) endogenizes the 

decision about the advertising intensity. He is the first to derive optimal closed-form solutions for risk-averse dynamic 

pricing, with the exception of the highly restricted setting of Feng and Xiao (1999). Schlosser (2016) considers multi-

product dynamic pricing. The products have independent demands and inventories, but are related through adoption 

effects. That is, sales of one product can depend on past sales of all products. Simulations show that the variance can 

be significantly reduced, while expected profits are still near optimal. Koenig and Meissner (2010) use standard devia-

tion and (Conditional) Value-at-Risk to evaluate dynamic pricing policies. To the best of our knowledge, the optimiza-

tion of CVaR in the context of dynamic pricing has not yet been considered in the literature, although substantial ar-

guments (see above) speak in its favor.  

2.2 Risk-averse capacity control 

In capacity control, the firm influences demand by controlling the availability of predefined products with fixed prices 

(see, e.g., the textbooks by Talluri and van Ryzin 2004 (Chapters 2 and 3) and Phillips 2005 (Chapters 7 and 8)) for 

problems with risk-neutral decision makers). Weatherford (2004) modified the famous EMSR-b heuristic by substitut-

ing revenues with a risk-averse utility function. Barz (2007), Barz and Waldmann (2007), and Feng and Xiao (2008) 

use an exponential utility function, but they work with the original DP formulation. Zhuang and Li (2011) examine 

optimal booking limits with an atemporal utility function. Koenig and Meissner (2015b, 2016) consider target percen-

tile risk and VaR. Gönsch and Hassler (2014) develop a heuristic to optimize CVaR. Huang and Chang (2011) and 

Koenig and Meissner (2015a) modify existing approaches by heuristically incorporating risk aversion parameters and 

propose hands-on formulae to calculate them. Koch et al. (2016) demonstrate that this approach can be used to tailor 

every control approach to arbitrary risk measures and that the parameters can be obtained from simulation based opti-

mization.  
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3 Modeling CVaR in dynamic pricing 

In the following, we introduce the setting with its notation (Section 3.1) and restate the Bellman equation for the clas-

sical risk-neutral case (Section 3.2). Based on the formal introduction of CVaR in Section 3.3, we formally state the 

problem of maximizing CVaR in dynamic pricing (Section 3.4) and develop a recursive formulation that optimizes the 

CVaR by means of the Bellman equation (Section 3.5). 

3.1 Setting and notation 

Gallego and van Ryzin (1994) introduced the standard dynamic pricing setting. In a market with imperfect competi-

tion, a firm influences demand through price variations. The firm has a given stock of 𝐶 units and replenishment is not 

possible. The stock can only be sold during a finite selling horizon and any remaining units are worthless. The selling 

horizon is discretized into 𝑇 periods, which are indexed backwards in time, i.e., periods 𝑇 and 0 mark the beginning 

and the end of the selling horizon. In each period 𝑡, and with remaining capacity 𝑐, the firm decides on the selling 

price 𝑟𝑡,𝑐. The willingness-to-pay (WTP) of the customer arriving in period 𝑡 is an i.i.d. continuous random variable 𝑋𝑡 

with cumulative distribution function 𝐹𝑋. We normalize the WTP 𝑋𝑡 and the prices 𝑟𝑡,𝑐 to [0,1] and a customer buys 

an item if and only if 𝑋𝑡 ≥ 𝑟𝑡,𝑐, i.e. the probability of a sale at price 𝑟𝑡,𝑐 is 𝑝(𝑟𝑡,𝑐) = 1 − 𝐹𝑋(𝑟𝑡,𝑐). In line with standard 

assumptions from literature (see, e.g., Ziya et al. 2004 or Talluri and van Ryzin 2004), we assume that 𝑝(𝑟𝑡,𝑐) is a 

continuous, strictly decreasing, and twice continuously differentiable function, and the revenue function 𝑟𝑡,𝑐 ⋅ 𝑝(𝑟𝑡,𝑐) is 

strictly concave. Thus, the following properties hold: 

P.1. 𝑝(𝑟𝑡,𝑐) is twice continuously differentiable 

P.2. 𝑝′(𝑟𝑡,𝑐) < 0 

P.3. 0 >
𝑑2

𝑑 𝑟𝑡,1
2 (𝑟𝑡,𝑐 ⋅ 𝑝(𝑟𝑡,𝑐)) = 2𝑝

′(𝑟𝑡,𝑐) + 𝑟𝑡,𝑐 ⋅ 𝑝
′′(𝑟𝑡,𝑐) 

P.4. 𝑝(0) = 1 and 𝑝(1) = 0. 

These conditions are met, for example, by the uniform distribution, and ensure that the revenue function is unimodal 

and the pricing problem is well behaved.  

3.2 Risk-neutral dynamic pricing 

In the classical risk-neutral case, the firm maximizes the total expected revenue 𝑉𝑇,𝐶
𝑁  over the selling horizon: 

 𝑉𝑇,𝐶
𝑁 = max

𝑟𝑡,𝑐
∀ 𝑡∈{1,…,𝑇},𝑐∈{1,…,𝐶}

𝔼 [∑ 𝑟𝑡,𝑐 ⋅ 1{𝑋𝑡≥𝑟𝑡,𝑐 }
𝑇
𝑡=1 ]           (1) 

Please note that only 𝑟𝑡,𝑐  ∀ 𝑡 = 1,… , 𝑇 ∧ 𝑐 = 1,… , 𝐶 are decision variables and we set 𝑟𝑡,0 = 1 to avoid selling an 

additional unit when the stock is depleted. As the expected value is a linear function, a stage-wise optimization with 

the Bellman equation can be used to calculate 𝑉𝑇,𝐶
𝑁 : 

 𝑉𝑡,𝑐
𝑁 = max

𝑟𝑡,𝑐
{𝑝(𝑟𝑡,𝑐) ⋅ (𝑟𝑡,𝑐 + 𝑉𝑡−1,𝑐−1

𝑁 ) + (1 − 𝑝(𝑟𝑡,𝑐)) ⋅ 𝑉𝑡−1,𝑐
𝑁 }  (2) 

Here, 𝑉𝑡,𝑐
𝑁  denotes the optimal expected revenue-to-go from period 𝑡 onwards until period 0, with a remaining stock of 

𝑐 units. In period 𝑡, this is an expectation over two events. With probability 𝑝(𝑟𝑡,𝑐), a sale occurs and the firm collects 

a revenue of 𝑟𝑡,𝑐. In addition, the firm expects a revenue of 𝑉𝑡−1,𝑐−1
𝑁  with a reduced stock of 𝑐 − 1 units from the next 
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period onwards. With probability 1 − 𝑝(𝑟𝑡,𝑐), no sale occurs and the firm expects a revenue of 𝑉𝑡−1,𝑐
𝑁  from stock 𝑐. 

Two boundary conditions ensure termination of the recursion and the sale of less than or equal to 𝐶 items: 𝑉0,𝑐
𝑁 = 0 for 

𝑐 ≥ 0 and 𝑉𝑡,𝑐
𝑁 = −∞ for 𝑐 < 0. 

Note that the primary goal of solving (2) is usually not only to calculate the expected revenue, but to obtain a policy. 

Such a decision rule indicates, for every state (𝑐, 𝑡), the price 𝑟𝑡,𝑐 to post.  

3.3 General representations of CVaR 

3.3.1. CVaR in a static setting 

Given a probability level 𝛼 ∈ [0,1] and a random variable 𝑅 denoting a profit with a distribution function 𝐹𝑅(𝑦) =

ℙ(𝑅 ≤ 𝑦), the VaR is simply the 𝛼-quantile (𝑉𝑎𝑅𝛼(𝑅) = 𝐹𝑅
−1(𝛼)). Intuitively, CVaR can be thought of as the expec-

tation below 𝑉𝑎𝑅𝛼 or the 𝛼-quantile:  

 CVaR𝛼(𝑅) = 𝔼[𝑅: 𝑅 ≤ 𝐹𝑅
−1(𝛼)].    (3) 

Note that (3) is equivalent to the formal definition only when considering probability spaces without atoms. However, 

revenue is clearly a discrete random variable for each given policy in dynamic pricing. Thus, we turn to CVaR’s dual 

representation for a definition (e.g., Pflug and Pichler 2016): 

 CVaR𝛼(𝑅) = inf
𝑍
{𝔼[𝑅𝑍]: 𝔼[𝑍] = 1,  0 ≤ 𝑍 ≤ 1/𝛼}     (4) 

with CVaR0(𝑅) = ess inf 𝑅. In (4), the infimum is over all nonnegative random variables 𝑍 ≥ 0 with expectation 

𝔼[𝑍] = 1 (densities), which satisfy the additional truncation constraint 𝑍 ≤ 1/𝛼. Note that (3) is also known as the 

Tail Conditional Expectation and (4) as the Expected Shortfall. Both can be applied to discrete distributions and are 

equivalent for continuous distributions. 

 

Figure 1: Comparison of three variants to calculate CVaR in a multistage setting 

Figure 1 illustrates CVaR’s calculation with (4) for an example. We first ignore the scenario tree on the left and direct-

ly consider CVaR of the outcomes at the final stage (Figure 1 (a)): The random variable 𝑅 with four realizations and 
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associated probability measure ℙ. Now, note that for discrete events, (4) is essentially a continuous knapsack problem 

and the lowest (worst) outcomes of 𝑅 are subsequently assigned 𝑍-values as high as possible until 𝔼[𝑍] = 1 holds. 

Then, CVaR0. (𝑅) = 𝔼[𝑅𝑍] = 1.  follows. Thus, the 𝑍 can intuitively be viewed as weights that indicate whether an 

event (atom) falls below 𝐹𝑅
−1(𝛼), and is thus included in the CVaR’s expectation. Roughly, (4) differs from (3) in the 

sense that the atom with 𝑅-value 4, whose value of the cumulative density function stretches over 𝛼, is divided and 

only partially included in CVaR’s expectation. 

3.3.2. CVaR in a multistage setting 

Next, we consider how CVaR can be calculated in a multistage setting and directly illustrate this using the example in 

Figure 1. Therefore, we consider the scenario tree on the left of Figure 1  and explore how the fact that 𝑅 realizes in a 

two-stage process can be used for a recursive (or nested) calculation.   

Analogous to the nested calculation of the expected value, a straightforward approach seems the nested calculation of 

CVaR at a fixed probability level: CVaR𝛼
 (𝑅  𝑡) = CVaR𝛼(CVaR𝛼(𝑅  𝑡−1)  𝑡) where  𝑡 denotes a sigma-algebra in 

period 𝑡 of the stochastic process visualized by the tree structure ( 𝑡 ⊂  𝑡−1). In the example (Figure 1 (b)), we first 

calculate CVaR0.  for the upper and lower subtree, and then use the results to calculate CVaR0.  at the root. We obtain 

CVaR0. (𝑅) = 0 and CVaR0. (𝑅) =   for the subtrees, respectively. At the root, each subtree has a probability of 0.5, 

and, accordingly, only the upper subtree (with lower CVaR) is considered. We obtain 𝐶𝑉𝑎𝑅0. 
 (𝑅) =

CVaR0. (CVaR0. (𝑅  1)   ) = 0. Comparing this with the previous subsection (Figure 1 (a)), 0 is obviously not the 

correct CVaR0.  of 𝑅. This illustrates that a nested calculation of CVaR with a fixed 𝛼 is difficult to interpret and cer-

tainly not what decision makers would understand under multistage risk (Pflug and Pichler 2016, Rudloff et al. 2014). 

The reason is that in each subtree, the share of outcomes that are below 𝐹𝑅
−1(𝛼) and, thus, have to be included in 

CVaR’s expectation is inherently unknown and usually not equal to the initial 𝛼 = 0. .  

It is indeed possible to recursively calculate the CVaR of a multistage process’ final outcome (Pflug and Pichler 

2016). Key is a property that obviously holds at the root: The probability level reflects the share of outcomes that are 

below 𝐹𝑅
−1(𝛼) and therefore included in the CVaR. The preservation of this property requires relaxing the assumption 

of a fixed probability level 𝛼 at intermediate periods. Instead, as new information becomes available, the probability 

level in period 𝑡 is now adapted by the random variable 𝑍𝑡 such that the modified probability level at each node still 

reflects the share of outcomes that are below 𝐹𝑅
−1(𝛼). The nested calculation of CVaR at random probability level is 

given by 

 CVaR𝛼(𝑅  𝑡) = inf
𝑍𝑡
{𝔼[𝑍𝑡 ⋅ CVaR𝛼⋅𝑍𝑡(𝑅  𝑡−1)]: 𝔼[𝑍𝑡] = 1,  0 ≤ 𝑍𝑡 ≤ 1/𝛼}    (5) 

with CVaR0(𝑅) = ess inf 𝑅. Moreover, if 𝑍 is the optimal dual density for (4), then 𝑍𝑡 = 𝔼[𝑍  𝑡]. 

Figure 1 (c) illustrates this for our two-stage example. According to (5), only respectively 75% and 25% of the upper 

and lower subtree’s probability mass are included in CVaR’s expectation. This exactly represents the shares included 

in the direct calculation of the final outcomes’ CVaR in the previous subsection. We obtain CVaR0.  (𝑅) = 1.   and 

CVaR0.  (𝑅) = 2 for the upper and lower subtree, respectively, and CVaR0. (𝑅) = CVaR0. (CVaR𝛼⋅𝑍1(𝑅  1)   ) =

1.  at the root. Different from our illustration, the 𝑍-values of the tree’s leafs and, thus, the probability levels 

𝔼[𝑍  1] ⋅ 𝛼 in period 1 are not known a priori but come along with the solution of the entire problem.  
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3.4 Problem statement 

The firm maximizes CVaR at a given probability level 𝛼 of the total revenue obtained over the selling horizon. This 

can be formally stated as follows: 

 �̃�𝑇,𝐶(𝛼) = max
𝑟𝑡,𝑐

∀ 𝑡∈{1,…,𝑇},𝑐∈{1,…,𝐶}

CVaR𝛼 (∑ 𝑟𝑡,𝑐 ⋅ 1{𝑋𝑡≥𝑟𝑡,𝑐 }
𝑇
𝑡=1 )         (6) 

As in Section 3.2, we require 𝑟𝑡,0 = 1 to avoid selling an additional unit when the stock is depleted. 

3.5 Recursive maximization of CVaR in dynamic pricing 

Building on (5), we now model the risk-averse dynamic pricing problem using a recursive formulation. Pflug and 

Pichler (2016) show that (5) can be substituted for the expectation in a general Bellman Equation under conditions that 

hold for the dynamic pricing problem as defined in Subsections 3.1 and 3.2: ∑ 𝑟𝑡,𝑐 ⋅ 1{𝑋𝑡≥𝑟𝑡,𝑐 }
𝑇
𝑡=1  is random upper 

semi-continuous in 𝑟𝑡,𝑐 and 𝑋 and 𝑋 evaluates in some convex, compact subset of ℝ𝑛. Thus, at each stage 𝑡, the fol-

lowing problem has to be solved: 

 �̃�𝑡,𝑐(𝛼) = max
𝑟𝑡,𝑐
CVaR𝛼 (1{𝑋𝑡≥𝑟𝑡,𝑐 } ⋅ (𝑟𝑡,𝑐 + �̃�𝑡−1,𝑐−1(𝑧𝑡−1,𝑐−1 ⋅ 𝛼)) + 1{𝑋𝑡<𝑟𝑡,𝑐 } ⋅ �̃�𝑡−1,𝑐(𝑧𝑡−1,𝑐 ⋅ 𝛼))       

where 𝑧𝑡−1,𝑐 and 𝑧𝑡−1,𝑐−1 are the values of the optimal solution to the minimization calculating CVaR (see (5)). We 

obtain the following Bellman equation to calculate �̃�𝑇,𝐶(𝛼) for 𝛼 ∈ (0,1]: 

 �̃�𝑡,𝑐(𝛼) = max
𝑟𝑡,𝑐

min
𝑧𝑡−1,𝑐−1,𝑧𝑡−1,𝑐

{𝑝(𝑟𝑡,𝑐) ⋅ 𝑧𝑡−1,𝑐−1 ⋅ (𝑟𝑡,𝑐 + �̃�𝑡−1,𝑐−1(𝛼 ⋅ 𝑧𝑡−1,𝑐−1))                      (7) 

                                                        +(1 − 𝑝(𝑟𝑡,𝑐)) ⋅ 𝑧𝑡−1,𝑐 ⋅ �̃�𝑡−1,𝑐(𝛼 ⋅ 𝑧𝑡−1,𝑐)}  

subject to 

 1 = (1 − 𝑝(𝑟𝑡,𝑐)) ⋅ 𝑧𝑡−1,𝑐 + 𝑝(𝑟𝑡,𝑐) ⋅ 𝑧𝑡−1,𝑐−1   

 𝑧𝑡−1,𝑐 ,   𝑧𝑡−1,𝑐−1 ≤
1

𝛼
   

 𝑟𝑡,𝑐 ∈ [0,1]   

with the boundary conditions �̃�𝑡,𝑐(𝛼) = −∞ for 𝑐 < 0 and �̃�0,𝑐(𝛼) = 0 for 𝑐 ≥ 0. For 𝛼 = 0, we have �̃�𝑡,𝑐(0) = 0. As 

the probability level is adapted in every time period it is included in the state space yielding a dynamic program with 

uncountable infinite state and action space.  

Whereas �̃�𝑡,𝑐(𝛼) defined in (7) exhibits no special structure apart from being monotonous, we reformulate it to obtain 

an equivalent value function 𝑉𝑡,𝑐(𝛼) that is monotonous and convex (see Ogryczak and Ruszczynski 2002), and is thus 

easier to handle. We respectively substitute 𝛼𝑡−1,𝑐 and 𝛼𝑡−1,𝑐−1 for 𝛼 ⋅ 𝑧𝑡−1,𝑐 and 𝛼 ⋅ 𝑧𝑡−1,𝑐−1, and change the objec-

tive from CVaR𝛼 to 𝛼 ⋅ CVaR𝛼. These modifications lead to the following Bellman equation for 𝛼 ∈ (0,1]:  

 𝑉𝑡,𝑐(𝛼𝑡,𝑐) = max
𝑟𝑡,𝑐

min
𝛼𝑡−1,𝑐,𝛼𝑡−1,𝑐−1

{𝑝(𝑟𝑡,𝑐) ⋅ (𝑉𝑡−1,𝑐−1(𝛼𝑡−1,𝑐−1) + 𝑟𝑡,𝑐 ⋅ 𝛼𝑡−1,𝑐−1)                     (8) 

                                                             +(1 − 𝑝(𝑟𝑡,𝑐)) ⋅ 𝑉𝑡−1,𝑐(𝛼𝑡−1,𝑐)} 

subject to 
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 𝛼𝑡,𝑐 = (1 − 𝑝(𝑟𝑡,𝑐)) ⋅ 𝛼𝑡−1,𝑐 + 𝑝(𝑟𝑡,𝑐) ⋅ 𝛼𝑡−1,𝑐−1   (9) 

 𝛼𝑡−1,𝑐 ,   𝛼𝑡−1,𝑐−1,   𝑟𝑡,𝑐 ∈ [0,1]    (10) 

with 𝑉𝑡,𝑐(𝛼) = −∞ for 𝑐 < 0 and 𝑉0,𝑐(𝛼) = 0 for 𝑐 ≥ 0. 𝑉𝑡,𝑐(𝛼) = 𝛼 ⋅ �̃�𝑡,𝑐(𝛼) denotes the value of 𝛼 ⋅ CVaR𝛼 when 

following an optimal policy from period 𝑡 onwards.  

Remark 1 Considering the special case of 𝛼𝑡,𝑐 = 0, a feasible solution of the inner minimization problem is 

𝛼𝑡−1,𝑐−1 = 𝛼𝑡−1,𝑐 = 0 and, therefore, 𝑉𝑡,𝑐(0) = 0 ∀ 𝑟𝑡,𝑐. Without loss of generality, we then choose 𝑟𝑡,𝑐= 0 ∀ 𝑡, 𝑐. As 

this special case is trivial, we exclude the case for the rest of the work and consider only 𝛼𝑡,𝑐 > 0. 

Backward induction, the classical solution approach for dynamic programs, can only handle dynamic programs with a 

discrete state space, but the dynamic program (8) possesses a partially continuous state space. Moreover, there is a 

continuous action space and no analytical solution available for the optimization problem solved on each stage. In this 

case, the standard approach is to discretize both by a finite set of points. As this always involves a trade-off between a 

rough discretization and long runtimes, we develop problem-specific approaches. In the following Section 4, we ana-

lytically investigate and solve (8) for 𝐶 = 1. In Section 5, we present two solution algorithms for arbitrary capacities, 

each requiring only to discretize the state or the action space. 

4 Structural properties for 𝑪 = 𝟏 

If there is only one unit of capacity for sale, the value function given in formula (8) simplifies to 

𝑉𝑡,1(𝛼𝑡,1) = max𝑟𝑡,1min𝛼𝑡−1,1,𝛼𝑡−1,0 {(1 − 𝑝(𝑟𝑡,1)) ⋅ 𝑉𝑡−1,1(𝛼𝑡−1,1) + 𝑝(𝑟𝑡,1) ⋅ 𝑟𝑡,1 ⋅ 𝛼𝑡−1,0} (11) 

subject to 

 𝛼𝑡,1 = (1 − 𝑝(𝑟𝑡,1)) ⋅ 𝛼𝑡−1,1 + 𝑝(𝑟𝑡,1) ⋅ 𝛼𝑡−1,0   (12) 

 𝛼𝑡−1,1,   𝛼𝑡−1,0,   𝑟𝑡,1 ∈ [0,1]    (13) 

Our presentation proceeds as follows: In Section 4.1, we give sufficient conditions for solutions of the optimization 

problems inherent in (11) and derive an explicit recursive formulation of the value function dependent on 

𝑉𝑡−1,1(𝛼𝑡−1,1). In Section 4.2, we state certain properties of the optimal price, and in Section 4.3 we further refine the 

recursive formulation of the value function to a formula no longer dependent on 𝑉𝑡−1,1(𝛼𝑡−1,1).  

4.1 Analytical formulation of the value function 

The following proposition characterizes the value function 𝑉𝑡,1(𝛼𝑡,1), the optimal price 𝑟𝑡,1(𝛼𝑡,1), and the optimal 

probability level 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)) as, respectively, functions of 𝛼𝑡,1 and 𝑟𝑡,1(𝛼𝑡,1). Given 𝑉𝑡−1,1(𝛼𝑡−1,1), these quan-

tities are determined by solving the optimization problem (11) analytically. 

Lemma 1  For all 𝛼𝑡,1 > 0 with 𝑡 ∈ {0,… , 𝑇}, 𝑟𝑡,1(𝛼𝑡,1) ∉ {0,1}. Thus, 𝑟𝑡,1 ∈ [0,1] can be replaced by 𝑟𝑡,1 ∈ (0,1). 

Proposition 1  Let 𝛼𝑡,1
𝑃𝐼𝑡−1 = 𝑝′ (𝑉𝑡−1,1

′ (1)) ∙ (𝑉𝑡−1,1(1) − 𝑉𝑡−1,1
′ (1)) + 1 − 𝑝 (𝑉𝑡−1,1

′ (1)). The domain of 𝛼𝑡,1, [0,1], 

consists of two intervals [0, 𝛼𝑡,1
𝑃𝐼𝑡−1] and (𝛼𝑡,1

𝑃𝐼𝑡−1 , 1] for which 𝑉𝑡,1(𝛼𝑡,1), 𝑟𝑡,1(𝛼𝑡,1) and 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)) are charac-

terized as follows. 

Given 𝑟𝑡,1(𝛼𝑡,1), the optimal level 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)) is: 
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 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)) = {
(𝑉𝑡−1,1
′ )

−1
(𝑟𝑡,1(𝛼𝑡,1)) , if 𝛼𝑡,1 ∈ [0, 𝛼𝑡,1

𝑃𝐼𝑡−1]

1, if 𝛼𝑡,1 ∈ (𝛼𝑡,1
𝑃𝐼𝑡−1 , 1]

   (14) 

and 𝛼𝑡−1,0 has to be chosen so that the condition (1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1))) ∙ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)) + 𝑝 (𝑟𝑡,1(𝛼𝑡,1)) ∙ 𝛼𝑡−1,0 =

𝛼𝑡,1 is satisfied. 

The optimal price 𝑟𝑡,1(𝛼𝑡,1) is implicitly given by the sufficient conditions: 

 

{
 
 

 
  

 

(𝛼𝑡,1 − 𝑝
′(𝑟𝑡,1) ∙ (𝑉𝑡−1,1 (𝛼𝑡−1,1(𝑟𝑡,1)) − 𝑟𝑡,1 ∙ 𝛼𝑡−1,1(𝑟𝑡,1))

− (1 − 𝑝(𝑟𝑡,1)) ∙ 𝛼𝑡−1,1(𝑟𝑡,1) = 0) ∧ (𝑟𝑡,1 ∈ (0, 𝑉𝑡−1,1
′ (1)])

if 𝛼𝑡,1 ∈ [0, 𝛼𝑡,1
𝑃𝐼𝑡−1]

𝛼𝑡,1 − 𝑝
′(𝑟𝑡,1) ∙ (𝑉𝑡−1,1(1) − 𝑟𝑡,1) − (1 − 𝑝(𝑟𝑡,1)) = 0 if 𝛼𝑡,1 ∈ (𝛼𝑡,1

𝑃𝐼𝑡−1 , 1]

  (15) 

The value function is given by:  

𝑉𝑡,1(𝛼𝑡,1) =

{
 
 

 
 (1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1))) ∙ (𝑉𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)))

−𝑟𝑡,1(𝛼𝑡,1) ∙ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) + 𝑟𝑡,1(𝛼𝑡,1) ∙ 𝛼𝑡,1

if 𝛼𝑡,1 ∈ [0, 𝛼𝑡,1
𝑃𝐼𝑡−1]

(1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1))) ∙ (𝑉𝑡−1,1(1) − 𝑟𝑡,1(𝛼𝑡,1)) + 𝑟𝑡,1(𝛼𝑡,1) ∙ 𝛼𝑡,1 if 𝛼𝑡,1 ∈ (𝛼𝑡,1
𝑃𝐼𝑡−1 , 1]

 (16) 

Proof. The proof is based on an analytical solution of (11) and given in Online Supplement S.2. There, we also show 

that 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)), 𝛼𝑡−1,0 and 𝑟𝑡,1(𝛼𝑡,1) are well defined. 

4.2 Properties of the optimal price 

The following propositions provide properties of the optimal price. The proofs are given in Online Supplement S.3 – 

S.8.  

Proposition 2  The optimal price 𝑟𝑡,1(𝛼𝑡,1) is strictly monotonically increasing in 𝛼𝑡,1 ∈ [0,1]. 

Proposition 3  The optimal price 𝑟𝑡,1(𝛼𝑡,1) is continuous in the probability level 𝛼𝑡,1 ∈ [0,1]. Moreover, 

𝑙𝑖𝑚
𝛼𝑡,1↘0
𝑟𝑡,1(𝛼𝑡,1) = 0. 

Together, these propositions imply that for every feasible price 𝑟𝑡,1 lower than the price of the expected value optimal 

policy, i.e. 𝑟𝑡,1(1), there is an 𝛼𝑡,1 so that 𝑟𝑡,1 is optimal for 𝛼𝑡,1. The strict monotonicity of 𝑟𝑡,1(𝛼𝑡,1) is also as intui-

tively expected, because a lower risk aversion, i.e. a higher 𝛼𝑡,1, leads to a higher price and, therefore, the risk of no 

sale increases, as does the possible revenue. 

Proposition 4  Let 𝛼𝑡,1 be the probability level in period 𝑡 and 𝛼𝑡−1,1 be the probability level in 𝑡 − 1 which occurs 

when there are no sales. Then it holds that: 

 𝛼𝑡,1 ≤ 𝛼𝑡,1
𝑃𝐼𝑡−1 ⇒ 𝑟𝑡−1,1(𝛼𝑡−1,1) = 𝑟𝑡,1(𝛼𝑡,1),   

 𝛼𝑡,1 ≥ 𝛼𝑡,1
𝑃𝐼𝑡−1 ⇒ 𝑟𝑡−1,1(𝛼𝑡−1,1) = 𝑟𝑡−1,1(1) = 𝑟𝑡,1(𝛼𝑡,1

𝑃𝐼𝑡−1) ≤  𝑟𝑡,1(𝛼𝑡,1),   

and, thus, the optimal price 𝑟𝑡,1(𝛼𝑡,1) is nonincreasing over time (i.e. nondecreasing in 𝑡).   

Together with Propositions 1-3, Proposition 4 shows that the structure of the optimal risk-averse policy is fundamen-

tally different from the structure usually found in the standard setting of risk-neutral dynamic pricing. When selling 
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one unit of capacity and optimizing the Conditional Value-at-Risk, a fixed price policy is optimal at the beginning of 

the selling horizon until 𝛼𝑡,1 ≥ 𝛼𝑡,1
𝑃𝐼𝑡−1. Hereafter, the price follows the expected value optimal policy and 𝛼𝑡′,1 = 1 for 

𝑡′ < 𝑡. The lower the initial probability level, the later the switch to the expected value-optimal (dynamic) policy. 

Propositions 2 and 4 are illustrated in Figure 2, using an example with 𝑇 = 10 time periods and uniform WTP 

(𝑝(𝑟𝑡,𝑐) = 1 − 𝑟𝑡,𝑐). It shows the optimal prices set in each time period if no sale occurs, with different initial proba-

bility levels 𝛼10,1. The risk-neutral optimal price is initially 𝑟10,1 = 0. 6 in 𝑡 = 10 and declines over time. In contrast, 

the risk-averse optimal price for 𝛼10,1 = 0.  is initially 𝑟10,1 = 0. 1 and remains constant until period 𝑡 = 7. From 

period 𝑡 = 6 onwards, it equals the risk-neutral price in the respective period and, thus, declines. The optimal price for 

𝛼10,1 = 0.  is initially even lower, with 𝑟10,1 = 0.7 , and remains constant until period 𝑡 =  .  

 

Figure 2: Price process over time 

 

Figure 3: Intervals and probability levels 

The following propositions characterize the optimal policy and the evolution of the probability level. 

Proposition 5  The Value-at-Risk at level 𝛼𝑡,1 in period 𝑡 is equal to the optimal price 𝑟𝑡,1(𝛼𝑡,1). 

Proposition 5 is a direct consequence of CVaR𝛼’s definition as the expectation below the VaR. It is quite intuitive. As 

there is at most a single sale, increasing the price above the VaR does not contribute to CVaR of total revenue, but just 

decreases the probability of a sale and, thus, wastes time. On the other hand, we already know that the price is nonin-

creasing. Thus, setting a price strictly below the VaR is a contradiction as it implies that total revenue is at most this 

lower price and, thus, VaR would be at most this lower price. 

Proposition 6  The probability level 𝛼𝑡,1 ∈ [0,1] is monotonically increasing over time, i.e. 𝛼𝑡,1 ≤ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)). 

Remember the discussion of the stochastic nature of intermediate probability levels from Section 3.3. With every time 

period passing, the set of possible future events shrinks. If no sale occurs, things are going bad and the decision maker 

adjusts his preferences. More precisely, the chances of obtaining a revenue in the upper (1 − 𝛼𝑡,1)-part of the distribu-

tion diminish and, thus, a higher share of the still (in 𝑡 − 1) possible events is included in CVaR’s expectation, which 

is still conditional on revenue being below the (former, unchanged) VaR𝛼𝑡. 
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4.3 Transformation from sufficient conditions to a recursive formula 

We now state a formula for the value function which is not recursive in the sense that 𝑉𝑡,1 depends on 𝑉𝑡−1,1, but is 

given explicitly for intervals of 𝛼𝑡,1 ∈ [0,1], evolving over time. For notational convenience, we only consider the 

special case of uniformly distributed WTPs, i.e. 𝑝(𝑟𝑡,1) = 1 − 𝑟𝑡,1, in the following. 

Proposition 7  Let 𝑟𝑃𝐼𝑡 be defined as 

 𝑟𝑃𝐼𝑡 =
1

 
+
(𝑟𝑃𝐼𝑡−1)

2

 
 and 𝑟𝑃𝐼0 = 0.    (17) 

Furthermore, we partition (0,1] into intervals 𝑆𝑡,1
𝑗
= (𝛼𝑡,1

𝑃𝐼𝑗−1 , 𝛼𝑡,1
𝑃𝐼𝑗] indexed by 0 < 𝑗 ≤ 𝑡 with: 

 𝛼𝑡,1
𝑃𝐼𝑗 = {

2𝑟𝑃𝐼𝑗 ⋅ 𝛼𝑡−1,1
𝑃𝐼𝑗 − (𝑟𝑃𝐼𝑗)

 
⋅ 𝛼𝑡− ,1
𝑃𝐼𝑗 if  0 < 𝑗 < 𝑡

1 if 𝑗 ≥ 𝑡
     and 𝛼𝑡,1

𝑃𝐼0 = 0  (18) 

Moreover, 𝛼𝑡,1
𝑃𝐼𝑗 = 1 for 𝑡 ≤ 0. Then,  

 the optimal risk-neutral price 𝑟𝑡,1(1) in period 𝑡 is given by 𝑟𝑡,1(1) = 𝑟
𝑃𝐼𝑡 and (19) 

 for 𝛼𝑡,1 ∈ 𝑆𝑡,1
𝑗

 with 𝑗 ≤ 𝑡 holds 𝑉𝑡,1(𝛼𝑡,1) = −𝑟𝑡,1
𝑡−𝑗+ 

+ 𝑟𝑡,1
𝑡−𝑗+1

⋅ 𝑉𝑗−1,1(1) + 𝑟𝑡,1 ⋅ 𝛼𝑡,1 (20) 

 where the price 𝑟𝑡,1 is implicitly defined by −(𝑡 − 𝑗 + 2) ⋅ 𝑟𝑡,1
𝑡−𝑗+1

+ (𝑡 − 𝑗 + 1) ⋅ 𝑟𝑡,1
𝑡−𝑗
⋅ 𝑉𝑗−1,1(1) + 𝛼𝑡,1 = 0 (21) 

 and 𝑟𝑡,1 (𝛼𝑡,1
𝑃𝐼𝑗) = 𝑟𝑃𝐼𝑗 , ∀𝑗 ≤ 𝑡. (22) 

 For 𝑡 ≥ 2, we have 𝛼𝑡,1 ∈ 𝑆𝑡,1
𝑗
⇒ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)) ∈ 𝑆𝑡−1,1

𝑚𝑖𝑛{𝑗,𝑡−1}
. (23) 

Proof. The proof is given in Online Supplement S.10. 

This proposition provides a possibility to directly calculate the value function for a given time period 𝑡. In addition, it 

also shows that if 𝛼 ∈ 𝑆𝑡,1
𝑗

, then 𝛼𝑡,1 reaches 1 in period 𝑗 − 1, and, thus, the risk-neutral price is optimal from period 

𝑗 − 1 onwards. Together with Proposition 3, this shows that the price remains constant until period 𝑡 = 𝑗. 

Figure 3 illustrates this by again using the previous example (𝑇 = 10, 𝑝(𝑟𝑡,1) = 1 − 𝑟𝑡,1), and shows the intervals 

defined by (18). Obviously, there is only one interval in 𝑡 = 1, and for each additional time period the existing inter-

vals become smaller, and a new interval between 1 and the existing intervals is added. In addition, the figure illustrates 

the meaning of the intervals beyond the formal definition and usage to calculate the value function and optimal price 

according to (20) and (21). Therefore, it shows the three sales processes from Figure 2 with the evolution of the corre-

sponding level 𝛼𝑡,1 over time. The level remains 1 for the risk-neutral sales process (𝛼10,1 = 1). The level is initially 

𝛼10,1 = 0.  for the first risk-averse sales process and, thus, in the 7th interval. Subsequently, the level 𝛼𝑡,1 increases, 

but always remains in the 7th interval. Note that until period 𝑡 = 7, the price remains constant (see Figure 2), although 

the level 𝛼𝑡,1 increases. When the interval ceases to exist in period 𝑡 = 6, the corresponding level 𝛼6,1 reaches 1 and 

remains there. Hereafter, the risk-neutral price is optimal. The explanation regarding the third sales process with 

𝛼10,1 = 0.  is completely analogous, except that the level is in the 4th interval and reaches 1 in period 𝑡 =  . 

5 Solution algorithms for arbitrary capacity 

In this section, we present two different algorithms for the solution of the dynamic program developed in Section 3. 

Both algorithms solve the dynamic program by backward induction, that is, analogously to the recursive formulation 

of (8), the value function in period 𝑡 − 1 is used to calculate the value function in period 𝑡. The first algorithm uses a 

discrete state space obtained by discretizing the probability level 𝛼 and a continuous action space. The second algo-



13 

rithm uses the original, partially continuous state space and a discretized action space, that is, discrete prices. We fo-

cus on uniformly distributed WTP, i.e. 𝑝(𝑟𝑡,𝑐) = 1 − 𝑟𝑡,𝑐, although the algorithms can be generalized to other WTPs. 

5.1 Algorithm A (discrete state space) 

In this algorithm, we discretize only the state space while the action space remains continuous and determine the op-

timal price for each discrete probability level 𝛼 considered. The basic idea is to successively consider the grid points, 

and to use the optimal price determined at the previous grid point as the starting point for the search for the optimal 

price in the next grid point. At each grid point, we replace the difficult bilevel problem (8) involving piecewise linear 

functions with a sequence of simpler optimization problems. The resulting subproblems only involve affine linear 

functions. 

5.1.1. Overview 

We discretize the domain [0,1] of the probability level 𝛼 by a finite set of points 0 = 𝛼1 ≤ 𝛼 ≤ ⋯ ≤ 𝛼𝑛𝛼 = 1, de-

noted by 𝒜 = {𝛼1, … , 𝛼𝑛𝛼}. As a result of this discretization of 𝛼, the value function 𝑉𝑡,𝑐
𝐴 (𝛼) is piecewise linear and 

also convex in 𝛼 (Pflug and Pichler 2016). Therefore, the inner minimization – which determines 𝛼𝑡−1,𝑐 and 𝛼𝑡−1,𝑐−1 

for given 𝛼𝑖 ∈ 𝒜 and 𝑟𝑡,𝑐 – becomes a continuous knapsack problem, which can be efficiently solved with a simple 

greedy procedure (Gönsch and Hassler 2014).  

In particular, there are 2(𝑛𝑎 − 1) items available. The set ℐ𝑡−1,𝑐 = {1, 2, … , 𝑛
𝑎 − 1} contains the items related to 

𝑉𝑡−1,𝑐
𝐴 (⋅) and each item 𝑗 ∈ ℐ𝑡−1,𝑐 has utility 𝑢𝑡−1,𝑐

𝑗
= (1 − 𝑝(𝑟𝑡,𝑐)) (𝑉𝑡−1,𝑐

𝐴 (𝛼𝑗+1) − 𝑉𝑡−1,𝑐
𝐴 (𝛼𝑗)) and weight 𝑤𝑡−1,𝑐

𝑗
=

(1 − 𝑝(𝑟𝑡,𝑐)) (𝛼
𝑗+1 − 𝛼𝑗). Decision variable 𝑥𝑡−1,𝑐

𝑗
∈ [0,1] denotes the amount selected from item 𝑗. Analogously, 

the set ℐ𝑡−1,𝑐−1 = {1, 2, … , 𝑛
𝑎 − 1} contains the items related to 𝑉𝑡−1,𝑐−1

𝐴 (⋅) and each item 𝑗 ∈ ℐ𝑡−1,𝑐−1 has utility 

𝑢𝑡−1,𝑐−1
𝑗

= 𝑝(𝑟𝑡,𝑐) ⋅ (𝑉𝑡−1,𝑐−1
𝐴 (𝛼𝑗+1) − 𝑉𝑡−1,𝑐−1

𝐴 (𝛼𝑗) + 𝑟𝑡,𝑐 ⋅ (𝛼
𝑗+1 − 𝛼𝑗)), weight 𝑤𝑡−1,𝑐−1

𝑗
= 𝑝(𝑟𝑡,𝑐) ⋅ (𝛼

𝑗+1 − 𝛼𝑗) 

and decision variable 𝑥𝑡−1,𝑐−1
𝑗

∈ [0,1]. Slightly different from the common knapsack problem, the goal is to pack a 

knapsack with minimal utility and a weight equal to 𝛼𝑖. Thus, the problem formulation is: 

 𝑉𝑡,𝑐
𝐴 (𝛼𝑖)  = min

𝑥𝑡−1,𝑐
𝑗
,𝑥𝑡−1,𝑐−1
𝑗

∀𝑗
{∑ 𝑥𝑡−1,𝑐

𝑗
𝑢𝑡−1,𝑐
𝑗
+ 𝑥𝑡−1,𝑐−1
𝑗

𝑢𝑡−1,𝑐−1
𝑗𝑛𝑎−1

𝑗=1 }       (24) 

subject to 

 ∑ 𝑥𝑡−1,𝑐
𝑗
𝑤𝑡−1,𝑐
𝑗
+ 𝑥𝑡−1,𝑐−1
𝑗

𝑤𝑡−1,𝑐−1
𝑗𝑛𝑎−1

𝑗=1 ≥ 𝛼𝑖   

 𝑥𝑡−1,𝑐
𝑗
, 𝑥𝑡−1,𝑐−1
𝑗

∈ [0,1]  ∀𝑗 ∈ ℐ𝑡−1,𝑐 , ℐ𝑡−1,𝑐−1  

To solve this knapsack problem, we sort the relative utilities 𝑢𝑡−1,⋅
𝑗
/𝑤𝑡−1,⋅
𝑗

 in increasing order and add the correspond-

ing items to the knapsack with a simple greedy procedure. As the relative utilities are related to the slopes of the 

piecewise linear and convex functions 𝑉𝑡−1,⋅
𝐴 (⋅) between 𝛼𝑗 and 𝛼𝑗+1, they are already sorted and increasing in 𝑗 for 

both ℐ𝑡−1,𝑐 and ℐ𝑡−1,𝑐−1. As there is always one optimal solution of a continuous knapsack with at most one product 

split (neither fully included or excluded), at least either 𝛼𝑡−1,𝑐
∗  or 𝛼𝑡−1,𝑐−1

∗  is located in a grid point (i.e. 𝛼𝑡−1,𝑐
∗ ∈ 𝒜 or 

𝛼𝑡−1,𝑐−1
∗ ∈ 𝒜). (Formally, equation (24) contains terms of the form of 𝑉𝑡−1,⋅

𝐴 (𝛼𝑖) − 𝑉𝑡−1,⋅
𝐴 (0), but 𝑉𝑡−1,⋅

𝐴 (0) = 0 (see 

Section 3.5).) 



14 

 

Figure 4: Illustration of the greedy procedure (left) and of the subproblem (right) 

Figure 4 (left part) shows an example to illustrate this. Let 𝑠𝑡−1,𝑐
𝑗

 and 𝑠𝑡−1,𝑐−1
𝑗

 denote the slope of the piecewise linear 

functions 𝑉𝑡−1,𝑐
𝐴 (⋅) and 𝑉𝑡−1,𝑐−1

𝐴 (⋅) between 𝛼𝑗 and 𝛼𝑗+1, i.e. 𝑠𝑡−1,𝑐
𝑗
= (𝑉𝑡−1,𝑐

𝐴 (𝛼𝑗+1) − 𝑉𝑡−1,𝑐
𝐴 (𝛼𝑗)) (𝛼𝑗+1 − 𝛼𝑗)⁄ =

𝑢𝑡−1,𝑐
𝑗
/𝑤𝑡−1,𝑐
𝑗

 and 𝑠𝑡−1,𝑐−1
𝑗

+ 𝑟𝑡,𝑐 = 𝑢𝑡−1,𝑐−1
𝑗

/𝑤𝑡−1,𝑐−1
𝑗

 for  𝑗 = 1,… , 𝑛𝛼 − 1, and set 𝑠𝑡−1,𝑐
𝑛𝛼 = 𝑠𝑡−1,𝑐−1

𝑛𝛼 = ∞. In the 

figure, we have 𝑠𝑡−1,𝑐−1
1 + 𝑟𝑡,𝑐 < 𝑠𝑡−1,𝑐

1 < 𝑠𝑡−1,𝑐
 < 𝑠𝑡−1,𝑐−1

 + 𝑟𝑡,𝑐 < 𝑠𝑡−1,𝑐
3 , and the 𝛼𝑡−1,⋅ are increased by the greedy 

procedure in this sequence until constraint (9) holds. The procedure starts with 𝛼𝑡−1,𝑐 = 𝛼𝑡−1,𝑐−1 = 0 and first sets 

𝛼𝑡−1,𝑐−1 = 𝛼
 , then 𝛼𝑡−1,𝑐 = 𝛼

 , and then 𝛼𝑡−1,𝑐 = 𝛼
3. Now 𝛼𝑡−1,𝑐−1 must be increased again. However, it is only 

increased to 𝛼𝑡−1,𝑐−1
∗ , because condition (9) holds in this example, and we have found the optimal values 𝛼𝑡−1,𝑐

∗  and 

𝛼𝑡−1,𝑐−1
∗ . Thus, we have 𝛼𝑡−1,𝑐

∗ ∈ 𝒜 and 𝛼𝑡−1,𝑐−1
∗ ∉ 𝒜.  

We now formulate Algorithm A using this characteristic of the minimization’s solution. The algorithm is consecutive-

ly executed to consider the grid points 𝛼𝑖 ∈ 𝒜, 𝑖 = 1,… , 𝑛𝛼 with an increasing probability level. At each grid point 

𝛼𝑖, a search for the optimal price 𝑟𝑡,𝑐
∗ (𝛼𝑖) is performed, starting at the optimal price determined at the previous grid 

point (𝑟𝑡,𝑐 = 𝑟𝑡,𝑐
∗ (𝛼𝑖−1)). The price 𝑟𝑡,𝑐 is now iteratively increased until the optimal price 𝑟𝑡,𝑐

∗ (𝛼𝑖) is attained. More 

precisely, we increase the price 𝑟𝑡,𝑐 and simultaneously modify the vector (𝛼𝑡−1,𝑐
∗ ( 𝛼𝑖, 𝑟𝑡,𝑐), 𝛼𝑡−1,𝑐−1

∗ ( 𝛼𝑖, 𝑟𝑡,𝑐)) ac-

cordingly, in order to always maintain the optimality of (𝛼𝑡−1,𝑐
∗ ( 𝛼𝑖, 𝑟𝑡,𝑐), 𝛼𝑡−1,𝑐−1

∗ ( 𝛼𝑖, 𝑟𝑡,𝑐)) with respect to 𝑟𝑡,𝑐 (inner 

minimization of (8)), but without explicitly solving the minimization problem.  

In the following presentation, we use the assumptions that the optimal price 𝑟𝑡,𝑐
∗ (𝛼) increases in 𝛼 and that (8) is uni-

modal in 𝑟𝑡,𝑐 such that the algorithm will find the global optimum. These intuitive assumptions have been formally 

shown for 𝐶 = 1 in Section 4. As 𝐶 > 1 is not analytically tractable, we verify the first requirement online at runtime 

and also test the second numerically. In doing so, we never noted any violation. However, if (8) was not unimodal, the 

algorithm would be stuck in a local optimum. In this case the second algorithm using the discrete action space is pref-

erable. 

To determine the price 𝑟𝑡,𝑐 for the next iteration, we use a simplified version of the optimization problem (8). The 

construction of this subproblem is based on the following observation: For a sufficiently small increase in 𝑟𝑡,𝑐, the 

structure of the minimization’s solution, which the greedy procedure determines, does not change. A probability level 
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𝛼𝑡−1,⋅
∗ , previously located in a grid point, is still located in this grid point, while the 𝛼𝑡−1,⋅

∗ , located between two grid 

points, decreases slightly. More precisely, we define the function in (𝛼) that returns the corresponding interval for a 

given value of 𝛼 in the discretization: in (𝛼) = 𝑗 if 𝛼𝑗 < 𝛼 ≤ 𝛼𝑗+1. Now the following definition also captures that 

both 𝛼𝑡−1,⋅
∗  are located in a grid point: If 𝑠𝑡−1,𝑐

int(𝛼𝑡−1,𝑐
∗ )
≤ 𝑠𝑡−1,𝑐−1
int(𝛼𝑡−1,𝑐−1

∗ )
+ 𝑟𝑡,𝑐, then 𝛼𝑡−1,𝑐

∗  is located in a grid point in the 

minimization’s solution and remains in that grid point when 𝑟𝑡,𝑐 is increased slightly. Otherwise, 𝛼𝑡−1,𝑐−1
∗  remains in a 

grid point. In both cases, the other 𝛼𝑡−1,⋅
∗  is decreasing in 𝑟𝑡,𝑐. The subproblem is now constructed so that it is identical 

to the original problem (8), but only for sufficiently small increases in 𝑟𝑡,𝑐. 

W.l.o.g., we assume that 𝛼𝑡−1,𝑐 ∈ 𝒜 remains in the grid point to ease the presentation. This also applies to the flow 

chart in the next subsection, however, the pseudo-code given there is universal. The subproblem is now obtained by 

fixing 𝛼𝑡−1,𝑐
∗  and substituting 𝑉𝑡−1,𝑐−1

𝐴  with an affine linear approximation 𝑉𝑡−1,𝑐−1
𝑠𝑢𝑏  that equals 𝑉𝑡−1,𝑐−1

𝐴  in the interval 

in (𝛼𝑡−1,𝑐−1
∗ ( 𝛼𝑖, 𝑟𝑡,𝑐)); see also Figure 4 (right part) for an illustration of the subproblem corresponding to the mini-

mization’s solution. The optimal price 𝑟𝑜𝑝𝑡 in the subproblem can be easily calculated in closed form. If 𝑟𝑜𝑝𝑡 is close 

enough to the previous price 𝑟𝑡,𝑐, the subproblem is identical to the original problem (8), and 𝑟𝑜𝑝𝑡 is also optimal for 

the original problem (8).  

5.1.2. Pseudo code and flow chart 

More precisely, the algorithm works as follows (see also Algorithm A for pseudo code and Figure 5 for a flow chart). 

At the beginning of the iteration for 𝛼𝑖, some initializations are performed. Steps 1–5 basically calculate the slopes of 

𝑉𝑡−1,𝑐
𝐴  and 𝑉𝑡−1,𝑐−1

𝐴  and assign 𝑟𝑡,𝑐 . Step 6 is the core of the algorithm and represents the successive solution of the 

subproblems described in the previous subsection. Step 6.1 calculates the solution 𝑟𝑜𝑝𝑡 of the subproblem and the two 

bounds 𝑟𝑠𝑙𝑜𝑝𝑒 and 𝑟𝑙𝑖𝑚𝑖𝑡 to check the validity of the current subproblem. We calculate the bounds such that the sub-

problem equals the original problem for 𝑟𝑡,𝑐 ≤ min{ 𝑟𝑠𝑙𝑜𝑝𝑒, 𝑟𝑙𝑖𝑚𝑖𝑡}. If 𝑟𝑜𝑝𝑡 is larger than this threshold, 𝑟𝑡,𝑐 is set to 

min{ 𝑟𝑠𝑙𝑜𝑝𝑒, 𝑟𝑙𝑖𝑚𝑖𝑡} and a new subproblem is constructed for the next iteration. The two bounds and 𝑟𝑜𝑝𝑡 are calculated 

as follows: 

Case 1:  𝑠𝑡−1,𝑐−1
int(𝛼𝑡−1,𝑐−1) + 𝑟𝑡,𝑐 ≥ 𝑠𝑡−1,𝑐

int(𝛼𝑡−1,𝑐) 

𝑟𝑜𝑝𝑡 =
((𝑉𝑡−1,𝑐
𝐴 (𝛼𝑡−1,𝑐

int(𝛼𝑡−1,𝑐)+1)−𝑉𝑡−1,𝑐−1
𝐴 (𝛼𝑡−1,𝑐−1

int(𝛼𝑡−1,𝑐−1)+1))−(𝛼𝑡−1,𝑐
int(𝛼𝑡−1,𝑐)+1−𝛼𝑡−1,𝑐−1

int(𝛼𝑡−1,𝑐−1)+1)∙𝑠𝑡−1,𝑐−1
int(𝛼𝑡−1,𝑐−1)+𝛼𝑡,𝑐)

 𝛼𝑡−1,𝑐
int(𝛼𝑡−1,𝑐)+1

  

𝑟𝑠𝑙𝑜𝑝𝑒 = 𝑠𝑡−1,𝑐
int(𝛼𝑡−1,𝑐)+1 − 𝑠𝑡−1,𝑐−1

int(𝛼𝑡−1,𝑐−1)  

𝑟𝑙𝑖𝑚𝑖𝑡 = (𝛼
𝑖 − 𝛼𝑡−1,𝑐−1

int(𝛼𝑡−1,𝑐−1)) / (𝛼𝑡−1,𝑐 − 𝛼𝑡−1,𝑐−1
int(𝛼𝑡−1,𝑐−1)). 

Case 2: otherwise,  

𝑟𝑜𝑝𝑡 =
((𝑉𝑡−1,𝑐
𝐴 (𝛼𝑡−1,𝑐

int(𝛼𝑡−1,𝑐)+1)−𝑉𝑡−1,𝑐−1
𝐴 (𝛼𝑡−1,𝑐−1

int(𝛼𝑡−1,𝑐−1)+1))−(𝛼𝑡−1,𝑐
int(𝛼𝑡−1,𝑐)+1−𝛼𝑡−1,𝑐−1

int(𝛼𝑡−1,𝑐−1)+1)∙𝑠𝑡−1,𝑐
int(𝛼𝑡−1,𝑐)+𝛼𝑡−1,𝑐−1

int(𝛼𝑡−1,𝑐−1)+1)

 𝛼𝑡−1,𝑐−1
int(𝛼𝑡−1,𝑐−1)+1

  

𝑟𝑠𝑙𝑜𝑝𝑒 = 𝑠𝑡−1,𝑐
int(𝛼𝑡−1,𝑐) − 𝑠𝑡−1,𝑐−1

int(𝛼𝑡−1,𝑐−1)  

𝑟𝑙𝑖𝑚𝑖𝑡 = (𝛼
𝑖 − 𝛼𝑡−1,𝑐−1)/ (𝛼𝑡−1,𝑐

int(𝛼𝑡−1,𝑐) − 𝛼𝑡−1,𝑐−1). 
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Figure 5: (Simplified) flow chart of Algorithm A 

Based on the optimal price and the threshold calculated as shown above, Step 6.2 determines whether and how to con-

struct the next subproblem. Figure 6 illustrates possible cases. Please note that the figure displays 𝛼 on the horizontal 

axis and that 𝛼𝑡−1,𝑐−1(𝑟) decreases in 𝑟. The optimal 𝛼 from the last iteration are displayed in Figure 6 (a). 

Step 6.3 represents 𝑟𝑜𝑝𝑡 = min  {𝑟𝑜𝑝𝑡 , 𝑟𝑠𝑙𝑜𝑝𝑒, 𝑟𝑙𝑖𝑚𝑖𝑡} and is illustrated in Figure 6 (b). This is the case where the sub-

problem’s solution is optimal for the original problem because the increase in 𝑟𝑡,𝑐 (and, thus, the decrease in 𝛼𝑡−1,𝑐−1) 

is small enough. Thus, the solution of the minimization problem as assumed in the simplified subproblem is also valid 

for the original minimization problem. We have 𝑟𝑡,𝑐
∗ (𝛼𝑖) = 𝑟𝑜𝑝𝑡. 

Step 6.4 represents 𝑟𝑜𝑝𝑡 > 𝑟𝑠𝑙𝑜𝑝𝑒 ∧ 𝑟𝑠𝑙𝑜𝑝𝑒 ≤ 𝑟𝑙𝑖𝑚𝑖𝑡 (see Figure 6 (c, left part)). In this case, the increase of 𝑟𝑡,𝑐 to 𝑟𝑜𝑝𝑡 

would change the order of the slopes 𝑠𝑡−1,𝑐
int(𝛼𝑡−1,𝑐−1

∗ ( 𝛼𝑖,𝑟𝑡,𝑐))
+ 𝑟𝑡,𝑐 and 𝑠𝑡−1,𝑐

int(𝛼𝑡−1,𝑐
∗ ( 𝛼𝑖,𝑟𝑡,𝑐))+1

, so that the fixed 𝛼𝑡−1,𝑐
∗  is no 

longer in the same grid point. Thus, the price is only increased to 𝑟𝑡,𝑐 = 𝑟𝑠𝑙𝑜𝑝𝑒. For this value, the current order of the 

slopes is still valid. However, as now two slopes have the same value by construction, there is a second valid order 

that will be used in the next iteration. Finally, 𝛼𝑡−1,𝑐
∗ ( 𝛼𝑖, 𝑟𝑠𝑙𝑜𝑝𝑒) and 𝛼𝑡−1,𝑐−1

∗ ( 𝛼𝑖, 𝑟𝑠𝑙𝑜𝑝𝑒) are determined by increas-

ing αt−1,c to the next grid point, if possible, or decreasing αt−1,c−1  to the previous grid point and calculating the other 

αt−1,⋅, that might be between two grid points, according to (9). This is illustrated in Figure 6 (c, left part), where the 

Initialization

(Steps 1-5)

Calculate 𝑟𝑜𝑝𝑡 , 𝑟𝑠𝑙𝑜𝑝𝑒 and 𝑟𝑙𝑖𝑚𝑖𝑡
(Step 6.1)

Subproblem valid for optimal 

solution: optimal price found

(𝑟𝑡 ,𝑐  𝑟𝑜𝑝𝑡 ) 

(Steps 6.3-6.3.2)

Switch 

min 𝑟𝑜𝑝𝑡 , 𝑟𝑠𝑙𝑜𝑝𝑒 , 𝑟𝑙𝑖𝑚𝑖𝑡
(Step 6.2)

Subproblem not valid for

optimal solution, 𝑟𝑜𝑝𝑡 would 

change the order of the slopes: 

Set 𝑟𝑡 ,𝑐 to highest value for

which subproblem is still valid 

(𝑟𝑡 ,𝑐 𝑟𝑠𝑙𝑜𝑝𝑒 ), increase 𝛼𝑡−1,𝑐
to next or decrease 𝛼𝑡−1,𝑐−1 to

previous grid point

(Steps 6.4-6.4.5.2)

Subproblem not valid for

optimal solution 𝑟𝑜𝑝𝑡 because 

𝛼𝑡−1,𝑐−1
∗ leaves the interval to 

the left: 

Set 𝑟𝑡 ,𝑐 to highest value for

which subproblem is still valid 

(𝑟𝑡 ,𝑐 𝑟𝑙𝑖𝑚𝑖𝑡 ), decrease

𝛼𝑡−1,𝑐−1 to previous grid point, 

𝛼𝑡−1,𝑐 remains in grid point

𝑟𝑜𝑝𝑡 (Step 6.3) 𝑟𝑠𝑙𝑜𝑝𝑒 (Step 6.4) 𝑟𝑙𝑖𝑚𝑖𝑡 (Step 6.5)

Set optimal price 𝑟𝑡 ,𝑐
∗ 𝛼 𝑖 , levels 𝛼𝑡−1,𝑐−1 , 𝛼𝑡−1,𝑐−1 , and value 𝑉𝑡 ,𝑐

𝐴 𝛼 𝑖 (Steps 7-11)
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circles denote the 𝛼𝑡−1,𝑐 increased to the next grid point and the 𝛼𝑡−1,𝑐−1 calculated according to (9).  Figure 6 (c, 

right part) visualizes the next subproblem to consider. 

 

Figure 6: Illustration of the cases arising after the solution of the subproblem in Algorithm A 

Step 6.5 represents 𝑟𝑜𝑝𝑡 > 𝑟𝑙𝑖𝑚𝑖𝑡 ∧ 𝑟𝑙𝑖𝑚𝑖𝑡 < 𝑟𝑠𝑙𝑜𝑝𝑒. In this case, the probability level 𝛼𝑡−1,𝑐−1
∗  leaves the interval to the 

left (i.e. 𝛼𝑡−1,𝑐−1
∗ ( 𝛼𝑖, 𝑟𝑜𝑝𝑡) < 𝛼

int(𝛼𝑡−1,𝑐−1
∗ ( 𝛼𝑖,𝑟𝑡,𝑐))). This is illustrated in Figure 6 (d, left part). Note that 𝛼𝑡−1,𝑐−1

∗  

cannot leave the interval to the right, because 𝛼𝑡−1,𝑐−1 is non-increasing in the price. The price is increased to 𝑟𝑡,𝑐 =

𝑟𝑙𝑖𝑚𝑖𝑡 and 𝛼𝑡−1,𝑐−1
∗ ( 𝛼𝑖, 𝑟𝑙𝑖𝑚𝑖𝑡) has to be set to the previous grid point 𝛼int(𝛼𝑡−1,𝑐−1). The level 𝛼𝑡−1,𝑐

∗ ( 𝛼𝑖, 𝑟𝑙𝑖𝑚𝑖𝑡) re-

mains constant and in its grid point. The current subproblem is still valid for this solution. In addition, a second sub-

problem is valid for this solution (e.g. Figure 6 (d, right part)) and will be considered in the next iteration. 

After Steps 6.4 and 6.5, the next subproblem to consider is constructed as outlined above. This procedure is repeated 

until Step 6.2 applies and 𝑟𝑜𝑝𝑡 from the subproblem is optimal for the original problem. 

Steps 7-11 perform some post processing. More precisely, Step 7 sets the optimal price. Steps 8–11 calculate the 

𝛼𝑡−1,⋅ ∉ 𝒜. Step 11 calculates the value function. 

 

Algorithm A: Optimization for discrete 𝜶 

Input:  value functions 𝑉𝑡−1,𝑐
𝐴 (⋅), 𝑉𝑡−1,𝑐−1

𝐴 (⋅), 𝛼-grid  𝛼𝑖 ∈ {0 = 𝛼1, … , 𝛼𝑛𝛼 = 1}, number of grid point 𝑖 ≥ 2 to be 

optimized and price 𝑟𝑡,𝑐
∗ (𝛼𝑖−1) from last iteration, if available 

Output: optimal values for grid point 𝑖: 𝑟𝑡,𝑐
∗ (𝛼𝑖), 𝑉𝑡,𝑐

𝐴 (𝛼𝑖) 

1. Calculate 𝑠𝑡−1,𝑐
𝑖−1 , 𝑠𝑡−1,𝑐−1

𝑖−1   start of initializations: calculate slopes of 𝑉𝑡−1,𝑐
𝐴 (⋅) and 𝑉𝑡−1,𝑐−1

𝐴 (⋅) in the interval 𝑖 − 1 

2. If 𝑖 > 2 then 𝑟𝑡,𝑐 = 𝑚𝑎𝑥{𝑟𝑡,𝑐
∗ (𝛼𝑖−1), 𝑠𝑡−1,𝑐

𝑖−1 − 𝑠𝑡−1,𝑐−1
𝑖−1 }  initialize price with last price or difference of slopes 

3. Else 𝑟𝑡,𝑐 = 𝑠𝑡−1,𝑐
𝑖−1 − 𝑠𝑡−1,𝑐−1

𝑖−1   price from last iteration not available in first iteration; remember that 𝛼1 = 0 

4. Calculate (𝛼𝑡−1,𝑐, 𝛼𝑡−1,𝑐−1) dependent on (𝛼𝑖, 𝑟𝑡,𝑐)  e.g. using continuous knapsack 
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5. 𝑖𝑠𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑎𝑙𝑠𝑒  end of initializations 

6. While not 𝑖𝑠𝑂𝑝𝑡𝑖𝑚𝑎𝑙  repeat until optimal solution found 

6.1. Calculate 𝑟𝑜𝑝𝑡 , 𝑟𝑠𝑙𝑜𝑝𝑒 and 𝑟𝑙𝑖𝑚𝑖𝑡 

6.2. Switch 𝑚𝑖𝑛{𝑟𝑜𝑝𝑡, 𝑟𝑠𝑙𝑜𝑝𝑒, 𝑟𝑙𝑖𝑚𝑖𝑡} 

6.3. Case 𝑟𝑜𝑝𝑡  subproblem valid for 𝑟𝑜𝑝𝑡, solution found 

6.3.1. if 𝑟𝑜𝑝𝑡 > 𝑟𝑡,𝑐 then 𝑟𝑡,𝑐  𝑟𝑜𝑝𝑡 

6.3.2. 𝑖𝑠𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑡𝑟𝑢𝑒 

6.4. Case 𝑟𝑠𝑙𝑜𝑝𝑒  subproblem not valid for 𝑟𝑜𝑝𝑡 because order of slopes changes 

6.4.1. 𝑟𝑡,𝑐  𝑟𝑠𝑙𝑜𝑝𝑒  increase 𝑟𝑡,𝑐 as far as possible, with 𝑟𝑠𝑙𝑜𝑝𝑒 both old and new order of slopes valid 

6.4.2. Calculate 𝑠𝑡−1,𝑐
𝑖𝑛𝑡(𝛼𝑡−1,𝑐), 𝑠𝑡−1,𝑐−1

𝑖𝑛𝑡(𝛼𝑡−1,𝑐−1)  calculate slopes 

6.4.3. If 𝑠𝑡−1,𝑐−1
𝑖𝑛𝑡(𝛼𝑡−1,𝑐−1) + 𝑟𝑡,𝑐 ≥ 𝑠𝑡−1,𝑐

𝑖𝑛𝑡(𝛼𝑡−1,𝑐) then 𝑘 1 set 𝑘 = 1 if 𝛼𝑡−1,𝑐 in a grid point (𝛼𝑡−1,𝑐 ∈ 𝒜) … 

6.4.3.1. Else 𝑘 0  … allows 𝛼𝑡−1,𝑐 to jump to the next grid point 

6.4.4. If 𝛼𝑖 > 𝑟𝑡,𝑐 ⋅ 𝛼
𝑖𝑛𝑡(𝛼𝑡−1,𝑐)+1+𝑘 + (1 − 𝑟𝑡,𝑐) ⋅ 𝛼

𝑖𝑛𝑡(𝛼𝑡−1,𝑐−1)  can 𝛼𝑡−1,𝑐 be increased to next grid point? 

6.4.4.1. Increase 𝛼𝑡−1,𝑐 to the next grid point 𝛼𝑖𝑛𝑡(𝛼𝑡−1,𝑐)+1+𝑘 

6.4.4.2. 𝛼𝑡−1,𝑐−1 (𝛼
𝑖 − 𝑟𝑡,𝑐 ⋅ 𝛼𝑡−1,𝑐)/(1 − 𝑟𝑡,𝑐) 

6.4.5. Else 

6.4.5.1. Decrease 𝛼𝑡−1,𝑐−1 to the previous grid point 𝛼𝑖𝑛𝑡(𝛼𝑡−1,𝑐−1) 

6.4.5.2. 𝛼𝑡−1,𝑐  (𝛼
𝑖 − (1 − 𝑟𝑡,𝑐) ⋅ 𝛼𝑡−1,𝑐−1)/𝑟𝑡,𝑐 

6.5. Case 𝑟𝑙𝑖𝑚𝑖𝑡  subproblem not valid for 𝑟𝑜𝑝𝑡 because 𝑟𝑜𝑝𝑡 is too small 

6.5.1. 𝑟𝑡,𝑐  𝑟𝑙𝑖𝑚𝑖𝑡  increase 𝑟𝑡,𝑐 as far as possible, for 𝑟𝑙𝑖𝑚𝑖𝑡 both current and new subproblem valid 

6.5.2. Calculate 𝑠𝑡−1,𝑐
𝑖𝑛𝑡(𝛼𝑡−1,𝑐), 𝑠𝑡−1,𝑐−1

𝑖𝑛𝑡(𝛼𝑡−1,𝑐−1)  calculate slopes 

6.5.3. If 𝑠𝑡−1,𝑐−1
𝑖𝑛𝑡(𝛼𝑡−1,𝑐−1) + 𝑟𝑡,𝑐 ≥ 𝑠𝑡−1,𝑐

𝑖𝑛𝑡(𝛼𝑡−1,𝑐) then Decrease 𝛼𝑡−1,𝑐−1 to the previous grid point 𝛼𝑖𝑛𝑡(𝛼𝑡−1,𝑐−1) 

  check if 𝛼𝑡−1,𝑐 is in a grid point (true if 𝛼𝑡−1,𝑐 ∈ 𝒜) 

6.5.4. Else Decrease 𝛼𝑡−1,𝑐 to the previous grid point 𝛼𝑖𝑛𝑡(𝛼𝑡−1,𝑐) 

7. 𝑟𝑡,𝑐
∗ (𝛼𝑖) 𝑟𝑡,𝑐  post processing 

8. Calculate 𝑠𝑡−1,𝑐
𝑖𝑛𝑡(𝛼𝑡−1,𝑐), 𝑠𝑡−1,𝑐−1

𝑖𝑛𝑡(𝛼𝑡−1,𝑐−1) 

9. If 𝑠𝑡−1,𝑐−1
𝑖𝑛𝑡(𝛼𝑡−1,𝑐−1) + 𝑟𝑡,𝑐

∗ (𝛼𝑖) ≥ 𝑠𝑡−1,𝑐
𝑖𝑛𝑡(𝛼𝑡−1,𝑐) then 𝛼𝑡−1,𝑐−1 (𝛼

𝑖 − 𝑟𝑡,𝑐
∗ (𝛼𝑖) ⋅ 𝛼𝑡−1,𝑐)/ (1 − 𝑟𝑡,𝑐

∗ (𝛼𝑖)) 

10. Else 𝛼𝑡−1,𝑐  (𝛼
𝑖 − (1 − 𝑟𝑡,𝑐

∗ (𝛼𝑖)) ⋅ 𝛼𝑡−1,𝑐−1) /𝑟𝑡,𝑐
∗ (𝛼𝑖) 

11. 𝑉𝑡,𝑐
𝐴 (𝛼𝑖) 𝑟𝑡,𝑐

∗ (𝛼𝑖) ⋅ 𝑉𝑡−1,𝑐
𝐴 (𝛼𝑡−1,𝑐) + (1 − 𝑟𝑡,𝑐

∗ (𝛼𝑖)) ⋅ [𝑉𝑡−1,𝑐−1
𝐴 (𝛼𝑡−1,𝑐−1) + 𝑟𝑡,𝑐

∗ (𝛼𝑖)] 

5.2 Algorithm B (discrete action space) 

5.2.1. Overview 

The second possibility to build an efficient algorithm is to discretize the action space. More precisely, we discretize 

the domain of 𝑟, (0,1), by a finite set of 𝑛𝑟 points 0 < 𝑟1 < ⋯ < 𝑟𝑘 < ⋯ < 𝑟𝑛𝑟 < 1. This approach can be easily 

justified, as the prices need to be discretized for all practical purposes. The basic approach to calculate the value func-

tion in period 𝑡 from the value function in period 𝑡 − 1 closely follows the structure of (8) with the inner minimization 

and the outer maximization, and comprises two phases (Figure 7).  

To calculate the value function 𝑉𝑡,𝑐
𝐵 (𝛼), 𝑉𝑡−1,𝑐

𝐵 (𝛼) and 𝑉𝑡−1,𝑐−1
𝐵 (𝛼) are needed (left part of Figure 7). In the first phase, 

the minimization is solved for all possible prices 𝑟𝑘 , 𝑘 = 1,… , 𝑛𝑟 independently. Note that the value functions 

𝑉𝑡−1,𝑐
𝐵 ( 𝛼) and 𝑉𝑡−1,𝑐−1

𝐵 (𝛼) are piecewise linear and convex in 𝛼. Thus, for a given price 𝑟𝑘, the inner minimization 

problem is again a continuous knapsack problem the greedy procedure mentioned in Section 5.1 can solve. However, 
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the procedure is not aborted when a given probability level 𝛼𝑡,𝑐 is reached, but continues until all slopes have been 

considered and 𝛼𝑡−1,𝑐 = 𝛼𝑡−1,𝑐−1 = 1. Thus, for each price 𝑟𝑘 , we obtain the piecewise linear value function 

𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘). Figure 7 (middle part) illustrates these value functions for three different prices 𝑟1 < 𝑟 < 𝑟3. Subse-

quently, the value function 𝑉𝑡,𝑐
𝐵 (𝛼) can be easily determined as the pointwise maximum of all the value functions 

𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘), 𝑘 = 1,… , 𝑛𝑟 (right part of Figure 7). Since the 𝑉𝑡,𝑐

𝐵 (𝛼, 𝑟𝑘) are convex and piecewise linear for all 𝑘, 

𝑉𝑡,𝑐
𝐵 (𝛼) inherits these properties. 

5.2.2. Pseudo code 

After calculating all slopes of 𝑉𝑡−1,𝑐
𝐵 (𝛼) and 𝑉𝑡−1,𝑐−1

𝐵 (𝛼) in Step 1, the inner minimization is solved in Step 2 of the 

pseudo code. This part of the algorithm is analogous to the greedy procedure already mentioned in Section 5.1. There-

fore, we only describe the most important steps in the following. First, all slopes of 𝑉𝑡−1,𝑐
𝐵 (𝛼) and 𝑉𝑡−1,𝑐−1

𝐵 (𝛼) + 𝑟𝑘 ∙

𝛼, 𝑘 = 1,… , 𝑛𝑟, are sorted as preparatory work. The only difference to Section 5.1 is that now the locations of the 

sharp points of 𝑉𝑡−1,𝑐
𝐵 (𝛼) and 𝑉𝑡−1,𝑐−1

𝐵 (𝛼) may differ as the state space is not discretized in Algorithm B. Since all 

slopes of 𝑉𝑡−1,𝑐
𝐵 (𝛼) and 𝑉𝑡−1,𝑐−1

𝐵 (𝛼) + 𝑟𝑘 ∙ 𝛼, 𝑘 = 1,… , 𝑛𝑟, are considered in the minimization, the resulting value 

functions 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘), 𝑘 = 1,… , 𝑛𝑟, inherit all these slopes. Only the locations of the sharp points will again be differ-

ent in 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘) as compared to 𝑉𝑡−1,𝑐

𝐵 (𝛼) and 𝑉𝑡−1,𝑐−1
𝐵 (𝛼). Second, the locations of the sharp points of 𝑉𝑡,𝑐

𝐵 (𝛼, 𝑟𝑘), 

denoted by 0 = 𝛼𝑡,𝑐
1 (𝑟𝑘) , …  , 𝛼𝑡,𝑐

𝑛𝑘(𝑟𝑘) = 1, and the corresponding function values respectively are calculated effi-

ciently by taking whole intervals between two consecutive sharp points of 𝑉𝑡−1,𝑐
𝐵 (𝛼) and 𝑉𝑡−1,𝑐−1

𝐵 (𝛼) + 𝑟𝑘 ∙ 𝛼 into 

account in each iteration. The obtained value functions 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘) are stored efficiently by only memorizing the corre-

sponding point-value pairs (𝛼𝑡,𝑐
1 (𝑟𝑘), 𝑉𝑡,𝑐

𝐵 (𝛼𝑡,𝑐
1 , 𝑟𝑘)) , … , (𝛼𝑡,𝑐

𝑛𝑘(𝑟𝑘), 𝑉𝑡,𝑐
𝐵 (𝛼𝑡,𝑐

𝑛𝑘 , 𝑟𝑘)). These pairs correspond to the 

sharp points in Figure 7 (middle part). 

         𝑉𝑡−1,⋅
𝐵 (𝛼)                                                 𝑉𝑡,𝑐

𝐵 (𝛼, 𝑟𝑘)                                              𝑉𝑡,𝑐
𝐵 (𝛼) = max

𝑘
𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘) 

 

Figure 7: Illustration of Algorithm B 

Steps 3 and 4 are just an initialization and a calculation of the expected-value optimal price 𝑟𝑙𝑡,𝑐 respectively. The 

outer maximization is considered in Steps 5–7 of the pseudo code. Step 5 is the main part of the determination of the 

maximal 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘) for every α. To simplify this process, we use the observation that 𝑉𝑡,𝑐

𝐵 (𝛼, 𝑟𝑘) and 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘+1) 

intersect in at most one point and these intersections are ordered. Let �̂� and �̃� be the levels of two intersections such 

that 𝑉𝑡,𝑐
𝐵 (�̂�, 𝑟𝑘−1) = 𝑉𝑡,𝑐

𝐵 (�̂�, 𝑟𝑘) and 𝑉𝑡,𝑐
𝐵 (�̃�, 𝑟𝑘) = 𝑉𝑡,𝑐

𝐵 (�̃�, 𝑟𝑘+1). Then, �̂� < �̃� and, thus, 𝑉𝑡,𝑐
𝐵 (�̂�, 𝑟𝑘) < 𝑉𝑡,𝑐

𝐵 (�̃�, 𝑟𝑘). 

Accordingly, with increasing 𝛼 the 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘) become maximal in ascending order of the corresponding prices until 𝑘 

reaches the index of the expected-value optimal price 𝑟𝑙𝑡,𝑐. Thus, Step 5 determines the intersections between 
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𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘) and 𝑉𝑡,𝑐

𝐵 (𝛼, 𝑟𝑘+1) for every 𝑘 ≤ 𝑙𝑡,𝑐 − 1. Note that the function 𝑉𝑡,𝑐
𝐵 (𝛼) is equal to 𝑉𝑡,𝑐

𝐵 (𝛼, 𝑟𝑘) until the 

intersection (Steps 5.2.1.1 – 5.2.1.5; see also Figure 7, middle and right part). Steps 6 and 7 complete the maximiza-

tion by setting 𝑉𝑡,𝑐
𝐵 (𝛼) = 𝑉𝑡,𝑐

𝐵 (𝛼, 𝑟𝑙𝑡,𝑐) for 𝛼 ∈ [𝛼𝑡,𝑐
𝑗𝑙𝑡,𝑐(𝑟𝑙𝑡,𝑐), 1] as the expected-value optimal price is also 𝐶𝑉𝑎𝑅𝛼-

optimal in this interval. 

Algorithm B: Optimization for discrete prices 

Input: piecewise linear 𝑉𝑡−1,𝑐
𝐵 (⋅), 𝑉𝑡−1,𝑐−1

𝐵 (⋅) as pairs (𝛼𝑡−1,𝑐−𝑖(𝑟
𝑘), 𝑉𝑡−1,𝑐−𝑖

𝐵 (𝛼𝑡,𝑐−𝑖)), price grid 𝑟1, … , 𝑟𝑛𝑟 

Output: optimal prices 𝑟𝑡,𝑐
∗ (⋅) and values 𝑉𝑡,𝑐

𝐵 (⋅) for all sharp points 

1. Calculate 𝑠𝑡−1,𝑐
⋅ , 𝑠𝑡−1,𝑐−1

⋅      initialization: calculate all slopes of value functions in period 𝑡 − 1 

2. For 𝑘 = 1 𝒕𝒐 𝑛𝑟  for each price point, solve inner minimization of (8) by knapsack to obtain 𝑉𝑡,𝑐
𝐵 (𝛼𝑡,𝑐 , 𝑟

𝑘) 

2.1. 𝛼𝑡−1,𝑐−𝑖  0 , 𝑖 = 0,1, 𝛼𝑡,𝑐
1 (𝑟𝑘) 0 and 𝑉𝑡,𝑐

𝐵 (𝛼𝑡,𝑐
1 (𝑟𝑘), 𝑟𝑘) 0  initialization for greedy procedure 

2.2. Sort all unique slopes 𝑠𝑡−1,𝑐−𝑖
𝑗

+ 𝑖 ⋅ 𝑟𝑘 in ascending order 𝑠(1) < 𝑠( ) < ⋯ < 𝑠(𝑛−1)  

  sort all slopes of 𝑉𝑡−1,𝑐
𝐵 (⋅) and 𝑉𝑡−1,𝑐−1

𝐵 (⋅) + 𝑟𝑘 

2.3. For 𝑗𝑘 = 2 𝒕𝒐 𝑛  take all slopes of 𝑉𝑡−1,𝑐
𝐵 (⋅) and 𝑉𝑡−1,𝑐−1

𝐵 (⋅) + 𝑟𝑘 into consideration in ascending order  

2.3.1. 𝑆 {(𝑖, 𝑗): 𝑠𝑡−1,𝑐−𝑖
𝑗

= 𝑠(𝑗𝑘−1)}  select slopes identical to 𝑠(𝑗𝑘−1); at most 2, one from 𝑐 and one from 𝑐 − 1 

2.3.2. For (𝑖, 𝑗) ∈ 𝑆   next sharp point is ‘after’ all identical (see above) slopes 

2.3.2.1. 𝛼𝑡−1,𝑐−𝑖  𝛼𝑡−1,𝑐−𝑖
𝑗+1

  set both 𝛼 to the values included in next sharp point 

2.3.3. 𝛼𝑡,𝑐
𝑗𝑘 (𝑟𝑘) 𝑟𝑘 ∙ 𝛼𝑡−1,𝑐 + (1 − 𝑟

𝑘) ∙ 𝛼𝑡−1,𝑐−1  calculate location (𝛼) of next sharp point of 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘) 

2.3.4. 𝑉𝑡,𝑐
𝐵 (𝛼𝑡,𝑐

𝑗𝑘 (𝑟𝑘), 𝑟𝑘) 𝑟𝑘 ⋅ 𝑉𝑡−1,𝑐
𝐵 (𝛼𝑡−1,𝑐) + (1 − 𝑟

𝑘) ⋅ (𝑉𝑡−1,𝑐−1
𝐵 (𝛼𝑡−1,𝑐−1) + 𝑟

𝑘 ∙ 𝛼𝑡−1,𝑐−1) 

  calculate value of 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘) at next sharp point 

2.3.5. 𝑠𝑡,𝑐
𝑗𝑘−1(𝑟𝑘) 𝑠(𝑗𝑘−1)  set slope before aforementioned sharp point 

3. 𝑗 1, 𝛼𝑡,𝑐
1  0 and 𝑉𝑡,𝑐

𝐵 (𝛼𝑡,𝑐
1 ) 0  initialization 

4. 𝑙𝑡,𝑐  𝑚𝑖𝑛 {𝑎𝑟𝑔𝑚𝑎𝑥𝑘 𝑉𝑡,𝑐
𝐵 (1, 𝑟𝑘)}   calculate expected value optimal price 

5. For 𝑘 = 1 𝒕𝒐 𝑙𝑡,𝑐 − 1   determination of the maximal 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘) for every 𝛼 

5.1. 𝑗𝑘  𝑚𝑖𝑛 {𝑗𝑘: 𝛼𝑡,𝑐
𝑗
≤ 𝛼𝑡,𝑐
𝑗𝑘 (𝑟𝑘)} ,  𝑗𝑘+1 𝑚𝑖𝑛 {𝑗𝑘+1: 𝛼𝑡,𝑐

𝑗
≤ 𝛼𝑡,𝑐
𝑗𝑘+1(𝑟𝑘+1)} 

  calculate the next sharp points of 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘) and 𝑉𝑡,𝑐

𝐵 (𝛼, 𝑟𝑘+1) to consider 

5.2. While 𝑉𝑡,𝑐
𝐵 (𝑚𝑖𝑛 {𝛼𝑡,𝑐

𝑗𝑘(𝑟𝑘), 𝛼𝑡,𝑐
𝑗𝑘+1(𝑟𝑘+1)} , 𝑟𝑘) ≥ 𝑉𝑡,𝑐

𝐵 (𝑚𝑖𝑛 {𝛼𝑡,𝑐
𝑗𝑘(𝑟𝑘), 𝛼𝑡,𝑐

𝑗𝑘+1(𝑟𝑘+1)} , 𝑟𝑘+1) 

  stepwise increase of sharp points until 𝑉𝑡,𝑐
𝐵 (⋅, 𝑟𝑘) is passed by 𝑉𝑡,𝑐

𝐵 (⋅, 𝑟𝑘+1)  

5.2.1. If 𝛼𝑡,𝑐
𝑗𝑘(𝑟𝑘) ≤ 𝛼𝑡,𝑐

𝑗𝑘+1(𝑟𝑘+1) then  

  is the sharp point currently considered on 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘) or on 𝑉𝑡,𝑐

𝐵 (𝛼, 𝑟𝑘+1) to the left? 

5.2.1.1. 𝑗 𝑗 + 1 

  sharp point on 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘) is to the left, 𝑉𝑡,𝑐

𝐵 (𝛼) still equals 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘); thus, sharp point, optimal price 

and objective value are stored: 

5.2.1.2. 𝛼𝑡,𝑐
𝑗
 𝛼𝑡,𝑐

𝑗𝑘(𝑟𝑘)  

5.2.1.3. 𝑟𝑡,𝑐
∗ (𝛼𝑡,𝑐

𝑗
) 𝑟𝑘  

5.2.1.4. 𝑉𝑡,𝑐
𝐵 (𝛼𝑡,𝑐

𝑗
) 𝑉𝑡,𝑐

𝐵 (𝛼, 𝑟𝑘)  

5.2.1.5. 𝑗𝑘  𝑗𝑘 + 1   move to the next sharp point of 𝑉𝑡,𝑐
𝐵 (⋅, 𝑟𝑘) 

5.2.2. Else   sharp point on 𝑉𝑡,𝑐
𝐵 (𝛼, 𝑟𝑘+1) is to the left, no consideration for 𝑉𝑡,𝑐

𝐵 (𝛼) 

5.2.2.1.  𝑗𝑘+1  𝑗𝑘+1 + 1   move to the next sharp point of 𝑉𝑡,𝑐
𝐵 (⋅, 𝑟𝑘+1) 

  end of while-loop: 𝑗𝑘 and 𝑗𝑘+1 are the sharp points after intersection of 𝑉𝑡,𝑐
𝐵 (⋅, 𝑟𝑘) and 𝑉𝑡,𝑐

𝐵 (⋅, 𝑟𝑘+1) 

5.3. 𝑗 𝑗 + 1 
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5.4. 𝛼𝑡,𝑐
𝑗
 𝑚𝑖𝑛 {𝛼𝑡,𝑐

𝑗𝑘(𝑟𝑘), 𝛼𝑡,𝑐
𝑗𝑘+1(𝑟𝑘+1)} −

𝑉𝑡,𝑐
𝐵 (𝑚𝑖𝑛{𝛼𝑡,𝑐

𝑗𝑘(𝑟𝑘),𝛼𝑡,𝑐
𝑗𝑘+1(𝑟𝑘+1)},𝑟𝑘+1)−𝑉𝑡,𝑐

𝐵 (𝑚𝑖𝑛{𝛼𝑡,𝑐
𝑗𝑘(𝑟𝑘),𝛼𝑡,𝑐

𝑗𝑘+1(𝑟𝑘+1)},𝑟𝑘)

𝑠𝑡,𝑐
𝑗𝑘+1−1(𝑟𝑘+1)−𝑠𝑡,𝑐

𝑗𝑘−1(𝑟𝑘)
 

 calculate the exact point of intersection to store it as next sharp point of 𝑉𝑡,𝑐
𝐵 (⋅); also store the optimal price 

and the objective value: 

5.5. 𝑟𝑡,𝑐
∗ (𝛼𝑡,𝑐

𝑗
) 𝑟𝑘 

5.6. 𝑉𝑡,𝑐
𝐵 (𝛼𝑡,𝑐

𝑗
) 𝑉𝑡,𝑐

𝐵 (𝛼𝑡,𝑐
𝑗
, 𝑟𝑘) 

𝑗𝑙𝑡,𝑐  𝑚𝑖𝑛 {𝑗𝑙𝑡,𝑐: 𝛼𝑡,𝑐
𝑗
≤ 𝛼𝑡,𝑐
𝑗𝑙𝑡,𝑐(𝑟𝑙𝑡,𝑐)}  interval in which the expected-value optimal price is also 𝐶𝑉𝑎𝑅𝛼-optimal 

6. For 𝑗𝑙 = 𝑗𝑙𝑡,𝑐 to 𝑁  

 set 𝑉𝑡,𝑐
𝐵 (𝛼) = 𝑉𝑡,𝑐

𝐵 (𝛼, 𝑟𝑙𝑡,𝑐) and 𝑟𝑡,𝑐
∗ (𝛼) to the expected-value optimal price for 𝛼 ∈ [𝛼𝑡,𝑐

𝑗𝑙𝑡,𝑐(𝑟𝑙𝑡,𝑐), 1] 

6.1. 𝑗 𝑗 + 1 

6.2. 𝛼𝑡,𝑐
𝑗
 𝛼𝑡,𝑐

𝑗𝑙 (𝑟𝑙𝑡,𝑐) 

6.3. 𝑟𝑡,𝑐
∗ (𝛼𝑡,𝑐

𝑗
) 𝑟𝑘 

6.4. 𝑉𝑡,𝑐
𝐵 (𝛼𝑡,𝑐

𝑗
) 𝑉𝑡,𝑐

𝐵 (𝛼𝑡,𝑐
𝑗𝑙 (𝑟𝑙𝑡,𝑐), 𝑟𝑙𝑡,𝑐)  

6 Numerical examples 

The following pricing mechanisms were implemented to evaluate the effectiveness of the proposed approaches: 

 A is a mechanism that uses Algorithm A (Section 5.1) to approximately solve (8) and calculate the CVaR𝛼-optimal 

dynamic price. Wherever necessary, we indicate the grid size 𝑖 ∈ {0.1, 0.01, 0.001, 0.0001} used for the discretiza-

tion of the probability level 𝛼 by writing Ai. 

 B is a mechanism that uses Algorithm B (Section 5.2) to approximately solve (8) and calculate the CVaR𝛼-optimal 

dynamic price. Again, we indicate the discretization 𝑖 ∈ {0.1, 0.01} used for the price 𝑟 by writing Bi. Owing to 

high runtimes, we did not consider finer grids for B. 

 EV-Dyn is the classical dynamic pricing mechanism that maximizes the expected value (Section 3.2). 

 CVaR-Fix is another benchmark mechanism that determines the CVaR𝛼-optimal fixed price. Customers' willing-

ness-to-pay is i.i.d. and uniformly distributed on [0,1]. Thus, the total number of customers willing to buy an item 

at a fixed price 𝑟𝐹𝑃 is binomially distributed with parameter 𝑇 (total number of customers arriving during the book-

ing horizon from period 𝑇 to period 1) and success probability 1 − 𝑟𝐹𝑃. Considering the initial capacity, no more 

than 𝐶 items can be sold. Let 𝑁(𝑟𝐹𝑃) ∈ {0,… , 𝐶} denote the random variable indicating the total number of items 

sold at fixed price 𝑟𝐹𝑃. Then, the total revenue equals 𝑟𝐹𝑃 ⋅ 𝑁(𝑟𝐹𝑃). Determining the optimal fixed price 𝑟𝐹𝑃
∗ (𝛼) =

arg max
𝑟𝐹𝑃∈[0,1]

𝐶𝑉𝑎𝑅𝛼(𝑟𝐹𝑃 ⋅ 𝑁(𝑟𝐹𝑃)) is numerically quite easy, but generally it is not possible to derive solutions in 

closed form.  

 EV-Fix is a variant of CVaR-Fix with 𝛼 = 1 and determines the expected-value optimal fixed price. 

 Exact is the solution of (8) given by Proposition 1 and only applicable to 𝐶 = 1. 

The main output of the aforementioned mechanisms are policies with (approximately) optimal selling prices 𝑟. In ad-

dition, they also compute a corresponding value function �̃�(𝛼) for each level 𝛼. However, this value function is only 

an approximation with mechanisms A and B, because of their inherent discretization. The value function only equals 

the exact CVaR𝛼 for CVaR-Fix and Exact. EV-Fix and EV-Dyn are only available for 𝛼 = 1. Thus, the value function 

is not suitable for evaluating the mechanisms, and therefore simulations are performed. For each setting, we generated 

10,000 customer streams in advance to compare the mechanisms by using the same streams. A simulation run corre-
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sponds to a complete sales process with a selling price set in each period according to the mechanism investigated and 

observing the arriving customer’s decision before moving on to the next period. Finally, the CVaR𝛼 is calculated over 

all 10,000 customer streams and denoted by �̃�sim(𝛼). 

The experiments were implemented with MATLAB version R2013a and run on a PC with a 2.8 GHz Intel Core i7 

processor and 8 GB of RAM, using Microsoft Windows Server 2008 R2 64 bit. Unless otherwise stated, we report 

values averaged over levels 𝛼 = 0.01, 0.02,… , 1 in this section, and choose 𝑇 = 10 and 𝐶 = 1,… ,10, yielding 10 

different settings, as we can illustrate various effects more clearly in a small setting. Later, we also show that the 

mechanisms are still applicable in a bigger setting. As in Section 5, we assume that customers' willingness-to-pay is 

uniformly distributed on [0,1], i.e. 𝑝(𝑟) = 1 − 𝑟 for 𝑟 ∈ [0,1]. 

In the following, we first compare the mechanisms optimizing CVaR with dynamic prices (A and B). As we will see in 

Section 6.1 that mechanism A is superior, we focus on A in the following experiments. First, we illustrate the CVaR-

optimal prices over time (Section 6.2) and discuss the trade-off between risk-aversion and expected revenue maximi-

zation (Section 6.3). We then take a broader perspective and compare mechanism 𝐴0.0001 to the benchmark mecha-

nisms in Section 6.4. In Section 6.5, we analyze how the resulting prices and CVaRs attained depend on the level 𝛼, 

while Section 6.6 illustrates the capacity’s influence. 

6.1 Mechanisms A and B with different grid sizes 

Table 1: Runtimes [s] for 𝑪 ≤ 𝟏𝟎, 𝑻 = 𝟏𝟎 

Grid 0.1  0.01  0.001  0.0001 
Exact 

T=10 A B  A B  A  A 

C=1 0.02 0.11  0.05 3.73  0.94  22.03 0.02 

C=5 0.03 0.72  0.22 86.75  2.50  64.32  

C=10 0.02 0.36  0.11 101.82  0.78  21.14  

Table 1 shows the runtimes (in seconds) of mechanisms A and B for the settings 𝐶 ∈ {1,  , 10}. The given values only 

reflect the time necessary to compute the policy and do not include simulations. There are considerable differences 

between the two approaches. Mechanism A is much faster than B, with the differences in runtime increasing for dis-

cretization with finer grids. In addition, mechanism A scales much better with regard to capacity. Exact only needs a 

fraction of the other mechanisms’ runtime, but is available only for 𝐶 = 1. The runtimes of mechanisms A and B for 

much larger settings are depicted in Figure 8. More precisely, we started with a setting with 𝐶 =  , 𝑇 = 10 and pro-

portionally scaled it up until 𝐶 =  00, 𝑇 = 1000. Therefore, the total number of nontrivial states with 𝐶 > 0 and 𝑇 >

0 is scaled up from 30 to 300,000, upon which the scaling of the horizontal axis of Figure 8 is based. The figure shows 

that especially mechanism A with a not too fine grid size is still applicable for large settings. 
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Figure 8: Runtimes for larger settings 

We now consider the CVaR �̃�sim(𝛼) attained when applying the mechanism to a sales process, i.e. the value of the 

policy. Thereby, we examine how the attained CVaR values behave for different grid sizes, and which mechanism 

provides the highest CVaR. To this end, we compute the mean relative CVaR (MRC), i.e. the CVaR attained by using 

a mechanism �̃�sim(𝛼) relative to the base mechanism �̃�𝐴0.0001
sim  which performed superior in pretests: 

 𝑀𝑅𝐶(�̃�sim, �̃�𝐴0.0001
sim ) = mean(

�̃�sim(𝛼)

�̃�𝐴0.0001
sim (𝛼)

) 

where the mean is again over all 𝛼 ∈ {0.01, 0.02,… , 1}. 

The results are shown in Table 2. As expected, 𝑀𝑅𝐶(�̃�sim, �̃�𝐴0.0001
sim ) increases with finer grid sizes in respect of both 

mechanisms. For 𝐶 ≥   (not all 𝐶 are shown to save space), 𝐵0.1 considerably outperforms 𝐴0.1, but for a grid size of 

0.01, the difference is mostly approximately 1%. Mechanism 𝐴0.001 performs comparable to 𝐵0.01, and 𝐴0.0001 con-

sistently delivers a higher CVaR than 𝐵0.01. Given CVaR’s monotonicity in the grid size, it seems likely to prefer even 

finer grid sizes. However, we think that both the negligible difference between 𝐴0.001 and 𝐴0.0001, as well as the 

equivalence of the CVaR of 𝐴0.0001 and Exact for 𝐶 = 1, are strong signs that a finer grid size will only increase the 

runtimes.  

All in all, mechanism A operating on a discretization of the state space is notably faster and yields a better policy than 

mechanism B, which uses a discretization of the action space. Thus, we only consider mechanism A in the following 

subsections. 

Table 2: 𝑴𝑹𝑪(�̃�𝐬𝐢𝐦, �̃�𝑨𝟎.𝟎𝟎𝟎𝟏
𝐬𝐢𝐦 ) – Mean relative CVaR 

Grid 0.1  0.01  0.001  0.0001 
Exact 

T=10 A B  A B  A  A 

C=1 93.86% 99.06%  99.83% 99.92%  99.97%  100.00% 100.00% 

C=5 91.80% 98.63%  97.95% 99.83%  99.67%  100.00%  

C=10 91.99% 98.94%  98.23% 99.80%  99.60%  100.00%  

However, there is one problem characteristic that may render mechanism B advantageous. If only a few exogenously 

given price points can be used, mechanism B choses from this set. By contrast, the prices calculated by mechanism A 
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have to be rounded to these price points afterwards. Obviously, there are two effects that both are in favor of mecha-

nism B as the cardinality of the set of feasible prices decreases. First, obviously, the smaller the set of prices, the faster 

mechanism B becomes (see also Figure 8). Second, the solution quality of B relative to A improves because the solu-

tion quality of A decreases as rounding errors increase. To illustrate this, we calculated both mechanisms using a few 

equidistant price points between the minimum and maximum willingness-to-pay. Table 3 shows the mean relative 

CVaR obtained by applying B directly relative to rounding A’s policy (�̃�𝐴0.0001(𝐵𝐺𝑟𝑖𝑑)
sim ). Mechanism B can indeed obtain 

better results than A if less than 11 price points are used. If only four price points are used, the advantage of B reaches 

almost 2%. 

Table 3: 𝑴𝑹𝑪(�̃�𝐬𝐢𝐦, �̃�𝑨𝟎.𝟎𝟎𝟎𝟏(𝑩𝑮𝒓𝒊𝒅)
𝐬𝐢𝐦 ) – Mean relative CVaR 

Grid 0.33  0.25  0.2  0.1 

T=10 B  B  B  B 

C=1 101.50%  100.45%  100.51%  100.02% 

C=5 101.90%  101.52%  101.25%  100.76% 

C=10 101.47%  102.16%  101.43%  101.18% 

6.2 Illustration of optimal price over time 

Our numerical investigation revealed that a fixed price policy is not optimal in the beginning of the selling horizon for 

capacities larger than one unit, which is contrary to our results for one unit of capacity. Figure 9 shows the optimal 

prices set in each time period for exemplary streams of customers, with an initial capacity of 𝐶 = 2 and the initial 

probability levels 𝛼10, = 0.  (left part) and 𝛼10, = 0.7 (right part). The risk-averse optimal price is initially 𝑟10, =

0.62 (left part) and 𝑟10, = 0.71 (right part) and declines over time if no sale occurs. This is analogous to the risk-

neutral price, that declines as long as capacity is scarce (displayed only for 𝐶 = 1). If a sale occurs, the price jumps 

upwards. Apparently, the second selling price is set such that the sum of the revenues obtained from selling the two 

units of capacity is equal (1.2  in the left part and 1.   in the right part), no matter when (and at what price) the first 

sale takes place. The sum depends only on the initial level of 𝛼10, . That is, if the first sale happens earlier (e.g. at 𝑡 =

9) and, thus, at a higher price, the second price (for the last unit) is smaller compared to when the first sale happens 

later (e.g. at 𝑡 = 7) and at a lower price. However, the risk-averse price is still bounded by the risk-neutral price. Thus, 

the second price cannot exceed the risk-neutral price. If the first sale happens very late (e.g. at 𝑡 =   in the right part 

of Figure 9) and at a very low price, the second price can only be set to the risk-neutral price and the sum may be low-

er (only 1. 0 in this example). 

This behavior can be observed for arbitrary capacities and explained as follows. Consider an optimal policy with re-

spective VaR𝛼
∗  and CVaR𝛼

∗ . The sum of the prices set in the evolution of the sales process is always constant for a giv-

en initial 𝛼 as long as 𝛼𝑡,𝑐 < 1 (with the constant depending on 𝛼). This behavior can be derived from the solution of 

the inner minimization in equation (8). Setting prices which cumulative revenue exceeds VaR𝛼
∗  is clearly not optimal, 

since this event is not taken into account when calculating CVaR𝛼
∗  and it also has a lower sales probability than a poli-

cy with cumulative revenue smaller than or equal to VaR𝛼
∗ . Therefore, one should strive to achieve the highest cumula-

tive revenue taken into consideration, which is VaR𝛼
∗ . However, a cumulative revenue of VaR𝛼

∗  is not always achieva-

ble. In this case, the event is completely captured by CVaR’s expectation. Thus, from some time period 𝑡 onwards, the 
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expected value of the cumulative revenue is maximized and, therefore, 𝛼𝑡′,𝑐 = 1 ∀𝑡
′ ≤ 𝑡 and the optimal risk-neutral 

price is set from time period 𝑡 until the end of the time horizon.  

 

Figure 9: Evolutions of the selling process for 3 different customer streams with α=0.3 (left) and α=0.7 (right)  

 

Figure 10: Histogram of total revenues for C=2 T=10 with α=0.3 (left) and α=0.7 (right)  

Figure 10 shows the empirical distribution of total revenue obtained with 𝐶 = 2 and 𝑇 = 10. Obviously, total revenue 

equals the VaR𝛼 with a very high probability as in many scenarios, exactly the VaR𝛼 is obtained (rightmost bar in 

each histogram). Values higher than VaR𝛼 never occur. Values lower than VaR𝛼 are rarely observed and occur in 

three clusters. The leftmost cluster contains revenues equal to 0 and captures evolutions without a single sale. In the 

middle cluster, only one sale happens. In the rightmost cluster, which is next to VaR𝛼, all two capacity units are sold, 

but the sales happen so late that the VaR𝛼 is not obtained. 

6.3 Risk-aversion vs. expected revenue trade-off 

Maximizing CVaR instead of expected revenue obviously reduces the expected value. In this subsection, we illustrate 

this trade-off between maximizing expected revenue and CVaR. Figure 11 shows data obtained for 𝑇 = 10 time peri-

ods to go, 𝐶 ∈ {1,  , 7, 10} and 𝛼𝐶,10 ∈ [0.0 ,1]. For each combination of 𝛼 and 𝐶, we calculated two policies: the 

expected value (EV) optimal policy and the CVaR𝛼-optimal policy obtained from mechanism A. We then evaluated 
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both policies by simulation and recorded expected value and 𝐶𝑉𝑎𝑅𝛼-obtained with each policy. Finally, the Gain in 

CVaR is the ratio of the CVaR𝛼 obtained. The Loss in EV is the ratio of the expected revenues: 

 𝐺𝑎𝑖𝑛 𝑖𝑛 𝐶𝑉𝑎𝑅 =
�̃�𝐴0.0001
sim (𝛼)−�̃�𝐴𝐸𝑉−𝐷𝑦𝑛

sim (𝛼)

�̃�𝐴𝐸𝑉−𝐷𝑦𝑛
sim (𝛼)

  and  𝐿𝑜𝑠𝑠 𝑖𝑛 𝐸𝑉 =
�̃�𝐴𝐸𝑉−𝐷𝑦𝑛
sim (1)−�̃�𝐴0.0001

sim (1)

�̃�𝐴𝐸𝑉−𝐷𝑦𝑛
sim (1)

 

Obviously, for 𝛼 = 1 both mechanisms are identical and the gain in CVaR as well as the loss in EV are 0. As 𝛼 in-

creases, the mechanisms increasingly differ and the gain in CVaR as well as the loss in EV increase. When capacity is 

ample (𝐶 = 7 or 𝐶 = 10), the loss in EV is much higher than the gain in CVaR (e.g. 𝛼 = 0. : loss in EV of about 

11% vs. gain in CVaR of 4%, 𝛼 = 0.2 : EV -22% vs. CVaR +10%). When capacity is scarce, the gain in CVaR is 

much higher and, at the same time, the corresponding loss in EV is much lower. For 𝐶 = 1, we obtain EV -3% and 

CVaR +7% at 𝛼 = 0.  and EV -8% and CVaR +27% at 𝛼 = 0.2 . Thus, the cost in expected value is comparably 

lower when capacity is scarce. 

 

Figure 11: Gain in CVaR vs. loss in expected value through optimization of CVaR for T=10 

6.4 Comparison of mechanism A and the benchmark approaches 

The 𝑀𝑅𝐶(�̃�sim, �̃�𝐴0.0001
sim ) of all the other mechanisms relative to 𝐴0.0001 is shown in Table 4. A distinct order is visible 

between these three control mechanisms. After 𝐴0.0001, CVaR-Fix performs best for all the capacities, followed by 

EV-Dyn and EV-Fix. Although it is a strong restriction to require a static policy, CVaR-Fix works surprisingly well in 

all cases, whereas EV-Dyn and EV-Fix perform better for higher capacities. Capacity is not scarce for 𝐶 = 10 and, 

therefore, the optimal price that EV-Dyn calculates does not change over time, which leads to the same results for EV-

Dyn and EV-Fix (see, e.g., Dong et al. 2009). Note that the 𝑀𝑅𝐶 of CVaR-Fix is less than 100%, even for 𝐶 = 1, due 

to the optimal policy only initially being a constant price policy for 𝐶 = 1 and switching to a dynamic one at the end 

of the booking horizon. 

Besides these three approaches, we considered a popular and easy to calculate approach from literature (see Online 

Supplement S.11 for details). More precisely, we compared mechanism A with the policy obtained from the exponen-

tial utility function with constant absolute risk aversion (CARA, −𝑒−𝛾𝑅) with parameter 𝛾 (see e.g. Lim and 

Shanthikumar 2007). As there is no one-to-one mapping between 𝛼 and 𝛾, we tested a broad range of 𝛾-values to find 



27 

the one with the highest CVaR𝛼 for a given 𝛼. We repeated this procedure for several states (𝑐, 𝑡) and obtained the 

following results: CVaR obtained by CARA is considerably lower and the 𝛾-value with the highest CVaR𝛼 depends 

not only on 𝛼 but also on the current state (𝑐, 𝑡) and the problem parameters. This makes it impossible to choose the 

best 𝛾 a priori.  

Table 4: 𝑴𝑹𝑪(�̃�𝐬𝐢𝐦, �̃�𝑨𝟎.𝟎𝟎𝟎𝟏
𝐬𝐢𝐦 ) – Mean CVaR of benchmarks relative to 𝑨𝟎.𝟎𝟎𝟎𝟏 

T=10 EV-Dyn CVaR-Fix EV-Fix Exact 

C=1 82.91% 98.29% 79.14% 100.00% 

C=5 90.01% 99.11% 87.23%  

C=10 93.15% 98.29% 93.15%  

Additional numerical experiments (not shown here) show that the consideration of risk aversion is still relevant in 

bigger settings, because the probability level changes over time during the selling horizon, but the difference between 

the dynamic policies of A and EV-Dyn decreases. The consideration of risk aversion is less relevant when there is 

more time available to sell the given inventory. Naturally, the static policies perform worse than their dynamic coun-

terparts. But CVaR-Fix performs very well in all settings with a stable 𝑀𝑅𝐶(�̃�CVaR-Fix
𝑠𝑖𝑚 , �̃�𝐴0.0001

sim ). Therefore, a fixed 

price policy can be a simple and, nonetheless, good choice when considering risk aversion in dynamic pricing. More-

over, if time and capacity are simultaneously scaled up, the consideration of risk-aversion and dynamic pricing be-

comes less important. 

6.5 Illustration of optimal price and CVaR as a function of the probability level 

Figure 12 shows the optimal prices calculated by 𝐴0.0001 and CVaR-Fix in 𝑇 = 10 for 𝐶 ∈ {1, ,7,10} as functions of 

𝛼 on the left-hand side and, on the right-hand side, the CVaRs �̃�sim attained by all the control mechanisms. We did 

not plot the optimal prices for EV-Dyn and EV-Fix, because they correspond to the optimal prices of Algorithm A and 

CVaR-Fix for 𝛼 = 1. Moreover, we did not include Exact for 𝐶 = 1, because the results were practically identical to 

𝐴0.0001. In addition to that, EV-Dyn and EV-Fix yield identical prices and CVaRs for 𝐶 = 10. 

Regarding the optimal price, in analogy to Proposition 2, we note that the price of mechanism A is strictly monoton-

ically increasing in 𝛼. Surprisingly, the optimal price of CVaR-Fix as a function of 𝛼 exhibits a saw-tooth pattern for 

𝐶 = 7 and 𝐶 = 10. Between intervals, where the optimal price of CVaR-Fix increases in 𝛼, there are downward price 

jumps. A detailed analysis (not shown here) shows that the amount of capacity taken into account for the calculation 

of CVaR𝛼 for different probability levels can explain this behavior. For a given 𝛼, only the sale of a specific amount of 

capacity is considered. The higher 𝛼, the more capacity is considered for sale and there is a downward price jump 

when one more unit of capacity is taken into account. 

Regarding the CVaR obtained, we observe that, for low values of 𝛼, there are two groups with more or less identical 

CVaRs: CVaR-maximizing approaches (A, CVaR-Fix) outperform expected-value maximizing approaches (EV-Dyn, 

EV-Fix). The considerable gap between these two groups is relatively bigger for lower values of 𝐶. For high levels of 

𝛼, the consideration of risk aversion is less important and we observe two different groups: approaches with dynamic 

policies (A, EV-Dyn) slightly outperform approaches with fixed prices (CVaR-Fix, EV-Fix). For 𝛼 = 1, the approaches 

in each group are even formally equivalent. Again, the difference between the groups decreases in 𝐶. They are even 

equivalent for 𝐶 = 10, where capacity is not scarce and dynamic policies also yield a fixed price. Thus, we conclude 
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that for high risk aversion (low 𝛼), the consideration of risk aversion seems more important than dynamic pricing, and 

for low risk aversion (high 𝛼), dynamic pricing is more important. 

 

Figure 12: Optimal price and CVaR as a function of 𝜶 for T=10 and C=1 (upper left), C=4 (upper right), C=7 

(lower left), C=10 (lower right) 

6.6 Illustration of optimal price and CVaR as a function of capacity 

In this section, we repeat the previous analysis, but focus on varying capacity for 𝑇 = 10 and 𝛼 ∈ {0. , 0.7}, chosen to 

represent high and low risk aversion. The optimal price and CVaR (�̃�sim) are shown as functions of capacity for all 

mechanisms in Figure 13.  

As already mentioned in Section 0, CVaR-Fix takes a specific amount of capacity into account for a probability level. 

The optimal price and CVaR of CVaR-Fix do not change when capacity is higher than this threshold (𝐶 =   in the 

figure for 𝛼 = 0.0 ). Thus, in this case, higher capacity has no marginal benefit. Moreover, this threshold increases in 

the probability level (𝐶 =   in the figure for 𝛼 ≥ 0.1) until, in the expected value optimal case of 𝛼 = 1, all units of 

capacity are taken into account for sale (not shown here). For mechanism A, CVaR-Fix, and EV-Fix, the optimal price 

is strictly monotonically decreasing in capacity until it remains constant, whereas the optimal price of EV-Dyn is 

strictly monotonically decreasing in the complete interval, following the well-known results for risk-neutral dynamic 

pricing. The CVaR values (�̃�sim) exhibit the same behavior, but are increasing, of course.  
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Figure 13: Optimal price and simulated CVaR of several approaches as a function of capacity for T=10, α=0.05 

(upper left), α=0.1 (upper right), α=0.3 (lower left), and α=0.7 (lower right) 

7 Conclusions 

The consideration of risk aversion in dynamic pricing is quite recent. We added to this growing stream of literature by 

showing how the standard model of dynamic pricing can be generalized to include Conditional Value-at-Risk 

(CVaR)—a risk measure widely used in other areas due to its desirable theoretical properties and intuitive appeal. 

However, the time-consistent maximization of CVaR over the whole selling horizon requires the inclusion of CVaR’s 

probability level in the state space. This reflects the decision maker’s adaption of risk preferences when new infor-

mation becomes available over time. For one capacity unit, we analytically solved the model and characterized the 

optimal policy based on some mild assumptions. An arbitrary capacity was tackled numerically. We developed two 

algorithms. The first algorithm is based on a discretization of the state space (i.e. the probability level). Its efficiency 

stems from replacing the complex bilevel problem in each stage with a series of well-chosen subproblems which are 

solved analytically. The second algorithm considers the bilevel problem’s maximization and minimization subsequent-

ly, and is based on a discretization of the action space (i.e. the price). 

7.1 Managerial implications 

The most important managerial implication is that for one unit of capacity, the risk-averse optimal price is constant 

over large parts of the selling horizon. This contrasts the standard setting of risk-neutral dynamic pricing, where the 

price continuously declines over time. Whereas the standard recommendation until now was to continuously lower the 

price, we now recommend a risk-averse seller to start with a lower price and initially keep it constant which is also 
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easier to implement. Interestingly, our recommendation is in line with the price-setting behavior often observed in 

practice, but often considered irrational. Moreover, depending on the level of risk aversion, every initial price between 

0 and the risk-neutral price can be optimal.  

For arbitrary capacity, we saw that the cost of risk-aversion is lower with smaller capacities. Moreover, the considera-

tion of risk is more important than the price’s dynamic adjustment for most levels of risk aversion. The investigation 

of bigger settings showed the expected results: Risk aversion is still relevant, although the differences in the CVaR 

between the approaches diminish with increasing capacity or the length of the selling horizon.  

7.2 Extensions 

We did not consider a list of some extensions to focus on the essentials of our model and to ease notation. However, it 

appears quite straightforward to generalize the considerations regarding the following aspects. 

 We assumed that a customer arrives for sure in every period and that the willingness-to-pay is time-homogeneous. 

Nonetheless, a different (nonhomogeneous) arrival probability could be easily integrated into the model. It is also 

possible to consider a nonhomogeneous (i.e. time-dependent) willingness-to-pay with only minor modifications to 

the algorithms. However, a few results will obviously change; especially prices might increase over time without 

sales.  

 Furthermore, the incorporation of multi-unit demand is straightforward. The main modification is that in the model 

presented, two events are distinguished in each period: selling one unit and no sale. With multi-unit demand, addi-

tional events corresponding to two and more units sold have to be considered. The extension of Algorithm B is 

quite straightforward as only the first phase is modified to consider these additional events. The extension of Algo-

rithm A is more cumbersome, especially if nonlinear prices are considered, because many more cases can arise af-

ter the solution of the subproblem. 

 Regarding discrete prices, properties P.1-P.3 (or their discrete counterparts) are not really necessary for Algorithm 

B. More precisely, we used them to reduce the computational burden, but a modification checking all intersections 

of value functions for different prices and not assuming any order would do without the properties. Property P.4 is 

an adaptation of the standard assumption regarding the presence of a null price in dynamic pricing for the specific 

setting considered in this paper (see, e.g., Gallego and van Ryzin 1994, Karlin and Carr 1962).  

7.3 Future Research 

There are several possible avenues for future research. First and foremost, the generalization of the results on 𝐶 = 1 

and especially Section 4.2 to 𝐶 > 1 is desirable. Although a few minor properties are easy to show, a very tedious 

proof by induction along the lines for 𝐶 = 1 but considering many more cases and solutions at borders seems neces-

sary. 

Second, from a broader perspective, there is still no consensus in the literature on the definition of time consistency in 

a dynamic setting. While we follow Pflug and Pichler (2016) and recursively maximize the CVaR over the entire hori-

zon, there is an ongoing discussion (see, e.g., Bamberg and Krapp 2015 and the references therein). For example, Rud-

loff et al. (2014) prefer a nested calculation with constant probability level and try to give some interpretation. Apart 
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from work on time-consistency itself, this suggests to also consider and compare the optimization of CVaR with a 

constant level. 

Third, we think that especially the result of the constant prices for one unit of capacity is relevant beyond the literature 

on dynamic pricing. In many markets, sellers with a single item initially set constant prices and only lower the price 

later on. This downward adjustment is often followed by a quick sale. To date, this behavior has often been explained 

with price adjustment costs and/or low seller motivation in empirical studies (see, e.g., Knight 2002 and Anglin et al. 

2003 for the real estate market). Our results provide a new explanation. We have shown that this behavior is perfectly 

rational for a risk-averse seller with only one unit of capacity, even if price adjustments are possible. Thus, future em-

pirical studies should take these results into account. 

Finally, research on dynamic pricing with demand learning is very active (see the survey by den Boer 2015). Howev-

er, to the best of our knowledge it has never been investigated how risk-aversion influences the trade-off between ex-

ploration of demand and exploitation of the current knowledge.  
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Supplement: Optimizing CVaR in Dynamic Pricing 

S.1 Properties of the value function 

In this section, properties of the value function are stated. In Sections S.2–S.8, we assume these 

properties hold for 𝑡 − 1 and show Propositions 1 – 6 for period 𝑡. In Section S.9, we use these 

propositions and show by induction that the properties hold. 

A.1. 0 = 𝑉𝑡−1,1(0) < 𝑉𝑡−1,1(1) < 1 

A.2. 𝑉𝑡−1,1
′ (𝛼𝑡−1,1) exists, is continuous and positive for 𝛼𝑡−1,1 > 0. 

A.3. Except a finite number of sharp points of 𝑉𝑡−1,1
′ (𝛼), 𝑉𝑡−1,1(𝛼𝑡−1,1) is two times differentiable 

for all 𝛼𝑡−1,1 ∈ (0,1) and it holds that 𝑉𝑡−1,1
′′ (𝛼𝑡−1,1) > 0. At these sharp points, the 

subdifferential of 𝑉𝑡−1,1
′ (𝛼𝑡−1,1) is a bounded subset of ℝ+ ∖ {0}. 

A.4. 𝑉𝑡−1,1(𝛼𝑡−1,1) is strictly convex. 

A.5. 0 = 𝑉𝑡−1,1
′ (0) < 𝑉𝑡−1,1

′ (1) < 1 

A.6. 𝑝′ (𝑉𝑡−1,1
′ (1)) ∙ (𝑉𝑡−1,1(1) − 𝑉𝑡−1,1

′ (1)) + 1 − 𝑝 (𝑉𝑡−1,1
′ (1)) < 1 

S.2 Proof of Lemma 1 and Proposition 1 

Remark 2 In every expression involving the second degree differential 𝑉′′ of the value function either 

explicitly or implicitly in the expression 𝛼𝑡−1,1
′  or 𝑟𝑡,1

′ , 𝑉′′ denotes an arbitrary element of the 

subdifferential of 𝑉′ as the value function is not two times differentiable in a finite number of points. 

In the following we only require the subdifferential of 𝑉′ to be a bounded subset of ℝ+ ∖ {0}. This 

property is shown in the proof of A.3. Moreover, for 𝛼 ∈ {0,1} all differentials are to be understood as 

one-sided limits of difference quotients. 

Regarding 𝛼𝑡,1 > 0, we start our analysis by restricting the set of feasible prices w.l.o.g. (Lemma 1): 

For 𝑟𝑡,1 ∈ {0,1}, 𝑉𝑡,1(𝛼𝑡,1) ≤ 𝑉𝑡−1,1(𝛼𝑡−1,1), and, therefore, 𝑟𝑡,1 ∈ {0,1} is not optimal.  

(12) yields 𝛼𝑡−1,0 =
𝛼𝑡,1−(1−𝑝(𝑟𝑡,1))∙𝛼𝑡−1,1

𝑝(𝑟𝑡,1)
 since 𝑝(𝑟𝑡,1) ∈ (0,1) ∀𝑟𝑡,1 ∈ (0,1) (cf. P.2 and P.4). This 

leads to: 
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 𝑉𝑡,1(𝛼𝑡,1) = max
𝑟𝑡,1

min
𝛼𝑡−1,1

𝐹(𝑟𝑡,1, 𝛼𝑡−1,1)    

 with 𝐹(𝑟𝑡,1, 𝛼𝑡−1,1) = (1 − 𝑝(𝑟𝑡,1)) ∙ (𝑉𝑡−1,1(𝛼𝑡−1,1) − 𝑟𝑡,1 ∙ 𝛼𝑡−1,1) + 𝑟𝑡,1 ∙ 𝛼𝑡,1.  (24) 

s.t. 
𝛼𝑡,1−(1−𝑝(𝑟𝑡,1))∙𝛼𝑡−1,1

𝑝(𝑟𝑡,1)
∈ [0,1]    (25) 

 𝛼𝑡−1,1 ∈ [0,1]    (26) 

 𝑟𝑡,1 ∈ (0,1)    (27) 

We first take a look at the inner minimization and calculate: 

 
𝑑

𝑑𝛼𝑡−1,1
𝐹(𝑟𝑡,1, 𝛼𝑡−1,1) = (1 − 𝑝(𝑟𝑡,1)) ∙ (𝑉𝑡−1,1

′ (𝛼𝑡−1,1) − 𝑟𝑡,1) 

 
𝑑2

𝑑𝛼𝑡−1,1
2 𝐹(𝑟𝑡,1, 𝛼𝑡−1,1) = (1 − 𝑝(𝑟𝑡,1)) ∙ 𝑉𝑡−1,1

′′ (𝛼𝑡−1,1) > 0 (cf. A.3, P.2, P.4 and Lemma 1) 

We now distinguish two (overlapping) cases with respect to 𝑟𝑡,1.  

Case 1: 𝑟𝑡,1 ∈ (0, 𝑉𝑡−1,1
′ (1)]. 𝛼𝑡−1,1(𝑟𝑡,1) = (𝑉𝑡−1,1

′ )
−1
(𝑟𝑡,1) is the global minimum of 𝐹(𝑟𝑡,1, 𝛼𝑡−1,1). 

Case 2: 𝑟𝑡,1 ∈ [𝑉𝑡−1,1
′ (1), 1). Since 

𝑑

𝑑𝛼𝑡−1,1
𝐹(𝑟𝑡,1, 𝛼𝑡−1,1) ≤  0, 𝛼𝑡−1,1(𝑟𝑡,1) is set to the maximal 

feasible value.  

We now solve the outer maximization problem: 

𝑑

𝑑 𝑟𝑡,1
𝐹 (𝑟𝑡,1, 𝛼𝑡−1,1(𝑟𝑡,1)) = −𝑝

′(𝑟𝑡,1) ∙ (𝑉𝑡−1,1 (𝛼𝑡−1,1(𝑟𝑡,1)) − 𝑟𝑡,1 ∙ 𝛼𝑡−1,1(𝑟𝑡,1)) − (1 − 𝑝(𝑟𝑡,1)) ⋅

𝛼𝑡−1,1(𝑟𝑡,1) + 𝛼𝑡,1  

𝑑2

𝑑 𝑟𝑡,1
2 𝐹 (𝑟𝑡,1, 𝛼𝑡−1,1(𝑟𝑡,1)) = −𝑝

′′(𝑟𝑡,1) ∙ (𝑉𝑡−1,1 (𝛼𝑡−1,1(𝑟𝑡,1)) − 𝑟𝑡,1 ∙ 𝛼𝑡−1,1(𝑟𝑡,1))⏟                          
<0, A.4

+ 2𝑝′(𝑟𝑡,1)⏟    
<0, P.2

∙

𝛼𝑡−1,1(𝑟𝑡,1)⏟      
>0

− (1 − 𝑝(𝑟𝑡,1))⏟        
>0

∙ 𝛼𝑡−1,1
′ (𝑟𝑡,1)⏟      

≥0, Remark 2

= −𝑝′′(𝑟𝑡,1) ⋅ 𝑉𝑡−1,1 (𝛼𝑡−1,1(𝑟𝑡,1))⏟            
>0

+ 𝛼𝑡−1,1(𝑟𝑡,1)⏟      
>0

⋅

(𝑝′′(𝑟𝑡,1) ⋅ 𝑟𝑡,1 + 2𝑝
′(𝑟𝑡,1))⏟                

<0, P.3

− (1 − 𝑝(𝑟𝑡,1))⏟        
>0

∙ 𝛼𝑡−1,1
′ (𝑟𝑡,1)⏟      

≥0, Remark 2

< 0  

To show that 
𝑑2

𝑑 𝑟𝑡,1
2 𝐹 (𝑟𝑡,1, 𝛼𝑡−1,1(𝑟𝑡,1)) < 0 is independent of the sign of 𝑝′′(𝑟𝑡,1), we resort the 

expression in the last equality. Now, we can respectively observe the inequality for 𝑝′′(𝑟𝑡,1) ≤ 0 and 

𝑝′′(𝑟𝑡,1) > 0 with the left and right hand side of the last equality. Thus, 𝐹 (𝑟𝑡,1, 𝛼𝑡−1,1(𝑟𝑡,1)) is strictly 

concave in 𝑟𝑡,1. There is at most one inner maximum such that 

𝑑

𝑑 𝑟𝑡,1
𝐹 (𝑟𝑡,1(𝛼𝑡,1), 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) = 0, where 𝑟𝑡,1(𝛼𝑡,1) is the unique solution to the equation  
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𝛼𝑡,1 = 𝑝
′ (𝑟𝑡,1(𝛼𝑡,1)) ∙ (𝑉𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) − 𝑟𝑡,1(𝛼𝑡,1) ∙ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) +

(1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1))) ∙ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))    (28) 

Now we define  𝛼𝑡,1
𝑃𝐼𝑡−1 = 𝑝′ (𝑉𝑡−1,1

′ (1)) ∙ (𝑉𝑡−1,1(1) − 𝑉𝑡−1,1
′ (1)) + 1 − 𝑝 (𝑉𝑡−1,1

′ (1)) and we split 

the optimization in four cases, based on the values of 𝛼𝑡,1 and 𝑟𝑡,1 (Table S.1). 

Table S.1: Cases considered in the optimization 

  𝒓𝒕,𝟏 ∈ (𝟎, 𝑽𝒕−𝟏,𝟏
′ (𝟏)] 𝒓𝒕,𝟏 ∈ [𝑽𝒕−𝟏,𝟏

′ (𝟏), 𝟏) 

𝜶𝒕,𝟏 ∈ (𝟎, 𝜶𝒕,𝟏
𝑷𝑰𝒕−𝟏]  Case 1a Case 2a 

𝜶𝒕,𝟏 ∈ (𝜶𝒕,𝟏
𝑷𝑰𝒕−𝟏 , 𝟏]  Case 1b Case 2b 

In these cases, constraint (27) is satisfied by definition. 

Case 1a: 𝛼𝑡−1,1(𝑟𝑡,1) = (𝑉𝑡−1,1
′ )

−1
(𝑟𝑡,1) and 𝑟𝑡,1 is given implicitly by equation (28). Since 

𝑑

𝑑 𝑟𝑡,1
𝐹 (𝑟𝑡,1, 𝛼𝑡−1,1(𝑟𝑡,1)) is continuous, 

𝑑

𝑑 𝑟𝑡,1
𝐹 (0, 𝛼𝑡−1,1(0)) > 0 and 

𝑑

𝑑 𝑟𝑡,1
𝐹 (𝑉𝑡−1,1

′ (1), 𝛼𝑡−1,1 (𝑉𝑡−1,1
′ (1))) ≤ 0, the existence of a solution 𝑟𝑡,1(𝛼𝑡,1) to equation (28) is 

guaranteed by the intermediate value theorem.  

Constraint (26) holds because 𝛼𝑡−1,1 > 0,
𝑑

𝑑 𝑟𝑡,1
𝛼𝑡−1,1(𝑟𝑡,1) > 0 and 𝛼𝑡−1,1 (𝑉𝑡−1,1

′ (1)) = 1. 

Constraint (25) remains to be shown. We have  

 
𝛼𝑡,1−(1−𝑝(𝑟𝑡,1(𝛼𝑡,1)))∙(𝑉𝑡−1,1

′ )
−1
(𝑟𝑡,1(𝛼𝑡,1))

𝑝(𝑟𝑡,1(𝛼𝑡,1))
≥ 0 

 ⇔ 𝑝′ (𝑟𝑡,1(𝛼𝑡,1))⏟        
<0

∙ (𝑉𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) − 𝑟𝑡,1(𝛼𝑡,1) ∙ (𝑉𝑡−1,1
′ )

−1
(𝑟𝑡,1(𝛼𝑡,1)))

⏟                                          
<0

≥ 0 

In addition to that, we have 

 
𝛼𝑡,1−(1−𝑝(𝑟𝑡,1(𝛼𝑡,1)))∙(𝑉𝑡−1,1

′ )
−1
(𝑟𝑡,1(𝛼𝑡,1))

𝑝(𝑟𝑡,1(𝛼𝑡,1))
≤ 1 

  ⇔ 0 ≤ 𝑝(𝑟𝑡,1(𝛼𝑡,1)) − 𝑝
′ (𝑟𝑡,1(𝛼𝑡,1)) ∙ (𝑉𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) − 𝑟𝑡,1(𝛼𝑡,1) ∙

(𝑉𝑡−1,1
′ )

−1
(𝑟𝑡,1(𝛼𝑡,1))) 

Since the right hand side of the inequality is decreasing in 𝑟𝑡,1(𝛼𝑡,1), the inequality holds due to A.6. 



4 

 

Case 1b: Since 
𝑑

𝑑 𝑟𝑡,1
𝐹(𝑟𝑡,1, 𝛼𝑡−1,1) ≥ 0 for all 𝛼𝑡−1,1, we choose 𝑟𝑡,1(𝛼𝑡,1) = 𝑉𝑡−1,1

′ (1). Showing 

constraint (26) holds is identical to case 1a. We further have 
𝛼𝑡,1−(1−𝑝(𝑉𝑡−1,1

′ (1)))

𝑝(𝑉𝑡−1,1
′ (1))

≥ 0, as 𝛼𝑡,1 > 𝛼𝑡,1
𝑃𝐼𝑡−1 

and  
𝛼𝑡,1−(1−𝑝(𝑉𝑡−1,1

′ (1)))

𝑝(𝑉𝑡−1,1
′ (1))

≤ 1 obviously holds. 

Case 2a: In this case, the choice of 𝛼𝑡−1,1(𝑟𝑡,1) = 1 might violate constraint (25) if 𝛼𝑡,1 < 1 −

𝑝(𝑟𝑡,1). By setting 𝛼𝑡−1,1(𝑟t,1) = min{
𝛼𝑡,1

1−𝑝(𝑟𝑡,1)
, 1}, the inner minimization problem is solved und 

constraints (25) and (26) hold. Since 
𝑑

𝑑 𝑟𝑡,1
𝐹 (𝑟𝑡,1, 𝛼𝑡−1,1(𝑟t,1)) ≤ 0, 𝑟𝑡,1(𝛼𝑡,1) = 𝑉𝑡−1,1

′ (1). 

Case 2b: In this case, we have 𝛼𝑡−1,1(𝑟t,1) = 1. However, 𝑟𝑡,1(𝛼𝑡,1) is given implicitly by (28). Since 
𝑑

𝑑 𝑟𝑡,1
𝐹(𝑟𝑡,1, 1) is continuous, 

𝑑

𝑑 𝑟𝑡,1
𝐹(𝑉𝑡−1,1

′ (1), 1) > 0 and 
𝑑

𝑑 𝑟𝑡,1
𝐹(1,1) ≤ 0, the existence of a solution 

to equation (28) is guaranteed by the intermediate value theorem. Constraint (26) is satisfied. 

Regarding constraint (25), 
𝛼𝑡,1−(1−𝑝(𝑟𝑡,1(𝛼𝑡,1)))

𝑝(𝑟𝑡,1(𝛼𝑡,1))
≤ 1 obviously holds. Moreover, 

𝛼𝑡,1−(1−𝑝(𝑟𝑡,1(𝛼𝑡,1)))

𝑝(𝑟𝑡,1(𝛼𝑡,1))
≥

0 ⇔⏟
(28)

𝑝′ (𝑟𝑡,1(𝛼𝑡,1))⏟        
<0

∙ (𝑉𝑡−1,1(1) − 𝑟𝑡,1(𝛼𝑡,1))⏟              
<0, A.4

≥ 0  

Summary: Now, note that 𝑟𝑡,1(𝛼𝑡,1) = 𝑉𝑡−1,1
′ (1) determined in case 2a is also considered in case 1a. 

Thus, case 1a dominates case 2a. Similarly, case 2b dominates case 1b. To sum up, for 𝛼𝑡,1 = 0, we 

have 𝛼𝑡−1,1 (𝑟𝑡,1(0)) = 0 and 𝑟𝑡,1(0) = 0. For 𝛼𝑡,1 ∈ (0, 𝛼𝑡,1
𝑃𝐼𝑡−1], we obtain 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)) =

(𝑉𝑡−1,1
′ )

−1
(𝑟𝑡,1(𝛼𝑡,1)) and for 𝛼𝑡,1 ∈ (𝛼𝑡,1

𝑃𝐼𝑡−1 , 1], we obtain 𝛼𝑡−1,1(𝑟t,1) = 1. In both cases 𝑟𝑡,1(𝛼𝑡,1) 

is given by (28). Substituting this into (11), we obtain 𝑉𝑡,1(𝛼𝑡,1). 

S.3 Proof of Proposition 2 

We start with the first section, i.e. 𝛼𝑡,1 ∈ [0, 𝛼𝑡,1
𝑃𝐼𝑡−1]. The optimal price 𝑟𝑡,1(𝛼𝑡,1) is given implicitly by 

Proposition 1.  

Remark 3  𝑟𝑡,1(𝛼𝑡,1) is continuously differentiable except at points where the value function is not 

two times differentiable (see Remark 2). This follows from the implicit function theorem together with  

𝑑

𝑑 𝑟𝑡,1(𝛼𝑡,1)
[𝛼𝑡,1 − 𝑝

′ (𝑟𝑡,1(𝛼𝑡,1)) ∙ (𝑉𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) − 𝑟𝑡,1(𝛼𝑡,1) ∙ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) −

(1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1))) ∙ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))] < 0.  

1 =⏟
(15)

𝑑

𝑑 𝛼𝑡,1
[𝑝′ (𝑟𝑡,1(𝛼𝑡,1)) ∙ (𝑉𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) − 𝑟𝑡,1(𝛼𝑡,1) ∙ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) +

(1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1))) ∙ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))]  
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=⏟
(14)

𝑟𝑡,1
′ (𝛼𝑡,1) ∙ {𝑝

′′ (𝑟𝑡,1(𝛼𝑡,1)) ∙ (𝑉𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) − 𝑟𝑡,1(𝛼𝑡,1) ∙ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))⏟                                      
<0,  A.4 and (14)

)−

2𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))⏟          
≥0

∙ 𝑝′ (𝑟𝑡,1(𝛼𝑡,1))⏟        
<0, P.2

+ (1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1)))⏟            
>0

∙ 𝛼𝑡−1,1
′ (𝑟𝑡,1(𝛼𝑡,1))⏟          
>0, Remark 2

}  

As the part in curly brackets is positive (cf. the argumentation of 
𝑑2

𝑑 𝑟𝑡,1
2 𝐹 (𝑟𝑡,1, 𝛼𝑡−1,1(𝑟𝑡,1)) < 0 in 

Section S.2), we can see that 𝑟𝑡,1
′ (𝛼𝑡,1) has to be positive as well. 

The second section, i.e. 𝛼𝑡,1 ∈ (𝛼𝑡,1
𝑃𝐼𝑡−1 , 1], can analogously be shown and is omitted.  

As 𝑟𝑡,1
′ (𝛼𝑡,1) is positive on every section, 𝑟𝑡,1(𝛼𝑡,1) is strictly monotonically increasing in 𝛼𝑡,1. 

S.4 Proof of Proposition 3 

We have to check the continuity in the cases 𝛼𝑡,1 ∈ [0, 𝛼𝑡,1
𝑃𝐼𝑡−1), 𝛼𝑡,1 = 𝛼𝑡,1

𝑃𝐼𝑡−1 and 𝛼𝑡,1 ∈ (𝛼𝑡,1
𝑃𝐼𝑡−1 , 1]: 

The proof for the first case is predominantly algebra. It holds: 

 ∀�̂�𝑡,1 ∈ (0, 𝛼𝑡,1
𝑃𝐼𝑡−1): lim

𝛼𝑡,1↗�̂�𝑡,1

𝑟𝑡,1(𝛼𝑡,1) = 𝑟𝑡,1(�̂�𝑡,1) = lim
𝛼𝑡,1↘�̂�𝑡,1

𝑟𝑡,1 (𝛼𝑡,1) 

Considering Proposition 2 and the bound �̂�𝑡,1 of the sequences, clearly, both limits exist. The equality 

can be shown by taking the one-sided limits of both sides of (15) and using P.1, A.2 and the 

uniqueness of the solution of (15). Moreover, ∀𝜖 > 0 ∃𝛿 > 0: 𝑟𝑡,1(𝛼𝑡,1) ∈ (0, 𝜖) ∀𝛼𝑡,1 ∈ (0, 𝛿) and, 

thus, lim
𝛼𝑡,1↘0

𝑟𝑡,1(𝛼𝑡,1) = 0 = 𝑟𝑡,1(0). 

The proof for the second and third case is analogous to the first one.  

S.5 Proof of Lemma 2 

Lemma 2  The optimal price 𝑟𝑡,1(𝛼𝑡,1) at 𝛼𝑡,1 equals the slope of the value function at this point, i.e. 

𝑟𝑡,1(𝛼𝑡,1) = 𝑉𝑡,1
′ (𝛼𝑡,1). 

We start with the differential of the objective function in the first section, i.e. 𝛼𝑡,1 ∈ [0, 𝛼𝑡,1
𝑃𝐼𝑡−1].  
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𝑑

𝑑 𝛼𝑡,1
𝑉𝑡,1(𝛼𝑡,1) =   

𝑟𝑡,1
′ (𝛼𝑡,1) ∙ {𝛼𝑡,1 − 𝑝

′ (𝑟𝑡,1(𝛼𝑡,1)) ∙ (𝑉𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) − 𝑟𝑡,1(𝛼𝑡,1) ∙ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) −

(1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1))) ∙ 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))} + (1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1))) ⋅ 𝛼𝑡−1,1
′ (𝑟𝑡,1(𝛼𝑡,1)) ∙ 𝑟𝑡,1

′ (𝛼𝑡,1) ∙

[𝑉𝑡−1,1
′ (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) − 𝑟𝑡,1(𝛼𝑡,1)] + 𝑟𝑡,1(𝛼𝑡,1) =⏟

Proposition 1

𝑟𝑡,1(𝛼𝑡,1)   

We continue with the differential of the objective function in the second section, i.e. 𝛼𝑡,1 ∈ (𝛼𝑡,1
𝑃𝐼𝑡−1 , 1].  

𝑑

𝑑 𝛼𝑡,1
𝑉𝑡,1(𝛼𝑡,1) = 𝑟𝑡,1(𝛼𝑡,1) + 𝑟𝑡,1

′ (𝛼𝑡,1) ∙

[𝛼𝑡,1 − 𝑝
′ (𝑟𝑡,1(𝛼𝑡,1)) ∙ (𝑉𝑡−1,1(1) − 𝑟𝑡,1(𝛼𝑡,1)) − (1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1)))]⏟                                              

=0, Proposition 1

= 𝑟𝑡,1(𝛼𝑡,1)  

Together with the continuity of 𝑟𝑡,1(𝛼𝑡,1) at 𝛼𝑡,1
𝑃𝐼𝑡−1, the proposition is proven. 

S.6 Proof of Proposition 4 

Proposition 4 can be shown by combining Proposition 1 and Lemma 2. 

S.7 Proof of Proposition 5 

We consider two cases. Firstly, we assume 𝛼𝑡,1 = 1. Secondly, we assume 𝛼𝑡,1 < 1.  

Case 1: As 𝛼𝑡,1 = 1, the Value-at-Risk at this level corresponds to the highest possible optimal price 

with a positive probability of occurrence, i.e. 𝑉𝑎𝑅1 =⏟
Proposition 4

max{𝑟𝑡,1(1),… , 𝑟1,1(1)} = 𝑟𝑡,1(1). 

Case 2: 𝛼𝑡,1 < 1 ⇒ ∃𝑛 ≤ 𝑡: 𝛼𝑡−𝑛,1 = 1 ∧ 𝛼𝑡−𝑛+1,1 < 1 . Thus, 𝛼𝑡,1 > (1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1))) ⋅ 𝛼𝑡−1,1 >

⋯ > (1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1)))
𝑛

⋅ 𝛼𝑡−𝑛,1 = (1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1)))
𝑛

 and 𝑟𝑡,1(𝛼𝑡,1) ≥ 𝑟𝑡−𝑖,1(𝛼𝑡−𝑖,1) ∀𝑖 ≤ 𝑡 (cf. 

(11) - (13) and Proposition 4). The probability to sell the item for the highest price 𝑟𝑡,1(𝛼𝑡,1) is given 

by 1 − (1 − 𝑝 (𝑟𝑡,1(𝛼𝑡,1)))
𝑛

. As 𝛼𝑡,1 exceeds the probability of not selling at the highest price 

𝑟𝑡,1(𝛼𝑡,1), the Value-at-Risk at 𝛼𝑡,1 is 𝑟𝑡,1(𝛼𝑡,1). 
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S.8 Proof of Proposition 6 

In this section, we show the proposition by induction. To simplify the notation, we write 𝛼𝑡−1,1
∗  and 

𝛼𝑡−2,1
∗  instead of 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)) and 𝛼𝑡−2,1 (𝑟𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)))), respectively, and 𝑟𝑡,1

∗  

and 𝑟𝑡−1,1
∗  instead of 𝑟𝑡,1(𝛼𝑡,1) and 𝑟𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))), respectively. 

We omit the trivial induction basis and check the following cases in the induction step: 𝛼𝑡,1 = 0, 

𝛼𝑡,1 ∈ (0, 𝛼𝑡,1
𝑃𝐼𝑡−1] and 𝛼𝑡,1 ∈ (𝛼𝑡,1

𝑃𝐼𝑡−1 , 1]. 

The first and the third case are respectively covered by Remark 1 and Proposition 1. 

For the second case, we use Proposition 1, Proposition 4 and the induction hypothesis 𝛼𝑡−1,1
∗ ≤ 𝛼𝑡−2,1

∗ . 

𝛼𝑡,1 = 𝑝
′(𝑟𝑡−1,1

∗ ) ∙ (𝑉𝑡−1,1(𝛼𝑡−1,1
∗ ) − 𝑟𝑡−1,1

∗ ∙ 𝛼𝑡−1,1
∗ ) + (1 − 𝑝(𝑟𝑡−1,1

∗ )) ∙ 𝛼𝑡−1,1
∗ = 𝑝′(𝑟𝑡−1,1

∗ ) ∙

(1 − 𝑝(𝑟𝑡−1,1
∗ )) ⋅ (𝑉𝑡−2,1(𝛼𝑡−2,1

∗ ) − 𝑟𝑡−1,1
∗ ∙ 𝛼𝑡−2,1

∗ ) + (1 − 𝑝(𝑟𝑡−1,1
∗ )) ∙ 𝛼𝑡−1,1

∗    

≤ 𝑝′(𝑟𝑡−1,1
∗ ) ∙ (𝑉𝑡−2,1(𝛼𝑡−2,1

∗ ) − 𝑟𝑡−1,1
∗ ∙ 𝛼𝑡−2,1

∗ ) + (1 − 𝑝(𝑟𝑡−1,1
∗ )) ∙ 𝛼𝑡−2,1

∗ = 𝛼𝑡−1,1
∗   

The inequality follows by substituting the induction hypothesis together with P.2 and A.4.  

S.9 Proof of the properties of the value function 

In this section, we show Properties A.1–A.6 by induction. This requires first explicitly solving the 

optimization problem inherent in 𝑉1,1(𝛼1,1) and showing that A.1–A.6 hold for 𝑡 − 1 = 1 (induction 

basis). Both is rather straightforward and omitted to save space. In the induction step, we assume that 

the properties hold for 𝑡 − 1 (induction hypothesis, IH) and, thus, are able to use the results of 

Proposition 1–Proposition 4 to show that the Properties A.1–A.6 also hold for 𝑡 as well: 

As 𝑉𝑡,1(0) = 0 (cf. Remark 1) and 𝑉𝑡,1(1) = (1 − 𝑝 (𝑟𝑡,1(1))) ⋅ 𝑉𝑡−1,1(1) + 𝑝 (𝑟𝑡,1(1)) ⋅ 𝑟𝑡,1(1) ∈

(0,1) (cf. Proposition 1, Lemma 1, P.4 and IH), Property A.1 holds. To show Properties A.2–A.6 we 

use Lemma 2, i.e. 𝑉𝑡,1
′ (𝛼𝑡,1) = 𝑟𝑡,1(𝛼𝑡,1). Property A.2 and A.5 follow by additionally using Lemma 1 

and Proposition 3, and Property A.3 by Remark 3. Property A.4 holds because 𝑉𝑡,1(𝛼𝑡,1) is 

continuously differentiable on the whole domain and 𝑉𝑡,1
′′ (𝛼𝑡,1) > 0, thus, we know that 𝑉𝑡,1(𝛼𝑡,1) is 

strictly convex for every 𝛼𝑡,1 ∈ (0,1). To show Property A.6, we observe that 
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𝑝′ (𝑉𝑡,1
′ (1)) ∙ (𝑉𝑡,1(1) − 𝑉𝑡,1

′ (1)) + 1 − 𝑝 (𝑉𝑡,1
′ (1)) =

𝑝′ (𝑟𝑡,1(1)) ∙ (𝑉𝑡−1,1(1) − 𝑟𝑡,1(1)) + 1 − 𝑝 (𝑟𝑡,1(1))⏟                                
=1,  (15) with 𝛼𝑡,1=1

+ 𝑝′ (𝑟𝑡,1(1)) ∙ (𝑉𝑡,1(1) − 𝑉𝑡−1,1(1)) < 1   

Where the final inequality follows from P.2 and the well-known strict monotonicity of 𝑉𝑡,1(1) in time.  

S.10 Proof of Proposition 7 

S.10.1 Proof of (19) 

We show (19) by induction over 𝑡. Note that the value function (11) simplifies to 

 𝑉𝑡,1(1) = max
𝑟𝑡,1
{(1 − 𝑟𝑡,1) ⋅ 𝑟𝑡,1 + 𝑟𝑡,1 ⋅ 𝑉𝑡−1,1(1)} with 𝑉0,1(1) = 0  (29) 

The induction hypothesis (19) obviously holds for 𝑡 = 1. The inductive step from 𝑡 − 1 to 𝑡 follows 

from (29) and Proposition 1. Please note that  Proposition 1 considerably simplifies as we only 

consider the special case of uniformly distributed WTPs, i.e. 𝑝(𝑟𝑡,1) = 1 − 𝑟𝑡,1 in Proposition 7. 

S.10.2 Proof of (20), (21), (22) and (23) – base case 

With 𝑉0,1 = 0, (17) and Proposition 1, we have that (20), (21) and (22) hold for 𝑡 = 1 and 𝑗 = 1.  

Moreover, (23) holds for 𝑡 = 2 (cf. Lemma 1, Proposition 1 and A.5). 

S.10.3 Proof of (20), (21), (22) and (23) – inductive step 

Now, suppose (20), (21), (22) and (23) hold in time period 𝑡 − 1.  

Due to the strict monotonicity and continuity of 𝑟𝑡,1(𝛼𝑡,1) and 𝛼𝑡−1,1(𝑟𝑡,1), (23) is equivalent to: 

 𝛼𝑡,1 = 𝛼𝑡,1
𝑃𝐼𝑗  solves 𝛼𝑡−1,1

𝑃𝐼min{𝑗,𝑡−1} = 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))   (30) 

Case 𝒋 = 𝒕: For 𝑗 = 𝑡, i.e. 𝛼𝑡,1 ∈ 𝑆𝑡,1
𝑡 , and, therefore, 𝛼𝑡,1 > 𝛼𝑡,1

𝑃𝐼𝑡−1=2𝑉𝑡−1,1
′ (1) − 𝑉𝑡−1,1(1). The 

equality follows from Proposition 1 and Lemma 2. Thus, equation (21) directly follows from 

Proposition 1. Using this and algebra with 𝑉𝑡,1(𝛼𝑡,1) = 𝑟𝑡,1
2 , (20) can be shown and (22) is trivial. 

Moreover, it holds that 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)) = 1. Thus, 𝛼𝑡−1,1 ∈ 𝑆𝑡−1,1
𝑡−1  for 𝛼𝑡,1 ∈ 𝑆𝑡,1

𝑡  and equation (23) 

holds. 
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Case 𝒋 < 𝒕: For 𝑗 < 𝑡, 𝛼𝑡,1 ≤ 𝛼𝑡,1
𝑃𝐼𝑡−1 = 2𝑉𝑡−1,1

′ (1) − 𝑉𝑡−1,1(1). Substituting 𝑡 − 1 into (20) and (21) 

yields the following formulation of the induction hypothesis: 

 𝑉𝑡−1,1(𝛼𝑡−1,1) = −𝑟𝑡−1,1
𝑡−𝑗+1

+ 𝑟𝑡−1,1
𝑡−𝑗

⋅ 𝑉𝑗−1,1(1) + 𝑟𝑡−1,1 ⋅ 𝛼𝑡−1,1  (31) 

 −(𝑡 − 𝑗 + 1) ⋅ 𝑟𝑡−1,1
𝑡−𝑗

+ (𝑡 − 𝑗) ⋅ 𝑟𝑡−1,1
𝑡−𝑗−1

⋅ 𝑉𝑗−1,1(1) + 𝛼𝑡−1,1 = 0  (32) 

We substitute the induction hypothesis (32) for 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)) in (15). As 𝛼𝑡,1 ≤ 𝛼𝑡,1
𝑃𝐼𝑡−1, we also 

substitute 𝑟𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) = 𝑟𝑡,1(𝛼𝑡,1) (cf. Proposition 4) and obtain:   

0 = 𝑉𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) + 𝛼𝑡,1 − 2((𝑡 − 𝑗 + 1) ⋅ 𝑟𝑡,1
𝑡−𝑗+1

(αt,1) − (𝑡 − 𝑗) ⋅ 𝑟𝑡,1
𝑡−𝑗
(αt,1) ⋅

𝑉𝑗−1,1(1))    (33) 

Next, we consider (31) from the induction hypothesis and substitute 𝛼𝑡−1,1 using (32) and again 

𝑟𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) = 𝑟𝑡,1(𝛼𝑡,1) to obtain: 

 𝑉𝑡−1,1(𝛼𝑡−1,1) = (1 − 𝑡 + 𝑗) ⋅ 𝑟𝑡,1
𝑡−𝑗

⋅ 𝑉𝑗−1,1(1) + (𝑡 − 𝑗) ⋅ 𝑟𝑡,1
𝑡−𝑗+1

(αt,1)   (34) 

Now, part (21) of the induction hypothesis is shown by substituting (34) into (33). 

(20) is shown using  𝑉𝑡,1(𝛼𝑡,1) from Proposition 1 and substituting 𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1)) using (32) and 

𝑉𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) using (31) as well as 𝑟𝑡−1,1 (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) =  𝑟𝑡,1(𝛼𝑡,1) (cf. 

Proposition 4). 

To show (30), and, thereby, (23), remember that 𝑉𝑡−1,1
′ (𝛼𝑡−1,1 (𝑟𝑡,1(𝛼𝑡,1))) = 𝑟𝑡,1(𝛼𝑡,1) according to 

Proposition 1, as 𝛼𝑡,1 ≤ 𝛼𝑡,1
𝑃𝐼𝑡−1. By the induction hypothesis, we know that 𝑟𝑡−1,1 (𝛼𝑡−1,1

𝑃𝐼𝑗 ) =

𝑟𝑃𝐼𝑗 , ∀𝑗 ≤ 𝑡 − 1. Choose the lowest �̂�𝑡,1, so that 𝛼𝑡−1,1
𝑃𝐼𝑗 = 𝛼𝑡−1,1 (𝑟𝑡,1(�̂�𝑡,1)). If 𝛼𝑡−1,1

𝑃𝐼𝑗 = 1, then 

�̂�𝑡,1 = 𝛼𝑡,1
𝑃𝐼𝑡−1 (cf. Proposition 1). If 𝛼𝑡−1,1

𝑃𝐼𝑗 < 1, then �̂�𝑡,1 < 𝛼𝑡,1
𝑃𝐼𝑡−1. Summing up, �̂�𝑡,1 ≤ 𝛼𝑡,1

𝑃𝐼𝑡−1 holds, 

and we have 𝑟𝑡,1(�̂�𝑡,1) = 𝑟𝑡−1,1 (𝛼𝑡−1,1
𝑃𝐼𝑗 ) = 𝑟𝑃𝐼𝑗 where the first equality follows Proposition 4. 

Now we have to show that �̂�𝑡,1 = 𝛼𝑡,1
𝑃𝐼𝑗

 and, thereby, (22) and (23) hold. From Proposition 1 we use 

the definition of 𝑟𝑡,1(𝛼𝑡,1) to calculate �̂�𝑡,1 as well as 𝑉𝑡−1,1 (𝛼𝑡−1,1
𝑃𝐼𝑗 ) = (𝑟𝑡−1,1 (𝛼𝑡−1,1

𝑃𝐼𝑗 ))
2

⋅

𝛼𝑡−2,1 (𝑟𝑡−1,1 (𝛼𝑡−1,1
𝑃𝐼𝑗 ))  from the equation for 𝑉𝑡,1(𝛼𝑡,1) to obtain: 

 �̂�𝑡,1 = 2𝑟𝑡,1(�̂�𝑡,1)⏟      

=𝑟
𝑃𝐼𝑗

⋅ 𝛼𝑡−1,1
𝑃𝐼𝑗 −

(
𝑟𝑡−1,1 (𝛼𝑡−1,1

𝑃𝐼𝑗 )⏟        

=𝑟
𝑃𝐼𝑗

)

2
⋅ 𝛼𝑡−2,1 (𝑟𝑡−1,1 (𝛼𝑡−1,1

𝑃𝐼𝑗 ))
⏟              

=𝛼𝑡−2,1
𝑃𝐼𝑗

(IH)

 =⏟
(18)

𝛼𝑡,1
𝑃𝐼𝑗
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As 𝑟𝑡,1(𝛼𝑡,1) in Proposition 1 is unique, �̂�𝑡,1 is also the smallest solution. This completes the inductive 

step for (30), and, thereby (22) and (23).  

S.11 Comparison of mechanism A and an exponential utility 

function 

Besides the three benchmark approaches EV-Dyn, CVaR-Fix, and EV-Fix, we also considered a 

popular and easy to calculate approach from literature. The exponential utility function with constant 

absolute risk aversion (CARA, −𝑒−𝛾𝑅) with parameter 𝛾 can be easily integrated into a dynamic 

program (see e.g. Lim and Shanthikumar (2007)) without increasing the computational burden. To 

determine 𝛾, we tested a broad range of 𝛾-values to find the one with the highest 𝐶𝑉𝑎𝑅𝛼 for a given 𝛼. 

We repeated this procedure for several states (𝑐, 𝑡). Figure S.1 illustrates our analyses for 𝐶𝑉𝑎𝑅0.3 and 

two states: 𝑇 = 10 and 𝐶 = 1 (left part) and 𝐶 = 5 (right part). We observe that 𝐶𝑉𝑎𝑅0.3 is highest at 

𝛾 = 3.75 for 𝐶 = 1 and 𝛾 = 2.5 for 𝐶 = 5. Thus, already this small example shows that there is no 

simple matching of optimal 𝛾 to 𝛼, but the 𝛾 also depends on the state. This makes it impossible to 

choose the best 𝛾 a priori. Only a simulation based optimization analogous to Koch et al. (2016) is 

possible. However, as expected, CVaR obtained when optimizing the exponential utility is 

considerably lower compared to the optimization of CVaR with 𝐴0.0001 (see also  

Table S.2) and the difference decreases in 𝛼. 

 

Figure S.1: 𝑪𝑽𝒂𝑹𝜶 obtained when optimizing exponential utility (CARA) and 𝑨𝟎.𝟎𝟎𝟎𝟏 

for 𝜶 =0.3, T=10 with C=1 (left) and C=5 (right) 
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Table S.2: CVaR obtained from an exponential utility-optimal policy with the best value 

for 𝜸 relative to 𝑨𝟎.𝟎𝟎𝟎𝟏 

T=10 𝜶 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟏 𝜶 = 𝟎. 𝟑 𝜶 = 𝟎. 𝟕 

C=1 80.18% 82.90% 91.36% 98.62% 

C=5 92.86% 92.72% 94.40% 98.10% 

C=10 96.08% 96.53% 97.57% 99.15% 
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