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Abstract

Most modern energy markets trade electricity in advance for technical reasons. Thus, market
participants must commit to delivering or consuming a certain amount of energy before the actual
delivery. In Germany, two markets with daily auctions coexist. In the day-ahead auction market,
the energy is traded in 60-minute time slots, which are further partitioned into 15-minute time slots
for the intraday auction market. Because of the slow ramp-ups of nuclear and fossil power plants,
these price-makers trade mostly in the day-ahead market. Only the residual energy is traded in the
intraday market, where the market prices fluctuate substantially more. These fluctuations as well
as the expected price difference between these markets can be exploited by fast ramping energy
storage systems.

We address the decision problem of an owner of an energy storage who trades on both mar-
kets, taking ramping times into account. Because the state variable of our dynamic programming
formulation includes all features of our high-dimensional electricity price forecast, this problem can-
not be solved to optimality. Instead, we use approximate dynamic programming. In a numerical
study based on real-world data, we benchmark the algorithm against an adapted state-of-the-art
approach from literature and an expectation model with a receding horizon. Furthermore, we in-
vestigate the influence of the price forecast on expected profit and demonstrate that it is essential
for the dynamic program to capture the high dimensionality of the price forecast to compete with
the expectation model, which does not suffer from the curses of dimensionality.

Keywords: OR in energy, trading for energy storage, multiple sequential markets, electricity
price forecast, backwards approximate dynamic programming

∗Corresponding author
Email addresses: benedikt.finnah@uni-due.de (Benedikt Finnah), jochen.goensch@uni-due.de (Jochen

Gönsch), florian.ziel@uni-due.de (Florian Ziel)

Preprint submitted to Elsevier November 5, 2021

Jochen
Schreibmaschinentext

Jochen
Schreibmaschinentext

Jochen
Schreibmaschinentext

Jochen
Schreibmaschinentext

Jochen
Schreibmaschinentext

Jochen
Schreibmaschinentext

Jochen
Schreibmaschinentext
                                                 



1. Introduction

The energy sector is a large producer of CO2 and therefore contributes significantly to climate
change. Therefore, many countries try to reduce the CO2 emissions by encouraging power producers
to increase the share of renewable energies. This is encouraged by subsidies for produced green
energy or by CO2 prices which have to be paid by conventional CO2 producing power plants. As the
penetration of renewable energy resources increases, an increasing share of the energy production
is not controllable. However, the energy production has to always match the fluctuating energy
demand. In liberalized energy markets, electricity prices reflect the balance of production and
demand. Accordingly, energy storage systems which buy energy at low prices and sell it later at
higher prices help to match production and demand, and thus improve grid stability. In most
energy markets, market participants must commit to delivering or consuming a certain amount of
energy before the actual delivery. In addition, in most countries multiple energy markets coexist.
The market rules including the pricing and the temporal sequence differ between countries.

In this paper, we focus on profit maximizing self-schedule bidding of a fast ramping energy stor-
age in the German day-ahead and intraday auction markets. We formulate the decision problem as
a dynamic program and solve it heuristically using backwards approximate dynamic programming.
Our approach is largely independent of the storage technology, but we focus on a pumped hydro
storage (PHS). In Section 1.1 we introduce the focused decision problem. The assumptions needed
are stated in Section 1.2. Section 1.3 describes our contribution to the literature and outlines the
remainder of the paper.

1.1. Problem statement

We focus on profit maximizing self-schedule bidding for a PHS in the German day-ahead and
intraday auction market. In the following, we describe the considered key characteristics of the
PHS and the two markets.

The main components of a PHS are the lower and upper water reservoir, the pump, and the
turbine. While storing energy, the pump uses electricity to pump water from the lower reservoir
to the upper reservoir. This converts the electric energy into potential energy. While discharging
the PHS, the water flows from the upper reservoir through the turbine into the lower one. Mean-
while, the turbine converts the potential energy into electric energy. In this paper, we consider
the following properties of the PHS: capacity, working power range, efficiency, start-up cost, and
ramping-time. The capacity is the maximum amount of energy which can be stored in the PHS.
Due to technical restrictions, the pump and the turbine cannot operate at arbitrary low power.
They are either switched off completely or operate in the working power range defined by the
maximum and minimum power of the turbine and the pump. While the pump or the turbine
converts the electric energy into potential energy or vice versa, some energy is lost for the PHS.
The share of energy which is not lost is the efficiency of the pump/turbine. When the pump or
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the turbine starts to work, they suffer from increased abrasion. The corresponding increase of the
maintenance costs is captured by the start-up cost. The ramping-time describes how long the pump
and the turbine need to change from one power level to a new, increased/decreased power level.
During ramping, the storage owner cannot meet the commitments on the energy markets exactly.
The difference is balanced by the transmission system operator (TSO) and the storage owner is
paid/billed by the TSO for the under/overproduction. Based on the TSO contracts, intentional
under/overproduction is forbidden.

In Germany, two auction markets with daily auction coexist; the day-ahead and the intraday
auction market. The key characteristic of the German markets is that the intraday auction market
differs in terms of the time length (15 min) of the traded products from the day-ahead market (60
min). In the day-ahead market, market participants can submit multiple price-volume combina-
tions, called bids, for each traded product, until noon. The traded products are commitments to
generate or consume a certain amount of energy for each hour of the following day. Forty minutes
later, the market clearing prices (MCP) are published and the market participants must fulfill
their accepted bids to the MCP. A buying bid is accepted if the price component of the bid is
above the MCP. A selling bid is accepted if the price component is below the MCP. To remove the
uncertainty regarding acceptance of bids, market participants can use price-accepting bids (also
called self-schedule bidding). The latter term is derived from the fact that the production/con-
sumption schedule of the market participant only depends on the self-chosen volumes and not on
the market’s outcome. The market participant’s actual profit/cost, of course, still depends on
the realized market prices. The German intraday auction market works similar to the day-ahead
market, but with quarter-hourly products. After the intraday auction market closure at 15:00, the
market results are published. The main purpose of this market is to capture load ramps with its
finer temporal resolution (15 min instead of 1 h at the day-ahead markets). Primarily because of
these ramps, the prices in the intraday auction market fluctuate around the day-ahead prices. This
is visualized in Figure 1 for an exemplary week. The fluctuation can be exploited by fast ramping
energy storage systems. For a detailed overview of the German energy markets see Viehmann
(2017). While market participants consume energy they have to pay the obligatory grid fees.

1.2. Assumptions

In this section, we state the assumptions underlying this work in detail.

Assumption 1. The PHS only trades in the day-ahead and intraday auction market.

Even if it is desirable to consider all possible trading oppotunities (see Viehmann (2017) for an
overview), we restrict the trading to the two auction markets. Assumption 1 reduces the complexity
and computational burden of the decision problem. The restriction of the considered markets even
down do a single market setting is common in the literature (e.g. Gönsch & Hassler (2016), Zhou
et al. (2016), Salas & Powell (2018), Scott (2019), Durante et al. (2020), Ghavidel et al. (2020),

3



Thursday Friday Saturday Sunday Monday Tuesday Wednesday
-10

0

10

20

30

40

50

60

70

80

Day ahead market price

Intraday market price

Figure 1: Market prices of an exemplary week (04 July 2018 to 10 July 2018)

Finnah & Gönsch (2021)). In Section 7 we discuss the limitations of our research regarding further
trading opportunities (derivative markets, balancing markets, continuous intraday markets, over-
the-counter markets) and how our research can be beneficial for market participants which trade
in more markets.

Assumption 2. The PHS uses price-accepting bids/self-schedule bidding.

Assumption 2 further reduces the complexity of the decision problem. Self-schedule bidding is
common for energy storage systems (e.g. Löhndorf & Minner (2010), Heredia et al. (2018), Khatami
et al. (2020), Vahedipour-Dahraie et al. (2020), Xu et al. (2020)), as energy storage systems are
profitable if the difference between the buying price and the selling price is large enough. The price
difference cannot be reflected by price-volume bids. In Appendix A, we numerically investigate the
benefits of price-volume bids in a simplified setting. In particular, we show that price-volume bids
are not needed for energy storage systems with realistic correlation of the noise of the price process.
Price-volume bids can only outperform self-schedule bids with artificially reduced correlation. This
may be different for hydropower plants with huge reservoirs (discharge time of days to weeks) and
a natural water inflow. For these power plants to be profitable, it is essential to consume the
resource at high price hours (e.g. Fleten & Kristoffersen (2008), Boomsma et al. (2014)).

Assumption 3. The PHS ramps linearly with identical rates for ramping up and down.

Identical ramping rates reduce the notation needed but do not influence the computational
burden of the decision problem. However, linearity reduces complexity, as this allow us to model
the daily decision problem as a mixed integer linear program (MILP).

Assumption 4. Balancing prices are linear in intraday market prices.

During ramping, the storage owner cannot meet the commitments on the day-ahead and in-
traday market exactly. The difference is balanced by the transmission system operator (TSO) and
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the storage owner is paid/billed by the TSO for the under/overproduction. Based on the TSO
contracts, intentional under/overproduction is forbidden. To reflect this, the PHS must integrate
the balancing prices into the decision problem. Assumption 4 is in line with the literature (e.g.
Löhndorf & Minner (2010), Kim & Powell (2011), Moghaddam et al. (2013), Kuznetsova et al.
(2015), Gönsch & Hassler (2016), Vahedipour-Dahraie et al. (2020), Finnah & Gönsch (2021)).
The modeling approach with balancing prices allows to make the deviation from the commitment
financially unattractive. A special case is to set the balancing prices equal to the intraday mar-
ket prices. This reduces the needed notation but does hardly decrease the computational burden.
Additionally, this contradicts the TSO contracts, as deviations may now be financially attractive
and, thus, occur intentionally when following an optimal policy.

Assumption 5. The PHS pays grid fees for the stored energy quantity.

While the PHS stores energy the energy storage acts like a consumer and has to pay the
obligatory grid fees. In Germany, there are several types of grid fees, based on the consumed
energy (MWh) and the yearly peak demand (MW). For an overview of the different grid fees see
Sterner & Stadler (2017, Ch. 15.4). Based on Assumption 5, we do not take the grid fees based
on the peak demand into account. Since it is reasonable to assume that the PHS uses the pump’s
maximum power at least once a year, the peak demand is out of focus.

Assumption 6. The PHS owner’s price forecasts depend only on the last week’s market prices.

Assumption 6 restricts the storage owner’s price forecasts, but this kind of price processes is
well researched and accepted in the price forecasting literature (e.g., Ziel (2016), Marcjasz et al.
(2019), Narajewski & Ziel (2020b)). Furthermore, price processes which follow Assumption 6
are considerably more sophisticated than price processes usually handled by dynamic programs
in the energy storage literature. Their inclusion is challenging as dynamic programs have to
extend the state variable by all information which is necessary for the considered price processes.
Because of the curses of dimensionality, dynamic programs with large state spaces cannot be
solved using standard discrete lookup tables in an appropriate time and can rarely be solved
analytically. Therefore, dynamic programs have to use simplified price processes (one may argue
that price processes are always approximations and, thus, no exact model/solution with regard
to reality exists) and/or have to be solved approximately by approximate dynamic programming
(ADP) algorithms. Both can lead to a poor solution quality, so it is crucial to find a reasonable
trade-off between complexity of the price process and solution quality together with a suitable
solution approach. Especially algorithms that approximate the value function can struggle with
high dimensional forecasts (Powell, 2019). To keep the dynamic program simple, nearly all authors
use price processes which only depend on a single electricity price (e.g., current, previous, or average
of past prices) and state-independent features such as the day of the week (e.g., Gönsch & Hassler
(2016), Zhou et al. (2016), Zéphyr & Anderson (2017), Salas & Powell (2018), Scott (2019)). To
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capture the characteristics of the electricity price like price spikes, some authors add jump-diffusion
or regime-switching models (e.g. Jiang et al. (2014), Zhou et al. (2016), Salas & Powell (2018),
Scott (2019), Durante et al. (2020)). For a detailed overview of energy price forecasting see Weron
(2014).

1.3. Contribution and outline

We make the following contributions to the existing literature: (1) We model the energy stor-
age problem with high-dimensional, competitive, Markovian price processes for sequential auction
markets as a dynamic program and solve it using a backwards approximate dynamic programming
algorithm. (2) We compare this algorithm with the state-of-the-art approximate dual dynamic pro-
gramming approach (Löhndorf et al. (2013), Löhndorf & Shapiro (2019), Wozabal & Rameseder
(2020)) and an expectation model with a receding horizon. We demonstrate that dynamic pro-
grams have to handle a high dimensional state variable to capture the features of the underlying
price processes to compete with a simple benchmark which does not suffer from the curses of di-
mensionality. (3) In our numerical study, we focus on a pumped hydro storage in both German
auction markets. We show that the integrated trading in both markets outperforms the sequential
trading. For this we evaluate the trading strategies with real world data.

The remainder of the paper is organized as follows. Section 2 is the literature review. Section 3
models the storage owner’s decision problem as a dynamic program. In Section 4, we state a
simplified version of the base model and explain how we apply the solutions of this simplified model.
In other words, how we derive a policy for the base model from the simplified model’s solution.
Section 5 describes the approximate dynamic programming algorithm to solve the aforementioned
simplified problem. Section 6 presents the numerical study. Section 7 discusses limitations with
a focus on the markets considered before Section 8 concludes the paper. The appendix contains
further numerical investigations and summarizes the notation.

2. Literature review

The existing literature on the management of energy storage systems is already discussed in
multiple literature reviews (e.g., Fathima & Palanisamy (2015), Rahman et al. (2015), Weitzel &
Glock (2018)). Therefore, we focus the following review on the key topics that distinguish our paper
from the existing literature: modeling/solution approaches, price processes used in optimization,
and integrated trading in multiple markets.

The most commonly used modeling approaches for the energy storage management which cap-
ture the stochastics and dynamics of the problem are multi-stage stochastic programming (MSSP)
and dynamic programming. To solve MSSPs, the model is usually replaced with the sample aver-
age approximation (SAA). Because the computational burden of MSSP increases exponentially in
the optimization horizon, it is only suitable for short-term management (a few days). For longer
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horizons, the problem can be solved with a receding horizon. A main advantage is MSSPs’ inde-
pendence of the underlying price processes. By contrast, dynamic programs have to extend the
state variable by all information which is necessary for the considered price processes. Therefore,
competitive price processes are rarely used in dynamic programs.

Löhndorf et al. (2013) formulate the decision problem of an owner of a hydro storage with
stochastic inflow on the German day-ahead and continuous intraday market as a dynamic program
and use approximate dual dynamic programming (ADDP) to solve it. The energy price process is
based on a few fundamentals like mean temperature, wind and solar power generation, and the gas
price. The ADDP algorithm contains a forward pass and a backward pass to approximate the value
function of the post-decision state with hyperplanes. During the forward pass, the ADDP algorithm
explores new states. During the backward pass, the algorithm revisits the states from the forward
pass. For each state, it iterates over all states in the state space that share the same endogenous
parts, i.e. that only differ in the exogenous information part to derive new hyperplanes. Therefore,
this approach is only suitable for discrete or discretized exogenous information. Boomsma et al.
(2014) focus a profit maximizing power producer in the Nordic day-ahead market and a balancing
market. The problem is formulated as a MSSP and takes price/volume bids into account. Based
on the assumption that the scenarios in the SAA are the true distribution of the market prices, the
solution is exact. In addition, the authors derive an upper bound for the gains from coordinated
bidding in both markets. The price processes are modeled as a SARIMA process, but the noise
is assumed to be independent and identically distributed. In fact, the forecast error of day-ahead
market prices can be strongly correlated. Ding et al. (2015) use stochastic programming to (re-
)optimize the management of a wind turbine combined with an energy storage on the Spanish day-
ahead, intraday, and real-time market. Here, they employ four different timescales down to one
minute to capture the dynamics of the real-time market. Instead of simultaneously optimizing all
considered markets, they use separate stochastic programs in a receding horizon manner. Moreover,
the authors assume that the next market’s price is deterministic. This dramatically decreases
complexity. Crespo-Vazquez et al. (2018) focus on self-schedule bidding of a wind power producer
with an energy storage on two Spanish auction markets and an implicitly modeled balancing
market with hourly products. The decision problem is formulated as a stochastic program with
an optimization horizon of 24 hours. Again, the price component of the bids is not modeled. To
generate market price scenarios, Crespo-Vazquez et al. (2018) cluster historic data. Heredia et al.
(2018) use MSSP to optimize the management of a wind turbine combined with an energy storage.
The considered power producer maximizes the daily profits on two Spanish auction markets and a
reserve power market. Therefore, the Spanish energy markets are not modeled in full complexity.
Again, the used scenarios are based on clustered historic data. Only Brijs et al. (2019) considers
both German auction markets in the energy storage problem. In addition, the authors include the
balancing market. But they completely ignore the stochastics and assume perfect foresight. This
dramatically simplifies the problem and overestimates the value of coordinated trading. Electricity
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prices are known to have hardly predictable price spikes, which can be exploited with perfect
foresight. However, they demonstrate that under perfect foresight coordinated trading in multiple
markets outperforms sequential trading, giving an upper bound on profits without perfect foresight.
Khatami et al. (2020) optimize a compressed air energy storage in a day-ahead and real-time
market and take start-up cost as well as ramps into account: The decision problem is modeled
as an MILP and re-optimized in a receding horizon manner. Vahedipour-Dahraie et al. (2020)
consider a virtual power plant with stochastic demand and supply in a day-ahead and a reserve
market. Again, the problem is formulated as a stochastic program. The market prices follow
a normal distribution. Wozabal & Rameseder (2020) model integrated trading in the Spanish
auction markets as a dynamic program. As no energy storage is modeled, each day is optimized
independently. For the market prices, the authors use an autoregressive model which depends on
the last 24 market prices. The problem is solved with ADDP. For this, the stochastic processes
are discretized by clustering. Finnah (2021) extends the model proposed in Wozabal & Rameseder
(2020) and uses a more complex price process. Again, no energy storage is modeled and each day is
optimized independently. Since the modeled dynamic program has a simple structure, the optimal
policy is derived analytically via backward recursion.

To the best of our knowledge, no paper addresses the stochastic storage problem in both German
auction markets. The key characteristic is that the German intraday auction market differs in terms
of the time length of the traded products from the German day-ahead market. Since the German
intraday market is the only one with 15-minute products, models for other markets have to be
reworked to be applicable. While this does not have be challenging (depending on the model),
this may structurally change the numerical results. In addition, we are the first to extend the
state variable of a dynamic program by all Markovian features of a high-dimensional price forecast
(several hundred dimensions/ explanatory variables). We handle the full complexity of the state
variable while solving the problem.

3. Dynamic program

In this section, we model the storage owner’s decision problem for T days as a dynamic program.
More precisely, the exogenous information, the state variables, and the action variables are defined
in Section 3.1 to Section 3.3. The contribution function is described in Section 3.4, while the
transition function is defined in Section 3.5. These are used in Section 3.6 for the value function.
The notation used is summarized in Table D.5 in Appendix D.

The PHS owner trades in the two German auction markets: the day-ahead and the intraday
market. In the German day-ahead auction market, each day t until noon, the PHS owner submits
a self-schedule bid (volume) xDA

t,h for each hour h of the following day (t + 1). Forty minutes later,
the market clearing prices (MCPs) P DA

t+1,h for each hour are published, and the volumes come into
effect at the MCPs. Subsequently, until 15:00, the PHS owner makes an offer xID

t,h,q for each quarter
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hour q of each hour h of the following day (t+1) in the intraday auction market. Again, the MCPs
P ID

t+1,h,q are published after market closure. This sequence of events is illustrated in Figure 2.

12:00 15:00 00:00 02:00 22:00 24:00
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Figure 2: Sequence of events

In the following, we formulate the problem as a dynamic program. Since each day t ∈
{0, · · · , T − 1} consists of two decision stages (day-ahead market and intraday market) we model
the problem with alternating stages. The day-ahead market stages are labeled with the superscript
DA and the intraday market stages with ID.

3.1. Exogenous information

For the 24-dimensional vector of day-ahead market prices P DA
t+1 =

(
P DA

t+1,0, · · · , P DA
t+1,23

)
, we use

the autoregressive price forecast proposed by Ziel (2016), and similarly used by e.g. Uniejewski &
Weron (2018); Marcjasz (2020); Jędrzejewski et al. (2021); Narajewski & Ziel (2021). It linearly
depends on the previous 168 prices (7 days) and the day of the week, in line with Assumption 6.

P DA
t+1,h = βDA

0,h +
7∑

j=1
βDA

j,h DoW j
t+1 +

7∑
j=1

23∑
k=0

βDA
j,k,hP DA

t+1−j,k + ϵDA
t+1,h∀h ∈ {0, · · · , 23} (1)

ϵDA
t+1 =

(
ϵDA
t+1,0, · · · , ϵDA

t+1,23

)
∼ N

(
0, ΣDA

)
(2)

with day of the week dummies

DoW 1
t+1 =

1 , t + 1 is Monday

0 , otherwise
, · · · , DoW 7

t+1 =

1 , t + 1 is Sunday

0 , otherwise
(3)

and correlation matrix ΣDA. The regression parameters are denoted βDA
(·) . Thus, the exogenous

information which becomes known right after the day-ahead market decision stage is W DA
t+1 = P DA

t+1 .
We assume that the 96-dimensional intraday price vector P ID

t+1 =
(
P ID

t+1,0,0, · · · , P ID
t+1,23,3

)
de-

pends linearly on the day of the week, the intraday, and day-ahead prices of the last week, including
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the known day-ahead prices of the same day P DA
t+1 .

P ID
t+1,h,q = βID

0,h,q +
7∑

j=1
βID

j,h,qDoW j
t+1 +

7∑
j=0

23∑
k=0

βID
j,k,h,qP DA

t+1−j,k

+
7∑

j=1

23∑
k=0

3∑
m=0

βID
j,k,m,h,qP ID

t−j,k,m + ϵID
t+1,h,q∀h ∈ {0, · · · , 23} , q ∈ {0, · · · , 3}

(4)

ϵID
t =

(
ϵID
t,0,0, · · · , ϵID

t,23,3

)
∼ N

(
0, ΣID

)
(5)

with correlation matrix ΣID and regression parameters βID
(·) . Thus, the exogenous information

which becomes known right after the intraday market decision stage is W ID
t+1 = P ID

t+1.

3.2. State variable
The state variables include everything the storage owner’s decision depends on and all necessary

information to evaluate the transition and contribution functions. In particular, it must include
all prices of the last week as they are necessary for the price forecasts. Since the day of the week
DoW

(·)
(·) can be derived based on the period/index t, it does not have to be part of the state even

if it is needed for the price forecasts.
The state SDA

t is the system right before the day-ahead market decision xDA
t is made.

SDA
t =

(
Rstart

t , xstart
t , P history

t

)
(6)

with P history
t =

(
P DA

t−6 , · · · P DA
t , P ID

t−6, · · · , P ID
t

)
∈ R840.

Obviously, the storage owner’s decisions depend on the current storage level. Rstart
t is the

storage level at the start of day t. xstart
t is the current power in- or outflow. This is needed for the

considered start-up cost and ramping. Altogether, the state SDA
t has 842 continuous variables.

The state SID
t is the state of the system right before the intraday market decision xID

t is made
and after the day-ahead market prices P DA

t+1 become known.

SID
t =

(
SDA

t , xDA
t , P DA

t+1

)
(7)

The state SID
t extends the state SDA

t by the commitments for the day-ahead market xDA
t

(which are not physically fulfilled) and the known day-ahead market prices P DA
t+1 which are needed

for the forecast of the intraday market prices P ID
t+1.

3.3. Action variable
The day-ahead market decision xDA

t is the 24 commitments for this market’s products.

xDA
t =

(
xDA

t,0 , · · · , xDA
t,23

)
(8)

10



s.t.

xDA
t,h ∈

[
−xturbine

max , xpump
max

]
∀h ∈ {0, · · · , 23} (9)

A positive xDA
t,h corresponds to buying energy and a negative one to selling energy. To reduce

speculation on the price split between day-ahead and intraday market, we introduce the no-short-
selling constraint (9). According to this constraint, the commitments must be in the working range
of the energy storage. xpump

max is the maximum power of the pump and xturbine
max the maximum power

of the turbine.
Likewise, the intraday market decision xID

t is the 96 commitments for this market’s products.

xID
t =

(
xID

t,0,0, · · · , xID
t,23,3

)
(10)

s.t.

xDA
t,h + xID

t,h,q = xpump
t,h,q − xturbine

t,h,q (11)

xcomp
min ycomp

t,h,q ≤ xcomp
t,h,q ≤ xcomp

max ycomp
t,h,q ∀comp ∈ {pump, turbine} (12)

ypump
t,h,q + yturbine

t,h,q ≤ 1 (13)

∆xcomp,up
t,h,q − ∆xcomp,down

t,h,q = xcomp
t,h,q − xcomp

t,h,q−1 ∀comp ∈ {pump, turbine} (14)

Rt,h,q = Rt,h,q−1 + ηpump
(

∆tIDxpump
t,h,q − ∆tramp

2 ∆xpump,up
t,h,q + ∆tramp

2 ∆xpump,down
t,h,q

)
− 1

ηturbine

(
∆tIDxturbine

t,h,q − ∆tramp

2 ∆xturbine,up
t,h,q + ∆tramp

2 ∆xturbine,down
t,h,q

) (15)

Rt,h,q ∈ [0, Rmax] (16)

ypump
t,h,q , yturbine

t,h,q ∈ {0, 1} (17)

xpump
t,h,q , xturbine

t,h,q , ∆xpump,up
t,h,q , ∆xpump,down

t,h,q , ∆xturbine,up
t,h,q , ∆xturbine,down

t,h,q ≥ 0 (18)

All constraints are defined for all q ∈ {0, 1, 2, 3} and h ∈ {0, · · · , 23}. Additionally, (·)t,h,4 is de-
fined as (·)t,h+1,0 and Rt,0,−1 = Rstart

t and xpump
t,0,−1 = max

{
xstart

t , 0
}

and xturbine
t,0,−1 = max

{
−xstart

t , 0
}
.

Compared to the day-ahead market, additional constraints and auxiliary variables like ∆xturbine,up
t,h,q

are needed because costs like grid fees, TSO balancing or start-up that depend on net commitments
in both markets are considered in the profit related to the intraday market (see Section 3.4).

Constraint (11) splits the summed trading volume on both markets into a positive (store energy,
xpump

t,h,q ) and a negative part (generate electricity, xturbine
t,h,q ). If a component (pump or turbine) is

working (ycomp
t,h,q = 1), constraint (12) limits the power to its feasible range; otherwise, it forces

the power to zero. According to the working mode constraint (13), the pump and the turbine
cannot work at the same time. Constraint (14) captures how much the components have to ramp
up (∆xcomp,up

t,h,q ) or ramp down (∆xcomp,down
t,h,q ) to reach the new power level xcomp

t,h,q . The storage
level equation is constraint (15). The new storage level is equal to the previous plus the incoming
minus the outgoing energy taking the ramps and pump and turbine efficiency (ηpump, ηturbine) into
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account. According to Assumption 3, the energy storage ramps-up/down linearly with constant
ramping time. We denote the ramping time as ∆tramp. While ramping to reach the new power
level, ∆tramp

2 ∆x
(·)
t,h,q less/more energy is consumed/produced. ∆tID is the temporal resolution of

the intraday auction market. Constraint (16) keeps the storage level non-negative and within
the storage capacity Rmax. Constraint (17) defines the only binary variables, and constraint (18)
ensures non-negativity for the remainder of variables except xID

t,h,q.

3.4. Contribution function

The contribution function CDA
t is the storage owner’s one-stage profit at the day-ahead market.

CDA
t

(
SDA

t , xDA
t , W DA

t+1

)
= −

23∑
h=0

∆tDAPt+1,hxDA
t,h (19)

The one-stage profit at the day-ahead market is the sum of the volumes times the market
clearing prices times the duration of the day-ahead market products ∆tDA. Since a positive xDA

t,h

corresponds to buying energy, the sum has a negative sign.
The storage owner’s one-stage profit at the intraday market is denoted by CID

t .

CID
t

(
SID

t , xID
t , W ID

t+1

)
=

23∑
h=0

3∑
q=0

−∆tIDP ID
t+1,h,qxID

t,h,q − ∆tIDcgf xpump
t,h,q

+ ∆tramp

2
((

∆xpump,up
t,h,q + ∆xturbine,down

t,h,q

)
Qover

t+1,h,q −
(
∆xpump,down

t,h,q + ∆xturbine,up
t,h,q

)
Qunder

t+1,h,q

)
− cpumpzpump

t,h,q − cturbinezturbine
t,h,q (20)

The first row is the profits based on the commitments on the intraday market times the duration
of the intraday market products ∆tID and the grid fees. While the energy storage stores energy,
it acts as a consumer and has to pay the obligatory grid fees cgf . The second row corresponds
to the profits and costs due to the TSO’s balancing. During ramping, the storage owner cannot
meet the commitments exactly and the difference is balanced by the TSO. The deviation from
the commitment is ∆tramp

2 · ∆x
(·)
t,h,q. The storage owner is paid/billed by the TSO based on the

balancing prices Qover
t+1,h,q and Qunder

t+1,h,q. According to Assumption 4, the balancing price is linear
in the intraday market prices. While the pump ramps up or the turbine ramps down, the storage
owner consumes less resp. produces more energy than committed. In this case, the storage owner
is paid the balancing price for overproduction

Qover
t+1,h,q = Qover

intercept + Qover
slopeP ID

t+1,h,q (21)

with intercept Qover
intercept and slope Qover

slope. While the pump ramps down or the turbine ramp up,
the storage owner consumes more resp. produces less energy than committed. In this case, the

12



storage owner is billed the balancing price for underproduction

Qunder
t+1,h,q = Qunder

intercept + Qunder
slope P ID

t+1,h,q (22)

with intercept Qunder
intercept and slope Qover

under.
The last row in (20) is the start-up cost of the pump (cpump) and the turbine (cturbine). They

capture the increased maintenance cost (e.g. abrasion). The variables zpump
t,h,q and zturbine

t,h,q are
binaries that capture if the pump or the turbine has to start-up. They are integrated by the
following constraints.

ycomp
t,h,q − ycomp

t,h,q−1 ≤ zcomp
t,h,q ∀comp ∈ {pump, turbine} (23)

zpump
t,h,q , zturbine

t,h,q ≥ 0 (24)

These constraints are defined for all q ∈ {0, 1, 2, 3} and h ∈ {0, · · · , 23}. Additionally, (·)t,h,4 is
defined as (·)t,h+1,0 and ypump

t,0,−1 = 1xstart
t >0 and yturbine

t,0,−1 = 1xstart
t <0.

Constraint (23) forces the non-negative start-up variable zcomp
t,h,q to be at least 1 if the pump/-

turbine starts up. Because zcomp
t,h,q exerts a negative influence on the intraday stage contribution

function (20) and does not influence future profits, zcomp
t,h,q is binary in every optimal solution without

being forced to be binary. Constraint (24) restricts the start-up variables to be non-negative.

3.5. Transition functions

The two transition functions capture how the system transitions from one decision stage to the
next. The transition function SM,DA simply unions the state, action and exogenous information
of the day-ahead market stage.

SID
t = SM,DA

(
SDA

t , xDA
t , W DA

t+1

)
=

(
SDA

t , xDA
t , P DA

t+1

)
(25)

The transition function from the intraday market stage to the day-ahead market stage is denoted
SM,ID and only slightly more complex:

SDA
t+1 = SM,ID

(
SID

t , xID
t , W ID

t+1

)
=

(
Rstart

t+1 , xstart
t+1 , P history

t+1

)
=

(
Rt,23,3, xDA

t,23 + xID
t,23,3, P DA

t−5 , · · · , P DA
t+1 , P ID

t−5, · · · , P ID
t+1

)
(26)

where Rt,23,3 follows the storage level equation (15).

3.6. Value function

Obviously, the decisions xDA
t and xID

t depend on the current states SDA
t and SID

t . Thus, we
define a policy π as a function that maps every state to a decision: XDA,π

t

(
SDA

t

)
and XID,π

t

(
SID

t

)
.

13



Now, we have all necessary notation and can formally state the optimization problem faced by the
storage owner who maximizes the profit over an optimization horizon of length T .

max
π

IE
[

T −1∑
t=0

CDA
t

(
SDA

t , XDA,π
t (SDA

t ), W DA
t+1

)
+ CID

t

(
SID

t , XID,π
t (SID

t ), W ID
t+1

)
|SDA

0

]
(27)

s.t. (9), (11) to (18), (23) to (26) and initial state SDA
0 . The objective is the expectation of the

summed contribution over all periods.
An alternative formulation of the optimization problem are the recursive Bellman equations

V DA
t

(
SDA

t

)
= max

xDA
t

IE
[
CDA

t

(
SDA

t , xDA
t , W DA

t+1

)
+ V ID

t

(
SID

t

)
|SDA

t

]
(28)

V ID
t

(
SID

t

)
= max

xID
t

IE
[
CID

t

(
SID

t , xID
t , W ID

t+1

)
+ V DA

t+1

(
SDA

t

)
|SID

t

]
(29)

with the boundary condition
V DA

T

(
SDA

T

)
= 0 (30)

Obviously, the same constraints have to be respected. One way to find a policy is to compute the
value functions V DA

t and V ID
t and derive the decisions based on (28) and (29) with respect to their

corresponding constraints. For other ways to derive a policy see Powell (2019).

4. Policy

Since we cannot solve (27) s.t. (9), (11) to (18), (23) to (26) analytically, we define in this
section the suboptimal policy functions XDA,π

t (·) and XID,π
t (·) to ease the numerical solution.

The policy function XDA,π
t (·) maps each state SDA

t to a decision XDA,π
t

(
SDA

t

)
for the day-ahead

market stage. The policy function XID,π
t (·) does this for the intraday market stage. To define

the policy functions, we introduce the following policy model. For this, we replace the alternating
decision stages by an expectation model. This is illustrated in Figure 3.

The upper half of Figure 3 illustrates the base model described in Section 3. It visualizes the
alternating decision stages for one period t. Squares symbolize decision nodes, whereas circles
denote stochastic nodes where new information arrives. The period starts with state SDA

t in the
day-ahead market stage, where the day-ahead market decision xDA

t has to be determined. Then,
the exogenous information W DA

t+1 (i.e. the day-ahead market prices) becomes known. This brings
the system to state SID

t in the intraday market stage, where now the intraday market decision xID
t

has to be determined. Then, the exogenous information W ID
t+1 (intraday market prices) arrives.

This completes period t and transitions the system to the the first state of period t + 1, SDA
t+1.

The lower half of Figure 3 shows on an intuitive level the policy model for the decision problem.
The policy model is a dynamic program where at each decision stage t, the decisions xDA

t and
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Figure 3: Policy design

xID
t are made simultaneously before the exogenous information W DA

t+1 and W ID
t+1 becomes known.

Different from the base model, the intraday market decision xID
t is already determined in state

SDA
t . In the following, we state the policy model and how we use it to derive the policy functions

XDA,π
t (·) and XID,π

t (·). The notation is summarized in Table D.6 in Appendix D.
The state variable of the policy model is equal to the state of the day-ahead market decision

stage (6). The action variable combines the actions of the day-ahead and intraday decision stages.

xpolicy
t =

(
xDA

t , xID
t

)
(31)

The exogenous information is the joint exogenous information of the day-ahead and intraday
market stage, where the latter one is conditioned on the first one.

W policy
t+1 =

(
W DA

t+1 , W ID
t+1|W DA

t+1

)
(32)

Since we will remove the stochastics in the contribution function of the policy model, W policy
t+1 is

only used for the state’s transition.
The transition function SM,policy is the function composition

SDA
t+1 = SM,policy

(
SDA

t , xpolicy
t , W policy

t+1

)
= SM,ID

(
SM,DA

(
SDA

t , xDA
t , W DA

t+1

)
, xID

t , W ID
t+1

)
(33)

We denote the policy model’s one-stage contribution by Cpolicy
t . Instead of modeling a stochas-

tic contribution based on the exogenous information W policy
t+1 and later derive the expectation, we

model Cpolicy
t as the expectation itself. For this, we need the expectation of the day-ahead market

prices, intraday market prices, and the balancing prices. We denote these expectations as P̄ DA
t,t+1,h,

P̄ ID
t,t+1,h,q, Q̄over

t,t+1,h,q, and Q̄under
t,t+1,h,q. The subscript t denotes that these expectations use only infor-

mation that is available at day t. The subscript t + 1 indicates that these are the expectations
of exogenous information which become known right before day t + 1. Since the exogenous in-
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formation is modeled linearly, the expectations’ calculation is straightforward. Finally, the policy
model’s one-stage contribution function is

Cpolicy
t

(
SDA

t , xpolicy
t

)
=

23∑
h=0

−∆tDAP̄ DA
t,t+1,hxDA

t,h +
3∑

q=0
−∆tIDP̄ ID

t,t+1,h,qxID
t,h,q − ∆tIDcgf xpump

t,h,q

+ ∆tramp

2
((

∆xpump,up
t,h,q + ∆xturbine,down

t,h,q

)
Q̄over

t,t+1,h,q −
(
∆xpump,down

t,h,q + ∆xturbine,up
t,h,q

)
Q̄under

t,t+1,h,q

)
− cpumpzpump

t,h,q − cturbinezturbine
t,h,q (34)

This results in the value function

V policy
t

(
SDA

t

)
= max

xpolicy
t

{
Cpolicy

t

(
SDA

t , xpolicy
t

)
+ IE

[
V policy

t+1

(
SDA

t+1

)∣∣∣SDA
t

]}
(35)

s.t. V policy
T

(
SDA

T

)
= 0, (9), (11) to (18), (23) to (24), (33).

In Section 5, we derive approximations V̄ policy
t of the value function V policy

t to yield the pol-
icy XDA,π

t

(
SDA

t

)
= arg max

xDA
t

max
xID

t

{
Cpolicy

t

(
SDA

t ,
(
xDA

t , xID
t

))
+ IE

[
V̄ policy

t+1

(
SDA

t+1

)∣∣∣SDA
t

]}
s.t. (9),

(11) to (18), (23) to (24), (33) and
XID,π

t

(
SID

t

)
= arg max

xID
t

IE
[
CID

t

(
SID

t , xID
t , W ID

t+1

)
+ V̄ policy

t+1

(
SDA

t+1

)∣∣∣SID
t

]
s.t. (11) to (18), (23) to

(24), (26). Accordingly, we adjust the intraday market decisions based on the new day-ahead mar-
ket prices. More precisely, the storage owner does not actually use the intraday market decision
of the policy model, but re-optimizes the decision according to the policy function XID,π

t

(
SID

t

)
taking into account the outcome of the day-ahead market.

While the expectation of the linear CID
t

(
SID

t , xID
t , W ID

t+1

)
is again straightforward, we explain

in the following section how we compute the expectation of the value function. In Appendix B, we
demonstrate that the policy defined by XDA,π

t

(
SDA

t

)
and XID,π

t

(
SID

t

)
is as good as the solution

of the SAA of the stochastic counterpart on a daily base.

5. Approximate dynamic programming

As the formulated policy model is continuous and high-dimensional, we cannot solve it opti-
mally. To tackle this problem, we propose a BADP algorithm. This algorithm solves a problem
with discretized state space in which Rstart

t and xstart
t are discretized and the price history P history

t

is replaced by a set of sample paths. The notation is summarized in Table D.7 in Appendix D.

5.1. BADP

It is common practice to discretize the state space , for example by discretizing the endogenous
part of the state and replacing the exogenous part with a scenario lattice. The corresponding
sample paths are sampled with the stochastic processes based on the initial state. To derive the
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expectation of the next value function, transition probabilities P
(
P history

t+1

∣∣∣P history
t

)
are needed.

One method for this is to choose the scenario lattice as time depending cluster-centroids and
estimate the transition probabilities by counting the transitions from one cluster-centroid to another
(e.g. Löhndorf et al. (2013), Löhndorf & Shapiro (2019), Wozabal & Rameseder (2020)). Scenario
lattices are also named vectorial quantization tree (e.g. Bonnans et al. (2011)) or recombining tree
(e.g. Wozabal & Rameseder (2020)). Hannah & Dunson (2011) used such cluster centroids for a
problem with 24 exogenous dimensions and Wozabal & Rameseder (2020) for a problem with 48
exogenous dimensions in the state variable.

In our numerical study in Section 6, we show that this approach has a poor solution quality
for the problem considered here. Therefore, we propose in the following an algorithm that does
not need transition probabilities nor cluster-centroids. Instead, BADP (Algorithm 1) estimates
the expected value of being in the next state by a linear combination of the sample paths. This
approach is similar to an approach proposed in Broadie et al. (2000) and Glasserman (2003, Ch. 8.5)
for pricing options. The authors estimate weights that mimic transition probabilities based on a
constrained optimization problem. In contrast, the algorithm presented here does allow negative
weights that do not have to sum up to one. In Section 5.2, we enhance the distance measure used
in the constrained optimization problem computing the weights. Furthermore, we introduce box
constraints which depend on the distance of the sample paths.

Algorithm 1 BADP
1: initialize P history

0,n = P history
0 , n ∈ {1, · · · , N}

2: for n = 1 to N do
3: for t = 0 to T − 1 do
4: compute expected price history P̄ history

t,t+1,n := IE
[
P history

t+1 |P history
t = P history

t,n

]
5: sample P history

t+1,n |P history
t = P history

t,n

6: end for
7: end for
8: initialize lookup table V̄ policy

T = 0
9: for t = T − 1 to 0 do

10: for n = 1 to N do
11: (ρ̄1, · · · , ρ̄N ) := arg min

ρ1,··· ,ρN

∥∥∥∥∥P̄ history
t,t+1,n −

N∑
k=1

ρkP history
t+1,k

∥∥∥∥∥
2

12: for Rstart
t = 0 to Rmax do

13: for xstart
t = −xturbine

max to xpump
max do

14: V̄ policy
t

(
SDA

t

)
:= max

xpolicy
t

{
Cpolicy

t

(
SDA

t , xpolicy
t

)
+

N∑
k=1

ρ̄kV̄ policy
t+1

(
SDA

t+1|P history
t+1,k

)}
s.t. (9), (11) to (18), (23) to (24), (33).

15: end for
16: end for
17: end for
18: end for
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BADP (Algorithm 1) mimics the classical backwards recursion for discrete dynamic programs.
The main purpose of BADP is to fill a look-up table which approximates the value of being in
one of the considered discrete states (Step 14). Steps 1 to Step 7 sample N scenarios P history

t,n , n ∈
{1, · · · , N} for the price history P history

t and pre-process data for the further algorithm. In partic-
ular, Step 1 initializes the sampled price history in the starting period P history

0,n as the price history
P history

0 ∈ R840 of the initial state SDA
0 . Step 4 computes the expectation of the price history of

the next period P̄ history
t,t+1,n , conditioned on the current price history sample P history

t,n . For this, the
transition function (33) and the price processes in Section 3.1 are used. The expected price history
is needed later in the algorithm (Step 11). Since our price processes are linear, the expectation
is straightforward. The subscript t indicates that only information available at iteration t is used
to derive the expectation for stage t + 1 (indicated by subscript t + 1). Step 5 samples a new
price history for the next period. The price history sample P history

t+1,n in Step 5 is determined by the
transition function (33) and a sampled day-ahead and intraday market price, based on the price
processes stated in Section 3.1 and the current sample P history

t,n . Note, P history
t+1,n is a sample of a

multivariate normal distribution with mean P̄ history
t,t+1,n ∈ R840.

After this, Step 8 initializes the lookup table according to the boundary condition. Step 9 goes
backwards in time, while Step 10 iterates over all sample paths. Subsequently, in Step 11, we
regress the expected price history computed in Step 4 on the price histories in the set of sample
paths sampled in Step 5. We do not enforce properties such as non-negativity for the regression
parameters ρ̄k. These parameters are used in Step 14 to estimate/approximate the expectation of
the next period’s value function approximation. Note, for N > 840, no unique solution in Step 11
exists. In our numerical study we choose N = 50.

We now iterate over all discretized storage levels (Step 12) and trading volumes (Step 13)
to fill the lookup table for the discrete states SDA

t =
(
Rstart

t , xstart
t , P history

t,n

)
in period t. The

state consists of the discretized storage level, the discretized trading volume, and the price history
P history

t,n , sampled in Step 5. The states on the right hand side in Step 14 adhere to the transition
function SDA

t+1 = SM,policy
(
SDA

t , xpolicy
t , W policy

t+1

)
and therefore depend on the decision xpolicy

t and
the discretized state. The exogenous part of the state is one of the sampled price histories.

The expectation of the next period’s value function is estimated by a weighted sum based
on the regression parameters ρ̄k. These parameters mimic (on an intuitive level) the transition
probabilities, but as they can be negative, the parameters are able to extrapolate exogenous states
that are not evaluated. This is illustrated in Figure 4 (explained later) for out-of-sample data.

If a decision in Step 14 leads to a storage level Rstart
t+1 or trading volume xstart

t+1 that is not part
of the lookup table, we linearly interpolate the value function in these. Therefore, the look-up
table V̄ policy

t+1 can be interpreted as a piece-wise linear function. Thus, Step 14 can be solved with
standard MILP-solvers. This linear interpolation is standard in the literature (e.g., Löhndorf et al.
(2013), Wozabal & Rameseder (2020)).

After fixing the value function approximation V̄ policy
t , the policy in Section 4 can be applied.
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The expectation of the next stage’s value function necessary to calculate the policy functions
XDA,π

t (·) and XID,π
t (·) is approximated as in Algorithm 1. A pseudo code for the execution logic

can be found in Appendix C. In contrast to other ADP algorithms, it can be applied without
re-optimization. However, this may increase solution quality.

Period

(a) Case a
Period

(b) Case b

Figure 4: Illustration of the value function approximation technique

The approximation of the value function by the linear combination based on the parameters ρ̄k

is illustrated in Figure 4. Cases a and b each use two sample paths to approximate an out-of-sample
realized price history P history

t . More precisely, the figure illustrates how we approximate the expec-
tation of the next period’s value function approximation for out-of-sample price histories P history

t+1 .
Each plot shows two price sample paths (thin black lines). At time t, the two corresponding price
histories are P history

t+1,n ∈ R840 and comprise of the last 7 days’ prices. Thus, these histories are a
part of the two paths and depicted by bold lines overlaying parts of the thin black lines. Now,
the blue line is the trajectory of realized prices until period t. Based on this, the expected price
history P̄ history

t,t+1 is computed (orange dashed line). It comprises of the realized prices of the last 6
days and the expectations for the next day (day t + 1).

Now, this expected price history is regressed on the price history samples P history
t+1,n . The fitted

regression
N∑

k=1
ρ̄kP history

t+1,k is drawn with a blue dashed line. In Case a, the expected price history can

be approximated well by a convex combination of the samples. The corresponding regression pa-
rameters can be easily interpreted as transition probabilities. In Case b, the expected price history
lies outside of the sampled price histories. Therefore, one needs negative regression parameters
and/or they do not sum to one.

5.2. BADP-weighted

We modify the BADP algorithm by replacing the regression in Step 11 with a box-constrained,
weighted regression. With this, we take into account that the influence of some prices on the price
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forecast is more important than the effect of others. In addition, due to the box-constrains, the
optimal regression parameters may be unique even for N > 840.

(ρ̄1, · · · , ρ̄N ) := arg min
ρ1,··· ,ρN

∥∥∥∥∥P̄ history
t,t+1,n −

N∑
k=1

ρkP history
t+1,k

∥∥∥∥∥
wt

(36)

s.t.

− Kd
t,k ≤ ρk ≤ Kd

t,k ∀k ∈ {1, · · · , N} (37)

For the upper and lower bound we select Kd
t,k as

Kd
t,k := exp

( 1
d2

∥∥∥P̄ history
t,t+1,n − P history

t+1,k

∥∥∥2

wt

)
(38)

which is the Gaussian kernel with the weighted Euclidean norm ∥·∥wt
. We set the bandwidth d

such that
N∑

k=1
Kd

t,k = ln(N) (39)

as this works well in the preliminary test.
We select the vector of weights wt = (wt,1, · · · , wt,j , · · · , wt,840) for the weighted Euclidean norm

∥·∥wt
based on the influence of each element P history,j

t+1,k on future prices. In particular, we define the
influence as the cumulative absolute change of all future prices if one element of the price history
is ceteris paribus changed by 1e/MWh. Algorithm 2 performs the necessary calculations.

Algorithm 2 Computation of weights
1: for t = 0 to T − 1 do
2: for j = 1 to 840 do
3: P history

t := ej , P̄ history
t,t := P history

t

4: wt,j := 0
5: for τ = t to T − 1 do
6: wt,j := wt,j +

∥∥∥IE
[
W policy

τ+1 |P̄ history
t,τ

]∥∥∥
1

7: P̄ history
t,τ+1 := IE

[
P history

τ+1 |P̄ history
t,τ

]
8: end for
9: end for

10: end for

Algorithm 2 works as follows. For each period (Step 1) and over the length of the price history
(Step 2), we select the price history as the j-th unit vector (Step 3). Additionally, we initialize
the expected price history P̄ history

t,t which is needed in the first iteration of Step 6 and Step 7. We
advance forwards (Step 5) in time and update the price history (Step 7), while we add up the
absolute values of the expected outcomes (Step 6). We do not normalize the weights wt,j . To
exclude the effects of the day of the week, we set their parameters to zero in the price processes.
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With the weighted regression, we take into account that some prices are substantially more
important for the future prices and should be better approximated than others. For instance, the
last day-ahead price of the previous day contains the newest information about the cumulative
renewable energy production which influences the next day’s electricity prices (Ziel, 2016). With
the box constraints, we force the regression to approximate the expected price history with the
closest scenarios in the set of sample paths, as the value function should be close as well.

6. Numerical study

In Section 6.1, we state the parameters for our numerical study and specify the implemented
approaches. The parameter values are summarized in Table D.9 in Appendix D. Based on this,
Section 6.2 compares the different implemented algorithms. Additionally, Section 6.3 indicates that
the decisions of the best approach are reasonable. For this, we investigate the storage level over
time. Section 6.4 and Section 6.5 show the gains from using a competitive price forecast and from
the integrated trading in both markets.

6.1. Data for the numerical study

We choose a pumped hydro storage with a storage capacity of Rmax = 100 MWh and pump
and turbine working power range of [xpump

min , xpump
max ] =

[
xturbine

min , xturbine
max

]
= [5 MW, 10 MW] with

symmetrical efficiency ηpump = ηturbine = 0.9. The start-up costs are cpump = cturbine = 15e. We
assume that both components need ∆tramp = 2 min to ramp up or down. For the balancing by
the TSO, we set the parameters Qover

intercept = −3e/MWh, Qover
slope = 1

1.2 , Qunder
intercept = 3e/MWh,

Qunder
slope = 1.2. Thus, a deviation from the commitments is financially unattractive. While the

storage owner buys energy,the energy storage acts like a consumer and has to pay the obligatory
grid fees (up to 30e/MWh in Germany). However, because energy storage systems stabilize the
grid, they only pay reduced fees. This reduction is a case by case decision Sterner & Stadler (2017,
Ch. 15.4). We choose rather low fees of cgf = 5e/MWh. Finally, the optimization horizon is
T = 30 days. Since the storage can be fully charged/discharged in half a day, the start-of-horizon
and end-of-horizon effects are quite small. In practice, a storage owner would re-optimize in a
rolling horizon fashion before the end-of-horizon. Since all approaches specified in this section
suffer from the same start-of-horizon and end-of-horizon effects, we do not control for them and
the results are still comparable.

While solving and evaluating the energy trading problem, multiple sources of stochasticity
exist. This is illustrated in Figure 5. The arrows indicate the dependence of the three main steps
(estimating price processes, solving trading problem, and evaluation) in the numerical study and
how they are influenced by the stochastics. Because of the random division of the training data
into subsets for the cross validation, the parameters of the estimated price processes are stochastic
(explained in more detail during this section). Based on these price processes, we sample the sample
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Figure 5: Setup of the numerical study

paths for our optimization approaches (e.g., BADP). Additionally, the price processes are used in
the optimization (explained in Section 5.1). Therefore, the policy functions XDA,π

t (·) and XID,π
t (·)

are influenced by this stochasticity . Thus, the actual decisions and the profit on the evaluation
level are stochastic, even when we evaluate with real-world data and no further stochastic influence
on the evaluation level exists. To compute confidence bands that capture the stochastics present
in evaluation, we run the simulation (estimating price processes, solving trading problem, and
simulation of operation) 20 times.

Because the German energy markets’ prices behave differently over the course of a year (e.g.
due to increased solar radiation in summer), we consider four different settings denoted as Winter,
Spring, Summer and Autumn. The data is summerized in Table 1.

Table 1: Data of the stochastic processes

Season Training data Test data
Winter 16 Jan 2019 to 15 Jan 2020 16 Jan 2020 to 14 Feb 2020
Spring 02 May 2019 to 30 Apr 2020 01 May 2020 to 30 May 2020
Summer 01 Aug 2018 to 31 Jul 2019 01 Aug 2019 to 30 Aug. 2019
Autumn 17 Oct 2018 to 15 Oct 2019 16 Oct 2019 to 14 Nov 2019

For each season, the price processes are estimated based on data from EPEX SPOT SE (2020)
with 365 days in the training set. For this we use the least absolute shrinkage and selection oper-
ator (lasso) with ten-fold cross-validation. For the cross-validation, the training data is randomly
partitioned into ten subsets. Note that on 10/01/2018, there was a major change in the German
auction markets when Austria left the German system. However, to estimate Summer with 365
days in the training set, we have to include data before this major change.

Table 2 shows the out-of-sample mean absolute error (MAE) and the root mean squared error
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(RMSE) of our price processes. To compute the errors, we forecast the next day’s day-ahead and
intraday market prices with the estimated price processes based on the real-world data known at
this time. Afterwards, we measure the error between the forecasted prices and the next real-world
data. This is done for all days in the test data set.

The parameters of the estimated price processes (βDA
(·) and βID

(·) ) contain some kind of random-
ness. More precisely, the splitting of the training data set into subsets for the cross-validation is
random (illustrated in Figure 5). To tackle this randomness, we estimate the price processes 20
times and report the average MAE and RMSE. For each estimation with ten-fold cross-validation,
the training data is newly divided into ten subsets. To ease the interpretation of the errors, we
report the average market prices of the test sets.

Therefore, the data in Table 2 captures the randomness on estimation level. In practice, one
would average the 20 estimated price processes. This is not done in our numerical study for two
reasons. First, the parameters of the price processes hardly differ for the cross-validation runs.
Second, this allows us to investigate the influence of the stochastics on expected profit on the
estimation level.

Table 2: Forecast errors of the stochastic processes and average prices
Day-ahead market Intraday market

Season MAE RMSE Average prices MAE RMSE Average prices
Winter 7.03 10.29 31.26 4.90 7.53 31.06
Spring 7.26 12.13 18.13 4.27 6.08 18.31
Summer 6.03 9.92 36.95 3.22 4.63 37.04
Autumn 5.07 7.16 39.57 3.45 4.73 38.84

Table 2 shows that the day-ahead market prices are harder to forecast than the intraday market
prices. Both MAE and RMSE are much higher for the day-ahead market. Especially hard to predict
are the day-ahead-market prices in Spring, as it shows the highest error measurements while the
mean price is rather low.

Following the standard approach for the evaluation of ADP algorithms, we conduct numeri-
cal comparisons with benchmark approaches. Therefore, we implement several approaches using
Matlab version R2020a and run simulations on a standard PC with a 3.6 GHz AMD Ryzen 5 and
16 GB of RAM. We evaluate every policy with the data in the test data set. In particular, we
evaluate the following BADP variants and benchmark approaches:

• BADP: This is the BADP algorithm discribed in Algorithm 1. We discretize the storage
levels Rstart

t in 11 equidistant points. Preliminary tests indicate that the last trade xstart
t exerts

less influence on the decision. Therefore, we choose a rougher discretization for it: xstart
t ∈{

−xturbine
max , 0, xpump

max

}
. We set the number of sample paths as N = 50. This results in 11 · 3 · 50 =

1, 650 discrete states. The MILP in Step 14 is solved with the Matlab solver intlinprog. After
fixing the value functions, the induced policy is applied without re-optimization.
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• BADP-w: For this BADP approach we replace Step 11 in Algorithm 1 with the quadratic
problem (36) and (37). The coefficients for the lower and upper bounds are described by (38)
and (39). The weights are computed with Algorithm 2. We select the same discretization for
the states and the same number of samples as for the unweighted BADP. After fixing the value
function approximations, the induced policy is applied without re-optimization.

• BADP-w(re-optimized): This approach is largely the same as BADP-w, but the value func-
tion approximations are re-optimized once at t = 15. In more detail, the value function approx-
imations are derived first with BADP-w. After applying the induced policy for t ∈ {0, · · · 14}
with fixed value function-approximations, these are re-optimized. For this, we use BADP-w with
a new set of sample paths which is sampled based on the current state in t = 15.

• ADDP: We adapt the approximate dual dynamic programming algorithm proposed by Löh-
ndorf et al. (2013). This algorithm was recently used by Wozabal & Rameseder (2020) for a
problem with 48 exogenous dimensions in the state variable. This algorithm is a version of
stochastic dual dynamic programming (SDDP) but allows the stochastic processes to be Marko-
vian and is not limited to stagewise independend processes (Wozabal & Rameseder (2020)).
Originally, this algorithm iterates over K iterations and approximates the value functions of the
post-decision states with hyperplanes. Since the value function approximations are piecewise
linear and the stochastic processes are linear and the transition function is linear in these, we
can derive the expectation in (35) analytically. So, there is no computational advantage to
use the post-decision state formulation. Therefore, we approximate the value functions of the
pre-decision states. Like BADP, the ADDP approach replaces the exogenous part of the state
P history

t with a scenario lattice. But in contrast to BADP and in line with Löhndorf et al. (2013),
the scenario lattice is described by N cluster centroids (we use N = 50). For generating the
scenario lattice, we sample 1, 000 price histories for each period t and apply k-means clustering
with the city block norm. The necessary transition probabilities are approximated by counting
the transitions between the clusters. Each iteration of the ADDP algorithm contains a forwards
pass and a backwards pass. During the forwards pass, ADDP generates new endogenous states
(Rstart

t and xstart
t ). After this, during the backwards pass, we iterate over the endogenous states

and all price histories in the scenario lattice to add a new hyperplane for each combination.

Preliminary tests indicate that K = 10 iterations are a reasonable trade-off between solution
quality and machine time. More precisely, additional iterations hardly improve the profit. To
speed the algorithm up, when we add a new hyperplane, we remove all hyperplanes which are
dominated by the new one. We do not implement the rejection of hyperplanes with negligible
improvement. This could speed the ADDP approach up, but also worsen the results slightly.

After fixing the value function approximation V̄ policy, the policy in Section 4 can be applied.
If the transition leads to exogenous states which are not part of the scenario lattice, the tran-
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sition probabilities have to be updated. This is in contrast to the other approaches which are
nevertheless applicable. To speed this up, we follow Wozabal & Rameseder (2020) and base the
decisions on the transition probabilities of the closest cluster centroid.

• EM-7: This approach is an expectation model for seven days. While the other approaches
approximate the value function of the policy model, this benchmark is a direct lookahead which,
thus, does not suffer from the curses of dimensionality. The problem (34) s.t. (9), (11) to (18),
(23) to (24) is a daily expectation model. For this benchmark approach, we modify the daily
expectation model. Rather than an expectation model for one day, we use an expectation model
for seven days with a receding horizon. More precisely, at each decision stage (DA and ID) and
each day, the expectation model for the next seven days is re-optimized. Only the decisions of
the first decision stage are executed. As the modification is straightforward, we do not show
the reformulation. Again, we use intlinprog to solve this MILP. To derive the expectation of
future market prices based on the currently known information with the price processes stated
in Section 3.1, we use the law of iterated expectations.

• Perfect foresight: This benchmark solves the energy storage problem with deterministic
prices. Since all electricity prices are known before trading, the corresponding optimization
problem can be modeled as an MILP. Obviously, Perfect foresight does not define a policy which
is applicable in real world but generates an upper bound.

Overall, we only test different value function approximation algorithms and a direct lookahead
approach. For other possible solution methods see, for example, Powell (2019).

The value function approximation approaches (BADP, BADP-w, ADDP) are sample-based
approaches. Thus, the induced policy highly depends on the sampled (and clustered) sample paths.
Additionally, the sample paths depend on the estimation level. See Figure 5 for an illustration.
Therefore, a comparison of the implemented approaches cannot rely on a single run for each
approach. Accordingly, we run the approaches 20 times, once for each set of estimated price
processes (estimation level). The only stochastics which influences EM-7 is the stochastics on
estimation level. Perfect foresight is not influenced by stochastics at all.

6.2. Comparison of the solution approaches
In this section, we compare the solution approaches based on the parameters in the previous

section. To capture the randomness on estimation level and policy level, we solve the trading
problem 20 times with each approach, once for each set of estimated price processes and evaluate
with the test data set (see above). We report the relative mean profit summed over the four
seasons of the approaches and the 95% confidence bands. We do not report the profits for the
single seasons, as the approaches’ behavior does hardly change in the different seasons.

The reported machine time is the average machine time to learn the value functions for 30 stages.
Since the machine time hardly differs for the different seasons and estimated price processes, we
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do not show the confidence bands. Furthermore, we do not report the machine time for deriving
the policies during evaluation because, even with the slowest approach (EM-7 ), the policies are
derived in a few seconds per decision stage.

Table 3: Performance of BADP variants, ADDP, EM-7, and Perfect foresight

Algorithm Profit [e ] Relative
profit [%]

95% confidence band Learning
time [s]

EM-7 93,480.52 100.00 [99.64, 100.36] 0.00
BADP 93,200.08 99.70 [99.09, 100.30] 1, 401.32
BADP-w 94,826.64 101.44 [101.04, 101.84] 1, 411.83
BADP-w(re-optimized) 94,854.68 101.47 [101.00, 101.93] 2, 139.18
ADDP 77,401.87 82.80 [82.17, 83.44] 5, 172.40
Perfect foresight 173,593.30 185.70 − 0.00

Table 3 compares the different implemented approaches. There is no significant difference
between the profit of EM-7 and BADP. However, the weighted BADP-w approach outperforms
both. Increasing the number of scenarios N can slightly increase the profit (not shown here).
ADDP is dominated in terms of profit and machine time by all other approaches. We acknowledge
that the rejection of hyperplanes or better redundancy detection techniques could further reduce
the machine time, but we do not think this would allow to considerably increase the solution quality
as the performance appears to be quite flat in this regard (not shown here). As EM-7 and Perfect
foresight do not have to learn the value functions, the machine time is zero. The large gap between
the upper bound Perfect foresight and the other approaches is not surprising. Electricity prices are
hard to forecast and show price spikes which can be exploited by Perfect foresight. This underlines
that deterministic approaches with full hindsight information have little value in this context. We
also tested a variant of the popular least squares monte carlo approach (with lasso and ten-fold
cross-validation, not shown here), which yielded 94.31% of EM-7.

As mentioned, the approaches behave similar in all four seasons (not shown here). But further
investigations indicate that BADP-w benefits more from reliable forecasts than EM-7. While there
is no significant difference of the profits in Spring, where the prices are hard to forecast, the largest
difference is in Autumn, where the error measurements are lowest (see Table 2).

Re-optimizing with BADP-w in the middle of the optimization horizon (at t = 15) has almost no
benefit. Even if more re-optimization steps may slightly improve the profit, this already indicates
that BADP-w works well without re-optimization. BADP and ADDP could benefit from re-
optimizing as well. To save space, we do not investigate this in the numerical study, since these
approaches cannot compete with BADP-w.

The objective function includes only costs that are variable in the considered trading problem.
We use the term “profit” for simplicity, although, formally, “contribution margin” would be more
appropriate. In reality, additional costs like wages and depreciation of investment have to be taken
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into account. Therefore, the 1.44 percentage point increase from EM-7 to BADP-w increases the
net profit much more and may even turn a loss into a profit. Because of the high investment and
running costs of energy storage systems they usually have a low internal rate of return (IRR) of
0.2% to 9.1% (Steffen (2012), Zhu et al. (2013), Olaszi & Ladanyi (2017)). The actual IRR depends
on the specifications and costs of the energy storage and the trading strategy. If one can increase
the “contribution margin” with BADP-w by 1.44 percentage points this also increases the IRR by
nearly 1.44 percentage points. Therefore, the IRR can be dramatically increased by 16 to 840 %.

6.3. Decision making insights

To investigate the decisions of the storage owner and to show that the decisions derived by
BADP-w are reasonable, we analyze the storage level for Autumn. Since we derived 20 different
policies with our best approach BADP-w we report the average storage level over the 20 policies
in Figure 6. Additionally, we report the maximum and minimum storage levels as well as the
day-ahead prices. As reference points the Mondays (0:00) of Autumn are marked.
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Figure 6: Storage level over time with prices

Overall, we observe strong daily and weekly patterns in the storage level, which follow electricity
prices. On a weekly level, the storage is charged on weekends and discharged at the beginning of
the week. On a daily level, it is charged right after midnight and discharged during the day. In
particular, we see that at the first three Sundays the storage is full, as it was charged during the
weekends where the prices are usually low to sell electricity during the week where the prices are
higher. Only during the fourth weekend the storage is not fully charged as prices did not drop.

After the storage is fully charged, not all energy is sold directly on Monday. This is only true
for the first Monday. After the second Monday, most energy is sold Tuesday and after the third
Monday at Wednesday. These were the weekdays where the prices peaked.

In some hours or even days the gap between the policies with maximum storage level and
minimum storage level is quite large (e.g. in the week of the second Monday). This happens if
multiple nearly equally good decisions exist (e.g. discharging a day later at nearly equal prices).
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6.4. Influence of the price forecast

To check if it is worth to handle a high-dimensional price forecast in the dynamic program, we
vary the number of days in the price forecast and therefore the dimension of the exogenous part of
the state P history

t . We denote the number of days in the price history as D. The corresponding price
history is P history

t =
(
P DA

t+1−D, · · · , P DA
t , P ID

t+1−D, · · · , P ID
t

)
. For each D ∈ {1, · · · , 10} we estimate

the price forecast using lasso with ten-fold cross validation 20 times and learn the value functions
with our best approach BADP-w. Again we report the mean profit and the 95 % confidence bands.
In addition, we use EM-7 with seven days in the price history as a benchmark, since this does not
suffer from the curses of dimensionality.
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Figure 7: Influence of price forecast used in optimization on expected profits

Figure 7 illustrates the influence of the length of the price history used in the optimization on
profit. We estimate ten different price processes for each market with one (SDA

t ∈ R122) up to ten
days (SDA

t ∈ R1202) in the price history. We fit the value functions with BADP-w and derive the
decisions based on this forecast and evaluate these with the data in our test data set. The difference
of the mean profits with 1 to 6 days in the price history is not significant. But the seventh day in
the price history is important for BADP-w to outperform EM-7 which always uses seven days in
the price history to calculate the forecast used in the expectation model. This significant increase
in the profit follows because the electricity prices have a strong weekly pattern and, thus, the prices
of the same day of the last week are good predictors for current prices. Again, the difference of the
mean profits with 7 to 10 days in the price history is not significant. Note that the fact that profit
increases in the price history is not obvious, because a larger state variable is harder to handle,
which could also lead to a decline in profit. Thus, Figure 7 demonstrates that BADP-w can handle
a large state variable. More importantly, as there is no reason not to use a high-dimensional price
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forecast for the benchmark approach, Figure 7 indicates that the dynamic program needs at least
seven days in the price history to outperform the benchmark approach with seven days. Thus, if
we are not willing to handle the large state variable in the dynamic program, the much simpler
benchmark approach would be the better choice. Moreover, we also tested the influence of the
price forecast on EM-7 (i.e. with D days in the history used to compute the expectations for the
next 7 days); not shown here. The profit of EM-7 shows a similar pattern as the profit of BADP-w,
but BADP-w outperforms EM-7 for every D.

Since Figure 7 indicates that the seventh day in the price history is more important than the
previous days, this suggests the reduction of the state space via feature selection. One could
only include the most relevant prices of the previous week. While the importance of features
(dimensions of the price history) is considered in the weights of BADP-w, the feature selection is
not investigated in full detail. As the modeled price processes must follow the Markov property,
the feature selection is not straightforward. It is possible to fit the value functions with BADP-w
based on a simplified forecast and therefore simplified model (e.g. D = 1) but derive the decisions
based on a more complex forecast (e.g. D = 7). For this, the higher dimensional SDA

t and therefore
P histoy

t is treated as a latent state variable while deriving the trading decisions based on the fixed
value function approximations. Therefore, we compare this approach with the data in Figure 7.
For this, we derive the decisions based on our basic forecast (D = 7).
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Figure 8: Influence of underlying price process on expected profits

Figure 8 is similar to Figure 7, but is extended by the latent state variable approach where the
decisions for D < 7 are made based on the D = 7 forecast (basic setting). To keep it simple, we
do not show the EM-7 benchmark with its confidence bands. Figure 8 demonstrates that treating
a higher dimensional forecast as a latent variable pays off, but the gain decreases in D. The latent
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state variable approach with three days in the price history comes closest to the basic setting
D = 7, but further tests (not shown here) indicate that the difference is still significant. We do
not include D > 7, because in this cases the price history would contain dimensions that are not
used for the forecast and therefore would be the irrelevant.

In conclusion, it is essential for dynamic programs to use a competitive forecast to outperform
a simple benchmark approach.

6.5. Gains from integrated trading
In this section, we compare the integrated day-ahead and intraday trading with restricted

trading settings. In particular we consider the following settings:

• Day-ahead only (DA): This setting trades only in the day-ahead market and corresponds to
our policy functions XDA,π

t (·) and XID,π
t (·) with additional constraint xID

t,h,q = 0 ∀h, q.

• Intraday only (ID): This setting trades only in the intraday market. This can be reflected
with our policy functions XDA,π

t (·) and XID,π
t (·) by adding the constraint xDA

t,h = 0 ∀h.

• DA+ID, sequential: This setting trades in the day-ahead market without anticipating the
intraday market. Afterwards, the commitments are adjusted on the intraday market. To reflect
this with our policy functions, we add the constraint xID

t,h,q = 0 ∀h, q to XDA,π
t (·) and the

constraint xDA
t,h = 0 ∀h to XID,π

t (·).

• DA+ID, integrated: This is the basic setting considered in the remainder of the paper.

• DA+ID, integrated, no arbitrage: Integrated trading in both auction markets can speculate
on the price difference between the hourly day-ahead market products and the price of the
corresponding quarter-hours on the intraday market. In this setting, we modify the intraday
market price process defined in Section 3.1 to enforce that the expected market prices are equal.
Therefore, no arbitrage based on the expected price difference is possible. For this setting, we
shift the expected intraday market prices to the expected day-ahead market prices and use them
in the contribution function of the policy model (34):

P̄ ID′
t,t+1,h,q := P̄ ID

t,t+1,h,q − 1
4

3∑
q′=0

(
P̄ ID

t,t+1,h,q′ − P̄ DA
t,t+1,h

)
∀h (40)

All settings are optimized with the BADP-w approach with seven days in the price history and
evaluated with real-world data. Again, we run the simulation (estimating price processes, solving
trading problem, and evaluation) 20 times, to capture the stochastics (see, Figure 5). We report
the mean of the summed profits over the four seasons and the 95% confidence bands.

Table 4 compares our basic setting (DA+ID, integrated) with four other settings: only using
the day-ahead market (DA), only using the intraday market (ID), using both markets with a
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Table 4: Comparison to restricted trading settings

Trading and optimization Profit e Relative profit [%] 95% confidence band
Only day-ahead (DA) 37,693.59 39.75 [39.03, 40.47]
Only intraday (ID) 92,465.45 97.51 [97.20, 97.83]
DA+ID, sequential 87,221.54 91.98 [91.74, 92.22]
DA+ID, integrated 94,826.64 100.00 [99.61, 100.39]
DA+ID, integrated, no arbitrage 94,712.84 99.88 [99.39, 100.37]

sequential optimization (DA+ID, sequential), and trading integrated but without exploiting the
price differences (DA+ID, integrated, no arbitrage). If only one market is used, the intraday
market is much more profitable for the storage owner than the day-ahead market. This is because
the intraday market prices fluctuate substantially more than the day-ahead market prices, which
can be exploited by the fast ramping energy storage. The immense difference between the day-
ahead and intraday profits decreases in the ramping time (not shown here). In the sequential
day-ahead and intraday setting, the storage owner first trades on the day-ahead market, as if only
the day-ahead market exists, i.e. exactly as in setting (DA). After this, the storage owner adjusts
the commitments on the intraday market. The integrated bidding can enhance the profit by 8
percentage points compared to the sequential consideration of the markets and 2.5 percentage points
compared to the intraday market setting. In our study, the intraday market setting outperforms
the sequential setting. This is because decisions on the day-ahead market cause a bad starting point
for trading on the intraday market and, thus, profit is lower. This changes with increasing ramping
times (not shown here). If the storage owner does not exploit the expected price difference between
the markets, the relative profit only decreases by 0.12 percentage points. The difference between
these two settings is not significant. Thus, (almost) no arbitrage is possible, which indicates that
the German auction markets are efficient.

7. Discussion

In this section, we discuss possible limitations of our research. We observed that integrated
trading in both German auction markets outperforms sequential trading and trading in a single
auction market. We did not investigate whether integrated trading in the auction markets outper-
forms trading in other markets (e.g., derivative markets, continuous intraday market, balancing
markets, over-the-counter). Furthermore, we did not investigate if integrated trading with addi-
tional markets is beneficial. In the following, we discuss how this limits our research and how
practice can still benefit.

Derivative markets: Trading derivatives can be an important instrument to hedge the risk (e.g.,
variance of returns), see Hain et al. (2018). Since we optimize expected profit, the derivative
markets are not beneficial.
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Continuous intraday market: As the continuous intraday market works similar to stock mar-
kets, a product’s current price includes all relevant information and is therefore the best predictor
for the future price of the product (see, e.g., Narajewski & Ziel (2020a)). Since the continuous
intraday market starts with the intraday auction market clearing prices and both markets have the
same temporal resolution, integrated trading in the intraday auction market and the continuous
intraday market should not be profitable. Moreover, the continuous intraday market has a rather
high market entrance barrier and a 24/7 trading floor is needed.

Nevertheless, sequential trading in the continuous intraday market after integrated trading in the
auction markets should outperform pure auction market trading. Since the trading in the auction
markets restricts the trading in the continuous intraday market, pure continuous intraday market
trading could be even better than a heuristic solution of integrated trading.

Balancing markets: The balancing markets can be an important opportunity for fast ramping
energy storage systems. We do not include them in our research for the following reason. The
rules of the German balancing markets changed multiple times in recent years (e.g., 2018, 2019,
and 2020). Since these changes happen during the time span considered in the numerical study of
Section 6, nearly no data for the current regime exists.

Over-the-counter markets: For energy storage systems, the over-the-counter (OTC) markets
are hardly relevant, because there, most energy is contracted several days or months ahead. Most
energy storage systems are fully charged and discharged within hours, so they benefit most from
short-term price fluctuations. Additionally, there is no public information about OTC markets
available.

In summary, we are confident that we modeled the two most important German markets, but
acknowledge that the integration of additional markets, like balancing markets, is desirable.

Based on our correspondence with practitioners and in line with literature, we see that market
participants often trade in more than two markets but in a sequential manner. As seen in Section
6.5 this can decrease profit, even compared to trading in fewer markets. Nevertheless, market
participants that trade in a sequential manner can use our model and approach to combine two
links in the chain to improve their trades. This is the first step towards a fully anticipating trading
strategy that integrates all relevant markets in an optimization problem.

8. Conclusion and insights

In this paper, we modeled the energy trading problem for both German auction markets with
a competitive price forecast as a high-dimensional dynamic program. We implemented a suitable
backwards ADP solution algorithm and showed that the approach successfully overcomes the re-
sulting curse of dimensionality. Furthermore, the implemented approach outperforms an intuitive
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and widely used benchmark using an expectation model in a receding horizon fashion as well as
a state-of-the-art approach from literature. However, it is important to use a long enough price
history in the optimization’s forecast to outperform the expectation model. This is an important
observation as the resulting explosion of the DP’s state space often forces researchers to use shorter
histories, whereas this is much less a problem for expectation models. Furthermore, one has to
use an approach that is designed for handling high-dimensional price processes, albeit common
methods from literature cannot.

Regarding the integrated trading, we have shown that integrated trading in both German
auction markets is beneficial. Further, we have shown that trading in a sequential manner can be
even worse than only trading in the intraday auction market. This shows that storage owners that
sequentially trade have to rethink this and anticipate later markets. This may also be true for
markets not included in our research. To reduce the computational burden of such an integrated
optimization it is sufficient to use self-schedule bidding in the auction markets. If one needs to
reduce the computational burden even more, an expectation model with a competitive price process
is more appropriate than an ADP approach with a simple price process.

Future work could go in several directions. First, from a methodological perspective, infinite-
horizon dynamic programs should be considered. Whereas our proposed dynamic program is time-
independent (except the day of the week), future work can reformulate the problem as a steady
state problem and solve the storage problem with an infinite horizon. This has its own challenges.
For example, the set of sample paths can no longer simply be sampled with the price processes
because this depends upon the initial price history. Instead, one can use all past price histories of
the last few years. Second, another research avenue would be to investigate the influence of ramping
time and other properties of the energy storage on expected profit. Especially if investment costs
are taken into account one can, for example, investigate the benefit of a small buffer battery for a
pumped hydro storage to enable instant ramping.
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Appendix A. Self-schedule bidding

To check the self-schedule assumption Assumption 2, we show numerically that the gains from
price-volume bids are negligible for electricity prices with highly correlated noise (like in Germany).
For this, we solve a simplified energy trading problem numerically with price-volume bids and with
self-schedule bids and evaluate these with common out-of-sample scenarios. In this simplified
setting, the PHS only trades in the day-ahead market and ramping is ignored. The notation is
summarized in Appendix Appendix D. To show the effect of the correlation of the noise, we
draw the scenarios based on the price process defined in Section 3.1, but artificially reduce the
correlation. We denote the artificial correlation matrix as ΣDA,γ . This is defined as

ΣDA,γ = (σDA,γ
i,j )i=1,··· ,24;j=1,··· ,24 :=

σDA
i,j i = j

γσDA
i,j else

(A.1)

with γ ∈ [0, 1] and the originally estimated correlation matrix ΣDA = (σDA
i,j )i=1,··· ,24;j=1,··· ,24. For

γ = 1, the matrix ΣDA,γ has the correlation estimated with real-world data. For γ = 0, the
correlation is zero.

We model the simplified decision problem as a two-stage stochastic program. Based on a state
SDA

t =
(
Rstart

t , xstart
t , P history

t

)
, the here-and-now decisions are B selling and buying bids for each

hour. The wait-and-see decisions are the actual dispatching of the PHS after the market is cleared.
The volume components of the bids are denoted xbuy,bid

t,h,b and xsell,bid
t,b,h with hour h and the number of

the bid b ∈ {1, · · · , B}. The price components are denoted P buy,bid
t,h,b and P sell,bid

t,h,b . While we model
the volumes as continuous decision variable, the prices are fixed parameters. Therefore, we map
each price parameter P buy,bid

t,h,b and P sell,bid
t,h,b a to volume xbuy,bid

h,b and xsell,bid
b,h .

As we replace the stochastic program with the SAA based on S scenarios, we sample the price
scenarios P DA

t+1,h,s for each hour h based on the price process defined in Section 3.1 with correlation
matrix ΣDA,γ and the price history P history

t . Based on these samples, we can pre-process the
parameters abuy

t,h,s,b and asell
t,h,s,b.

abuy
t,h,s,b =

1 , P buy,bid
t,h,b ≥ P DA

t+1,h,s

0 , otherwise
(A.2)

asell
t,h,s,b =

1 , P sell,bid
t,h,b < P DA

t+1,h,s

0 , otherwise
(A.3)

If abuy
t,h,s,b = 1, the buying bid b in hour h and scenario s is accepted (analogously for asell

t,h,s,b).
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max 1
S

S∑
s=1

∆tDA
24∑

h=1
−

(
P DA

t+1,h,s + cgf
)

xbuy
t,h,s + P DA

t+1,h,sxsell
t,h,s + Qover

t+1,h,sxover
t,h,s − Qunder

t+1,h,sxunder
t,h,s

(A.4)

− cpumpzpump
t,h,s − cturbinezturbine

t,h,s

s.t.

xbuy
t,h,s =

B∑
b=1

abuy
t,h,s,bx

buy,bid
t,h,b (A.5)

xsell
t,h,s =

B∑
b=1

asell
t,h,s,bx

sell,bid
t,h,b (A.6)

xpump
t,h,s + xover

t,h,s = xbuy
t,h,s (A.7)

xturbine
t,h,s + xunder

t,h,s = xsell
t,h,s (A.8)

Rt,h,s = Rt,h−1,s + ηpump∆tDAxpump
t,h,s − ∆tDA

ηturbine
xturbine

t,h,s (A.9)

xcomp
min ycomp

t,h,s ≤ xcomp
t,h,s ≤ xcomp

max ycomp
t,h,s ∀comp ∈ {pump, turbine} (A.10)

zcomp
t,h,s ≥ ycomp

t,h,s − ycomp
t,h−1,s ∀comp ∈ {pump, turbine} (A.11)

Rt,h,s ∈ [0, Rmax] (A.12)

xbuy
t,h,b, xsell

t,h,b ≥ 0 (A.13)

xover
t,h,s, xunder

t,h,s , zpump
t,h,s , zturbine

t,h,s ≥ 0 (A.14)

ypump
t,h,s , yturbine

t,h,s ∈ {0, 1} (A.15)

All constraints are defined for all s ∈ {1, · · · S} and h ∈ {0, · · · , 23}. Only constraint (A.13)
is defined for all b ∈ {1, · · · B} and h ∈ {0, · · · , 23}. Additionally, Rt,−1,s is defined as Rstart

t and
ypump

t,0,−1 = 1xstart
t >0 and yturbine

t,0,−1 = 1xstart
t <0. The objective (A.4) maximizes the average profit over all

samples. While pumping, the PHS must pay the market price P DA
t+1,h,s and the grid fees cgf . While

generating energy, the PHS receives the market price. If the PHS does not deliver the energy sold
(e.g., empty storage), it has to pay the balancing price for under supply Qunder

t+1,h,s. If the PHS stores
less energy than bought (e.g., full storage), it receives the balancing price for over supply Qover

t+1,h,s.
The increased maintenance costs during start-up are reflected by cpump and cturbine. Constraints
(A.5) and (A.6) derive the contracted commitments based on the decided volumes x

(·,bid)
t,h,b which are

mapped to the parameters P
(·,bid)
t,h,b . Therefore, in scenario s and hour h, the PHS buys xbuy

t,h,s and
sells xsell

t,h,s. Constraints (A.7) and (A.8) derive the difference between the contracted energy and
the stored/delivered energy. Constraint (A.9) is the storage balance equation. Constraint (A.10)
limits the power of the turbine and the pump to the feasible range. The binary variables ypump

t,h,s and
yturbine

t,h,s are equal to one, if the pump/turbine work in scenario s and hour h. Constraint (A.11)
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captures if the pump or the turbine has to start-up. The constraints (A.12) to (A.15) define the
domain of the variables.

If not stated otherwise, we use the same parameters as in the numerical study of Section 6.
Since this section focuses on daily energy trading, we use Rstart

t = 0 and xstart
t = 0. Moreover, we

define balancing prices for over- and undersupply that are linear in the day-ahead market price.

Qover
t+1,h,s = Qover

intercept + Qover
slopeP DA

t+1,h,s (A.16)

Qunder
t+1,h,s = Qunder

intercept + Qunder
slope P DA

t+1,h,s (A.17)

The following parameters differ for the energy trading problem with price-volume bids and the
problem with self-schedule bids:

• Price-volume bids: Here we use S = 50 price scenarios drawn with the estimated price process
but artificial correlation matrix ΣDA,γ . As parameters for the price components of the B =
33 bids, we use P buy,bid

t,h,b , P sell,bid
t,h,b , ∈

{
−∞, P̄ DA

t,t+1,h − 30, P̄ DA
t,t+1,h − 28, · · · , P̄ DA

t,t+1,h + 30, ∞
}

∀h.
Thus, self-schedule bids within ±30e/MWh of the expected market prices are used.

• Self-schedule bids: Here we use a single price scenario (S = 1) with P DA
t+1,h,s = P̄ DA

t,t+1,h∀h.
Therefore, the prices are equal to the expected day ahead market on day t + 1 only using
data known at day t. To force (A.4) to (A.15) to use self schedule bids, we use as price
components of the bids P buy,bid

t,h,b = ∞∀h and P sell,bid
t,h,b = −∞∀h. Thus, only one bid (B = 1)

results.

Obviously we cannot report the objective value of (A.4) but have to evaluate this with out-of-
sample random numbers. In the following pseudocode we state how to apply (A.4) to (A.15) on
out-of-sample data:

Algorithm 3 Evaluate (A.4) to (A.15)
1: Sample S day-ahead market prices P DA

t+1,h,s

2: Solve (A.4) to (A.15)
3: Use decisions xbuy,bid

t,h,b and xsell,bid
t,h,b and observe P DA

t+1,h

4: Solve (A.4) to (A.15) with the single scenario P DA
t+1,h,s = P DA

t+1,h and fixed xbuy,bid
t,h,b and xsell,bid

t,h,b

To show the effect of the correlation of the noise, we solve the daily trading problem for each
of the 120 days in the test data presented in Section 6 with γ ∈ {1, 0.75, 0.5, 0.25, 0}. Since we
estimated the price processes 20 times with cross validation, we solve the problem 20 times for each
day. In contrast to the remainder of the paper, we only use the corresponding price history P history

t

and do not evaluate with real-world data. The reason for this is that the real world data follows
a price process with γ = 1. Therefore, we have to evaluate with randomly drawn scenarios based
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on the correlation matrix ΣDA,γ . This procedure introduces a new level of randomness (evaluation
level) which is not included in Figure 5. To reduce the computational burden, we set a relative
MILP solution gap of 1% while deriving the first-stage decisions.
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Figure A.9: Influence of correlation on expected profit (γ = 0: no correlation, γ = 1: correlation of German market)

Figure A.9 shows the relative average profit summed over the 120 days including the 95%
confidence bands based on self-schedule bids and price-volume bids with γ ∈ {1, 0.75, 0.5, 0.25, 0}.
For the correlation based on real-world data (γ = 1) there is no significant difference. The reason
for this is, that energy storage systems are profitable if the price difference between the buying
hours prices and selling hours prices is large enough. Since the forecast errors of the 24 day-ahead
market prices are very highly correlated (coefficient of correlation up to 0.98 for consecutive hours),
forecasts usually over- or underestimate the whole day’s prices, which hardly influences the daily
price differences. This justifies our self-schedule Assumption 2. Furthermore, the machine time
with price-volume bids is over 5,000 times higher than the machine time with self-schedule bids
(not shown here). With decreasing γ and therefore decreasing correlation the price-volume bids
become increasingly profitable. For uncorrelated noise (γ = 0), price-volume bids dramatically
outperform self-schedule bids by over 130 percentage points. Therefore, in energy markets with
lower correlation, energy storage systems must use price-volume bids. For example, the Nordic
markets behave very different than the German markets because of the immense penetration of
storeable hydropower.

Please note that we only show above that price-volume bids are not needed for the daily energy
trading. However, we are confident that this is sound enough for the following reasons: First, from
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a theoretical perspective, price-volume bids outperform self-schedule bids if one is able so solve
the corresponding problems exactly. Thus, it is reassuring that price-volume bids never perform
significantly worse than self-schedule bids. Second, one may ask whether this also holds for the
problem with multiple days. We did not investigate this setting here, as the tractability mentioned
above becomes more difficult as the problem grows. However, since most energy storage systems
are fully charged/discharged within hours, the daily price differences are the most important ones
for energy storage systems. In contrast, hydropower plants have huge reservoirs (discharge time
of days to weeks) and a natural water inflow. For these power plants it is essential to release
the exogenous resource at high price hours to be profitable (e.g. Fleten & Kristoffersen (2008),
Boomsma et al. (2014)).

Appendix B. Expectation model versus stochastic program

To demonstrate that the policy designed in Section 4 works well, we compare it with a two-stage
stochastic program in a single-day setting. While the here-and-now decisions correspond to the
day-ahead market stage, the wait-and-see decisions are the intraday market stage decisions. To
solve the two-stage stochastic program we use the sample average approximation with S scenarios.

max 1
S

S∑
s=1

23∑
h=0

−∆tDAP DA
t+1,h,sxDA

t,h +
3∑

q=0
−∆tIDP̄ ID

t+1,h,q,sxID
t,h,q,s − ∆tIDcgf xpump

t,h,q,s

+ ∆tramp

2
((

∆xpump,up
t,h,q,s + ∆xturbine,down

t,h,q,s

)
Q̄over

t+1,h,q,s −
(
∆xpump,down

t,h,q,s + ∆xturbine,up
t,h,q,s

)
Q̄under

t+1,h,q,s

)
− cpumpzpump

t,h,q,s − cturbinezturbine
t,h,q,s (B.1)

s.t.

xDA
t,h ∈

[
−xturbine

max , xpump
max

]
(B.2)

xDA
t,h + xID

t,h,q,s = xpump
t,h,q,s − xturbine

t,h,q,s (B.3)

xcomp
min ycomp

t,h,q,s ≤ xcomp
t,h,q,s ≤ xcomp

max ycomp
t,h,q,s ∀comp ∈ {pump, turbine} (B.4)

ypump
t,h,q,s + yturbine

t,h,q,s ≤ 1 (B.5)

∆xcomp,up
t,h,q,s − ∆xcomp,down

t,h,q,s = xcomp
t,h,q,s − xcomp

t,h,q−1,s ∀comp ∈ {pump, turbine} (B.6)

Rt,h,q,s = Rt,h,q−1,s + ηpump
(

∆tIDxpump
t,h,q,s − ∆tramp

2 ∆xpump,up
t,h,q,s + ∆tramp

2 ∆xpump,down
t,h,q,s

)
− 1

ηturbine

(
∆tIDxturbine

t,h,q,s − ∆tramp

2 ∆xturbine,up
t,h,q,s + ∆tramp

2 ∆xturbine,down
t,h,q,s

) (B.7)

Rt,h,q,s ∈ [0, Rmax] (B.8)

ypump
t,h,q,s, yturbine

t,h,q,s ∈ {0, 1} (B.9)

xpump
t,h,q,s, xturbine

t,h,q,s , ∆xpump,up
t,h,q,s , ∆xpump,down

t,h,q,s , ∆xturbine,up
t,h,q,s , ∆xturbine,down

t,h,q,s ≥ 0 (B.10)

v



ycomp
t,h,q,s − ycomp

t,h,q−1,s ≤ zcomp
t,h,q,s ∀comp ∈ {pump, turbine} (B.11)

zpump
t,h,q,s, zturbine

t,h,q,s ≥ 0 (B.12)

All constraints are defined for all q ∈ {0, 1, 2, 3}, h ∈ {0, · · · , 23}, and s ∈ {1, · · · , S}. Addi-
tionally, (·)t,h,4,s is defined as (·)t,h+1,0,s and Rt,0,−1,s = Rstart

t and xpump
t,0,−1,s = max

{
xstart

t , 0
}

and
xturbine

t,0,−1,s = max
{
−xstart

t , 0
}
. Since this section focuses on daily energy trading, we use Rstart

t = 0
and xstart

t = 0.
The SAA (B.1) to (B.12) is the stochastic counterpart of the policy model. The scenarios for

the day-ahead market price P DA
t+1,h,s are sampled based on the price process defined in Section 3.1

and the current price history. The samples for the expected intraday market price P̄ ID
t+1,h,q,s are

derived based on the price process defined in Section 3.1 conditioned on the sample P DA
t+1,h,s. The

expected balancing prices are computed based on these the usual way. Obviously, we cannot report
the objective value of (B.1) but have to evaluate this with the real-world data in our test data set.
In the following pseudocode we state how to apply (B.1) to (B.12) to real-world data:

Algorithm 4 Evaluate (B.1) to (B.12)
1: sample S day-ahead market prices P DA

t+1,h,s and compute the conditioned expectations P̄ ID
t+1,h,q,s,

Q̄over
t+1,h,q,s, and Q̄under

t+1,h,q,s

2: solve (B.1) to (B.12)
3: use decisions xDA

t,h and observe P DA
t+1,h

4: compute the expectations P̄ ID
t+1,h,q, Q̄over

t+1,h,q, and Q̄under
t+1,h,q conditioned on the observation P DA

t+1,h

5: solve (B.1) to (B.12) with the single scenario P̄ ID
t+1,h,q, Q̄over

t+1,h,q, and Q̄under
t+1,h,q and fixed xDA

t,s .
6: use decisions xDA

t,h,q and observe P ID
t+1,h,q

We solve the daily problem for each day in our test data set and evaluate the decisions with
the real world data. We generate the samples based on the price processes with seven days in the
price history. Since we estimated the price processes 20 times, we solve the daily problems 20 times
and report the relative mean profits for S ∈ {10, 20, 30, 40, 50} and the 95% confidence bands. To
reduce the computational burden, we set a relative MILP solution gap of 1% while deriving the
first-stage decisions (Step 2 in Algorithm 4).

Figure B.10 shows the relative cumulative (over all days) profit and the relative cumulative
machine time of the stochastic program with different S. The relative profit slightly increases in
the number of scenarios, but even with 50 scenarios, the stochastic program cannot significantly
outperform the substantially faster and simpler expectation model. In addition, the expectation
model has a much smaller confidence band. The width of the confidence band of the stochastic
program decreases in S. Since the machine time dramatically increases in S, we do not test higher
values. Even with S = 50, the stochastic program is 400 times slower than the expectation model.
This shows that the daily expectation model works well. It would be possible to learn value
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Figure B.10: Influence of the number of scenarios on the expected profit

functions with BADP-w and the policies (expectation model) designed in Section 4 and derive the
decisions while evaluating with the stochastic program, but we do not think that the stochastic
program would benefit dramatically enough to significantly outperform the expectation model.

Appendix C. Evaluating BADP

Using the value function approximation derived by BADP to evaluate the induced policies
works similar to Step 4, Step 11, and Step 14 in Algorithm 1. The execution logic can be found in
Algorithm 5.
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Algorithm 5 Evaluate BADP
1: initialize SDA

0
2: for t = 0 to T − 1 do
3: compute expected price history P̄ history

t,t+1 := IE
[
P history

t+1 |P history
t

]
4: (ρ̄1, · · · , ρ̄N ) := arg min

ρ1,··· ,ρN

∥∥∥∥∥P̄ history
t,t+1,n −

N∑
k=1

ρkP history
t+1,k

∥∥∥∥∥
2

5: derive xDA
t := XDA,π

t (SDA
t ) based on (ρ̄1, · · · , ρ̄N )

6: use decisions xDA
t and observe P DA

t+1
7: compute expected price history P̄ history

t,t+1 := IE
[
P history

t+1 |P history
t , P DA

t+1

]
8: (ρ̄1, · · · , ρ̄N ) := arg min

ρ1,··· ,ρN

∥∥∥∥∥P̄ history
t,t+1,n −

N∑
k=1

ρkP history
t+1,k

∥∥∥∥∥
2

9: derive xID
t := XID,π

t (SDA
t ) based on (ρ̄1, · · · , ρ̄N )

10: use decisions xID
t and observe P ID

t+1
11: end for

Algorithm 5 shows how we use the value function approximation derived with BADP to derive
decisions for the day-ahead and the intraday market. More precisely, how we evaluate the policy
functions XDA,π

t

(
SDA

t

)
and XID,π

t

(
SID

t

)
. Step 1 defines the initial state SDA

0 . Step 2 iterates over
the optimization horizon. In Step 3, we derive the next day’s expected price history conditioned on
the current price history. The expected price history is regressed on the N sampled price histories
(from Algorithm 1) to derive the regression parameters (ρ̄1, · · · , ρ̄N ) in Step 4. These are used to

compute XDA,π
t

(
SDA

t

)
= arg max

xDA
t

max
xID

t

{
Cpolicy

t

(
SDA

t ,
(
xDA

t , xID
t

))
+

N∑
k=1

ρ̄kV̄ policy
t+1

(
SDA

t+1|P history
t+1,k

)}
s.t. (9), (11) to (18), (23) to (24), (33). Afterwards, the decision xDA

t is applied and the MCPs
P DA

t+1 becomes known. With the realized day-ahead market prices, the expected price history
P̄ history

t,t+1 is updated (Step 7) and again regressed on the sampled price histories (Step 8). The
decision for the intraday market is XID,π

t

(
SID

t

)
= arg max

xID
t

IE
[
CID

t

(
SID

t , xID
t , W ID

t+1

)∣∣∣SID
t

]
+

+
N∑

k=1
ρ̄kV̄ policy

t+1

(
SDA

t+1|P history
t+1,k

)
s.t. (11) to (18), (23) to (24), (26). The decision xID

t is used

and the intraday market prices become known.
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Appendix D. Notation and parameter values

Table D.5: Notation introduced in Section 3

Indices
t Day
h Hour
q Quarter-hour
Endogenous variables
xDA

t =
(
xDA

t,0 , · · · , xDA
t,23

)
Day-ahead market decision

xID
t =

(
xID

t,0,0, · · · , xID
t,23,3

)
Intraday market decision

SDA
t State variable in the day-ahead market stage

SID
t State variable in the intraday market stage

Rstart
t Storage level at the start of day t

xstart
t Inflow/outflow volume at the start of day t

xturbine
t,h,q ,xpump

t,h,q Inflow/outflow volume
yturbine

t,h,q ,ypump
t,h,q Binary working mode variable

zturbine
t,h,q ,zpump

t,h,q Start-up variable
∆xturbine,up

t,h,q ,∆xturbine,down
t,h,q Up/down ramping volume of the turbine

∆xpump,up
t,h,q ,∆xpump,down

t,h,q Up/down ramping volume of the pump
Rt,h,q Storage level
Exogenous information
P DA

t =
(
P DA

t,1 , · · · , P DA
t,24

)
Day-ahead market prices

P ID
t =

(
P ID

t,0,0, · · · , P ID
t,23,3

)
Intraday market prices

P history
t Past prices used for price forecast

Qover
t =

(
Qover

t,0,0, · · · , Qover
t,23,3

)
Payments for overproduction

Qunder
t =

(
Qunder

t,0,0 , · · · , Qunder
t,23,3

)
Payments for underproduction

W DA
t Exogenous information which become known after the day

ahead market stage
W ID

t Exogenous information which become known after the in-
traday market stage
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Parameters
T Number of time periods
DoW

(·)
(·) Day of the week dummy

β
(·)
(·) Regression parameters in price forecast

Σ(·) Correlation matrix
ϵ
(·)
t Noise

xpump
min ,xpump

max Working range of the pump
xturbine

min ,xturbine
max Working range of the turbine

Rmax Storage capacity
∆tDA Temporal resolution of the day-ahead market
∆tID Temporal resolution of the intraday market
∆tramp Ramping time
ηpump,ηturbine Efficiency of the pump/turbine
cgf Grid fees
cpump,cpump Start-up cost of the pump/turbine
Qover

intercept, Qunder
intercept Intercept of the linear imbalance cost

Qover
slope, Qunder

slope Slope of the linear imbalance cost
Functions
CDA

t One-stage profit of the day-ahead market stage
CID

t One-stage profit of the intraday market stage
SM,DA Transition function from the day-ahead market stage to the

intraday market stage
SM,ID Transition function from the intraday market stage to the

day-ahead market stage
XDA,π

t Policy function of the day-ahead market stage
XID,π

t Policy function of the intraday market stage
V DA

t Value function of the day-ahead market stage
V ID

t Value function of the intraday market stage

x



Table D.6: Notation introduced in Section 4

Endogenous variables
xpolicy

t Decision variable of the policy model
Exogenous information
W policy

t Exogenous information of the policy model
Parameters
P̄ DA

t,t+1,h Expectation of the day-ahead market prices
P̄ ID

t,t+1,h,q Expectation of the intraday market prices
Q̄over

t,t+1,h,q Expectation of the balancing prices for overproduction
Q̄under

t,t+1,h,q Expectation of the balancing prices for underproduction
Functions
Cpolicy

t One-stage profit of the policy model
SM,policy Transition function of the policy model
V policy

t Value function of the policy model
V̄ policy Value function approximation of the policy model
P Transition probabilities

Table D.7: Notation introduced in Section 5

Indices
n Sample index
Parameters
P history

t,n =
(
P history,1

t,n , · · · , P history,840
t,n

)
Sample of the price history

P̄ history
t,t+1,n Expectation of the next price history based on the n-th

sample
P̄ history

t,t+1 Expectation of the next price history based on the re-
alized price history

ρ̄n Interpolation/extrapolation parameters
Kd

t,k Upper/lower bounds for the Interpolation/extrapola-
tion parameters

wt Vector of weights
ej j-th Unit vector
d Bandwidth
N Number of sample paths
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Table D.8: Notation introduced in Section 6

Parameters
K Number of iterations of ADDP
D Number of days in the price history

Table D.9: Parameter values for the numerical study

Parameter Value Parameter Value

Rmax 100 MWh T 30
xpump

min 5 MW xturbine
min 5 MW

xpump
max 10 MW xturbine

max 10 MW
∆tDA 1 h ∆tID 15 min
∆tramp 2 min cgf 5e/MWh
cpump 15e cturbine 15e
ηpump 0.9 ηturbine 0.9
Qover

intercept −3e/MWh Qover
slope

1
1.2

Qunder
intercept 3e/MWh Qunder

slope 1.2
N 50 cgf 5e/MWh

xii



Table D.10: Notation introduced in Appendix Appendix A

Indices
b Bid
s Scenario
Parameters
B Number of bids
S Number of scenarios
γ Correlation factor
ΣDA,γ Artificial correlation matrix
P buy,bid

t,h,b Price component of the buying bid
P sell,bid

t,h,b Price component of the selling bid
abuy

t,h,s,b Indicator if buying bid is accepted
asell

t,h,s,b Indicator if selling bid is accepted
Endogenous variables
xbuy,bid

t,h,b Volume component of the buying bid
xsell,bid

t,h,b Volume component of the selling bid
xbuy

t,h,s Contracted buying volume
xsell

t,h,s Contracted selling volume
xover

t,h,s Overproduction
xunder

t,h,s Underproduction
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