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Abstract 

In practice, human-decision makers often feel uncomfortable with the risk-neutral revenue management systems’ 

output. Reasons include a low number of repetitions of similar events, a critical impact of the achieved revenue 

for economic survival, or simply business constraints imposed by management. However, solving capacity con-

trol problems is a challenging task for many risk measures and the approaches are often not compatible with 

existing software systems. 

In this paper, we propose a flexible framework for risk-averse capacity control under customer choice behavior. 

Existing risk-neutral decision rules are augmented by the integration of adjustable parameters. Our key idea is 

the application of simulation-based optimization (SBO) to calibrate these parameters. This allows to easily tailor 

the resulting capacity control mechanism to almost every risk measure and customer choice behavior. 

In an extensive simulation study, we analyze the impact of our approach on expected utility, conditional value-

at-risk (CVaR), and expected value. The results show a superior performance in comparison to risk-neutral ap-

proaches from literature. 

Keywords: Revenue Management, Capacity Control, Risk-Aversion, Conditional Value-at-Risk 
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INTRODUCTION 

During the last decades, revenue management has become one of the most successful fields of 

application for operations research in practice. Its main task is capacity control, which is usu-

ally described as controlling the availability of differentiated products over a given booking 

horizon such that the expected revenue is maximized. The assumption of risk-neutrality lies at 

the heart of this classical definition and is justified by a large number of repetitions of similar 

decision problems. However, human decision makers, who tend to be risk-averse, often doubt 

this assumption. In daily practice, they feel uncomfortable with the capacity control system’s 

output and overwrite it manually with less aggressive decisions. Furthermore, in many fields 

of application, the number of repetitions is too small to justify the use of expected value and a 

single event is critical for economic survival. Risk-aversion first became popular in econom-

ics and finance, but it is today also increasingly considered in revenue management. The un-

derlying trade-off is to give up a portion of expected value in order to reduce the risk of poor 

outcomes. 

The problem of risk-averse capacity control can be solved to optimality by dynamic pro-

gramming (DP). However, building a DP formulation is a challenging task for many risk 

measures. In many cases, the state space must be augmented and the resulting DP formulation 

becomes intractable. Furthermore, DP formulations are not compatible with many existing 

revenue management systems.  

Our main contribution is to propose a flexible framework for risk-averse capacity control. In 

practice, revenue management systems are fixed in the long run and the capacity control pro-

cess is modeled by standard decision rules such as bid prices. Therefore, our framework is 

based on the risk-neutral formulation. Risk-aversion is then integrated by augmenting existing 

capacity control mechanisms with a few parameters that can be calibrated. Existing research 

recommends that this is done manually by human decision makers. However, we suggest the 

use of simulation-based optimization (SBO) which allows automated optimization and a high-

er number of parameters. The resulting approach is quite general. It can be used with arbitrary 

demand models, risk measures, and network structures. In an extensive simulation study, we 

illustrate the impact of our approach on expected utility, conditional value-at-risk (CVaR), 

and expected revenue in various settings with customer choice and different network struc-

tures.  

The remainder of this paper is structured as follows: First, we restate the risk-neutral problem 

of capacity control under customer choice behavior, review the relevant scientific literature 
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and position our work. Based upon this, we present our framework for risk-averse capacity 

control, including a detailed description of the components. We continue with the simulation 

study, followed by a discussion of the results and a conclusion. 

BACKGROUND AND PREVIOUS RESEARCH 

Research from three areas of revenue management is relevant for our work. First, we restate 

the problem of risk-neutral capacity control under customer choice behavior and summarize 

standard solution approaches. Then, we discuss research on risk-averse capacity control and 

the use of SBO for capacity control.  

Risk-neutral capacity control under customer choice behavior 

Initially, revenue management (RM) was based on the well-known independent demand as-

sumption. Overviews can be found in the textbooks of Talluri and van Ryzin (2004b) and 

Phillips (2005). 

Later, research considered that most customers actually choose between several more or less 

suitable products. Gallego et al. (2004), Talluri and van Ryzin (2004a), and Liu and van Ryzin 

(2008) established capacity control under a general discrete choice model of demand. In this 

setting, a firm disposes of resources 𝑖 = 1, … , 𝑚 which are jointly used by products 𝑗 =

1, … , 𝑛. The products are associated with revenues 𝒓 = (𝑟1, … , 𝑟𝑛)𝑇. Furthermore, each prod-

uct 𝑗 has a capacity consumption 𝒂𝑗 = (𝑎1𝑗, … , 𝑎𝑚𝑗)
𝑇
, which is either 𝑎𝑖𝑗 = 1 if product 𝑗 

requires resource 𝑖 or 𝑎𝑖𝑗 = 0 else. Resources’ remaining capacity is denoted by the vector 

𝒄 = (𝑐1, … , 𝑐𝑚)𝑇, the initial endowment is given by 𝒄0 = (𝑐1
0, … , 𝑐𝑚

0 )𝑇. Customers arrive suc-

cessively and stochastically over time. The booking horizon is discretized into sufficiently 

small time periods 𝑡 = 1, … , 𝑇, such that in each period 𝑡 at most one customer arrives. Thus, 

at most one product can be sold in each period. The periods are numbered forward in time. 

Any capacity remaining at the end of the booking horizon is worthless and overbooking of the 

given resources’ capacity is not allowed. 

In each period 𝑡, the firm’s risk-neutral decision problem is to determine a subset of products 

to offer, called the offer set, so that the overall expected revenue 𝑉1(𝒄0) is maximized. The 

offer set is captured by the vector 𝒙 = (𝑥1, … , 𝑥𝑛)𝑇 of binary decision variables with 𝑥𝑗 = 1 if 

product 𝑗 is offered for sale. Product 𝑗 is sold with probability 𝑝𝑡𝑗(𝒙) and no purchase is made 

with probability 𝑝𝑡0(𝒙). 
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Let the value function 𝑉𝑡(𝒄) denote the optimal expected revenue-to-go in period 𝑡 with ca-

pacity 𝒄 and let Δ𝑗𝑉𝑡(𝒄) ≔ 𝑉𝑡(𝒄) − 𝑉𝑡(𝒄 − 𝒂𝑗) denote the opportunity cost of selling one unit 

of product 𝑗. Then, 𝑉𝑡(𝒄) and the expected revenue-maximizing offer set can be computed 

recursively by the following DP formulation (DP-EV) 

 𝑉𝑡(𝒄) = max
𝒙

{∑ 𝑝𝑡𝑗(𝒙) ⋅ (𝑟𝑗 − Δ𝑗𝑉𝑡+1(𝒄))𝑛
𝑗=1 } + 𝑉𝑡+1(𝒄)  (1) 

subject to the boundary conditions 𝑉𝑡(𝒄) = −∞ if 𝒄 ≱ 𝟎 and 𝑉𝑇+1(𝒄) = 0 if 𝒄 ≥ 𝟎. 

Two issues render DP-EV difficult to solve optimally: recursively calculating the opportunity 

cost Δ𝑗𝑉𝑡(𝒄) and solving the maximization over all 2𝑛 possible offer sets. Over time, different 

heuristic approaches have been developed. Regarding the first issue, virtually all approaches 

use additive bid prices 𝜋𝑡𝑖𝑐𝑖
 that reflect the current value of one unit of capacity of resource 𝑖 

in period 𝑡 with remaining capacity 𝑐𝑖. With these values, an approximation Δ̃𝑗𝑉𝑡(𝒄) of the 

opportunity cost can be obtained: 

 Δ̃𝑗𝑉𝑡(𝒄) = ∑ 𝑎𝑖𝑗 ⋅ 𝜋𝑡𝑖𝑐𝑖

𝑚
𝑖=1     (2) 

The approaches differ in how the bid prices are computed, but the main idea is usually to de-

rive an easy-to-compute upper bound on 𝑉𝑡(𝒄) and use information from this upper bound to 

approximate the opportunity cost in an offline stage (that is, before the booking horizon 

starts). Such approximations can be found, for example, in Liu and van Ryzin (2008), Miran-

da Bront et al. (2009), Zhang and Adelman (2009), and Meissner and Strauss (2012b). Online 

(that is, during the booking horizon), the offer set is then determined by solving the maximi-

zation, which is an assortment optimization problem (see, e.g., Miranda Bront et al. (2009)): 

 max
𝒙

{∑ 𝑝𝑡𝑗(𝒙) ⋅ (𝑟𝑗 − Δ̃𝑗𝑉𝑡+1(𝒄))𝑛
𝑗=1 }    (3) 

The technique used to solve (3) strongly depends on the choice model assumed. For example, 

under the independent demand model, (3) reduces to the classical method of simply offering 

all products for which revenue exceeds (an approximation of) opportunity cost: 

 𝑟𝑗 ≥ Δ̃𝑗𝑉𝑡+1(𝒄)    (4) 

A popular way to manage the selling process, in particular in practice, is to use this independ-

ent demand decision rule (4) in combination with additive bid prices (2). This kind of capacity 

control approach is often referred to as bid price control. Even if demand is not independent, 
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decision rule (4) can be used heuristically (see, e.g., Chaneton and Vulcano (2011) and 

Meissner and Strauss (2012a)). 

Table 1 summarizes the notation used throughout this section. 

 

𝑖 = 1, … , 𝑚  resources 

𝑗 = 1, … , 𝑛 products 

𝑡 = 1, … , 𝑇  time periods (numbered forward) 

𝒄 = (𝑐1, … , 𝑐𝑚)𝑇  remaining capacity 

𝒄0 = (𝑐1
0, … , 𝑐𝑚

0 )𝑇  initial capacity 

𝒓 = (𝑟1, … , 𝑟𝑛)𝑇 product revenues 

𝒂𝑗 = (𝑎1𝑗 , … , 𝑎𝑚𝑗)
𝑇
 capacity consumption of prod-

uct 𝑗 

𝒙 = (𝑥1, … , 𝑥𝑛)𝑇 offer set of products 

𝑝𝑡𝑗(𝒙) purchase probability of product 𝑗 given 
offer set 𝒙 

𝑝𝑡0(x) no-purchase probability given offer set 𝒙 

𝑉𝑡(𝒄) optimal expected revenue-to-go in period 𝑡 
with capacity 𝒄 

Δ𝑗𝑉𝑡(𝒄)  opportunity cost of product 𝑗 

Δ̃𝑗𝑉𝑡(𝒄)  approximation of opportunity cost of prod-
uct 𝑗 

𝜋𝑡𝑖𝑐𝑖
 bid price of resource 𝑖 in period 𝑡 with 

remaining capacity 𝑐𝑖 

Table 1: Notation introduced in this section 

Risk-averse capacity control 

In this section, we briefly outline the consideration of risk in the academic literature on capac-

ity control. Only the most relevant literature is mentioned. For a recent review, we refer to 

Gönsch and Hassler (2014) and the references therein. 

The need for considering risk-aversion in capacity control was first raised by Lancaster (2003) 

who proposed a risk-adjusted revenue per available seat mile. Weatherford (2004) then modi-

fied the famous EMSR-b heuristic of Belobaba (1992) by substituting revenues with a risk-

averse utility function. Barz (2007), Barz and Waldmann (2007), and Feng and Xiao (2008) 

use an exponential utility function to model risk-aversion, but instead of altering a heuristic, 

they work with the original DP formulation. Assuming independent demand and a single re-

source, they show that several well-known properties regarding the structure of an optimal 

policy carry over from the risk-neutral case. In addition, Barz (2007) extends this analysis to 

the case of customer choice behavior. Zhuang and Li (2011) examine optimal booking limits 

with an atemporal utility function to address risk-aversion. Furthermore, there are two publi-

cations from Koenig and Meissner (Koenig and Meissner (2015b, 2015c)) who consider tar-

get percentile risk and value-at-risk. 

Most relevant to our work are Huang and Chang (2011) and Koenig and Meissner (2015a). 

Similar to our work, they modify existing capacity control approaches to address risk-

aversion. In particular, Huang and Chang (2011) heuristically consider risk-aversion via a 

discount factor on the opportunity cost in the DP formulation. This factor is either constant or 
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a function of remaining demand and capacity. Koenig and Meissner (2015a) extend this anal-

ysis. In addition, they consider a discount factor on the opportunity cost from a risk-neutral 

DP formulation and an alternative function of demand and capacity. However, the approaches 

are restricted to a few parameters that are calibrated manually. Moreover, as in all the litera-

ture on risk-averse capacity control so far, only single-leg settings are considered. 

Finally, the literature on risk-averse dynamic pricing is related to us (see Gönsch et al. (2015) 

for a recent review). The main difference between dynamic pricing and capacity control is 

that the decision maker influences demand by setting the prices of products instead of choos-

ing the offer set, while the general setting is quite similar (see, e.g., Gallego and van Ryzin 

(1997) and Talluri and van Ryzin (2004b) for problems with risk-neutral decision makers). 

Thus, the incorporation of risk-aversion is done in a similar fashion (see, e.g., Li and Zhuang 

(2009) for utility functions; Feng and Xiao (1999) for revenue variance; Levin et al. (2008) 

for target percentile risk; Gönsch et al. (2015) for conditional value-at-risk).  

Simulation-based optimization for capacity control 

Until now, SBO has only been used in risk-neutral capacity control. For a general overview of 

SBO please refer to, for example, Gosavi (2015) or Spall (2003). Robinson (1995) was the 

first to use SBO in the context of revenue management to approximate the optimal booking 

limit policy in the single-leg case. More recent research derives stochastic gradients of the 

value function and uses estimates of these gradients in the optimization step. Bertsimas and de 

Boer (2005) present an algorithm for the improvement of booking limits, which uses a dis-

cretization of the state space for value function estimation. Gosavi et al. (2007) show that an 

algorithm based on simultaneous perturbation for the improvement of booking limits outper-

forms both EMSR-b and DAVN-EMSR-b for single-leg and network problems, respectively. 

Topaloglu (2008) and van Ryzin and Vulcano (2008b) improve bid prices and nested protec-

tion limits, respectively, by using a continuous approximation of the discrete problem which 

enables an exact recursive computation of gradients. While all the aforementioned papers fol-

low the independent demand assumption, van Ryzin and Vulcano (2008a) use a procedure 

similar to van Ryzin and Vulcano (2008b) in order to improve nested protection limits under 

customer choice behavior. Chaneton and Vulcano (2011) present a stochastic gradient algo-

rithm for improvement of bid prices with customer choice. 

However, the use of stochastic gradients is feasible only if a recursive formulation of the val-

ue function is available. Unfortunately, this is often not the case or very challenging for the 

objective functions considered in risk-averse revenue management. Therefore, we concentrate 
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on purely numerical approaches in our paper that can be adapted easily to different objectives. 

In this sense, Klein (2007) is closest to us. He introduces auto-adaptive bid prices by means of 

the metaheuristic scatter search assuming independent demand. 

RISK-AVERSE CAPACITY CONTROL USING SBO 

In this section, we first present an overview of the new framework allowing the incorporation 

of risk-aversion. Then, we turn to the most important components and describe in detail the 

risk measures and capacity control approaches considered in this study. Table 2 summarizes 

the additional notation introduced in the following section.  

 

𝑛𝑐𝑎𝑙𝑖𝑏   number of calibration streams 

𝑛𝑒𝑣𝑎𝑙   number of evaluation streams 

𝑅 revenue obtained 

𝐹(𝑦) distribution of total revenue 𝑅, i.e 𝐹(𝑦) =
ℙ(𝑅 ≤ 𝑦) 

𝑈(⋅) utility function 

𝑈𝛾(⋅) exponential utility function with level of 
risk-aversion 𝛾 

𝐶𝑉𝑎𝑅𝛼(⋅) Conditional Value-at-Risk (CVaR) at 
probability level 𝛼 

𝜽  (arbitrary) parameters to integrate risk-
aversion into capacity control mecha-
nisms 

Table 2: Notation introduced in this section 

Overview 

Our basic idea is to modify standard approaches appropriately to account for risk-aversion. 

This modification is governed by parameters 𝜽, which are determined by an out-of-the-box 

iterative SBO algorithm before the beginning of the booking horizon. The whole process con-

sists of three steps (see Figure 1). 

The optimization step aims at improving values for the parameters 𝜽. It passes tentative val-

ues to the simulation step to estimate their performance. The simulation step in turn mimics 

sales processes using 𝑛𝑐𝑎𝑙𝑖𝑏 independent customer demand streams, each encompassing the 

whole booking horizon. This calibration set is generated in advance according to the firm’s 

belief about future demand. For each demand stream, the control mechanism with the current 

values of 𝜽 is applied and a total per-stream revenue is obtained. All per-stream revenues are 

used to calculate a risk measure, which is passed back to the optimization step as an estimate 

of the 𝜽-values’ performance. Using this new estimate as well as data from previous itera-

tions, a standard (derivative-free) direct search optimization technique computes new values 

of 𝜽. These new values are passed to the simulation step again and a new iteration starts. The 

cycle ends when a predefined convergence criterion is satisfied. The final values of the pa-

rameters 𝜽 are tested in the evaluation step. Analogously to the simulation step, the resulting 



 

9 

control mechanism is applied to 𝑛𝑒𝑣𝑎𝑙 demand streams of the evaluation set and various risk 

measures are calculated. The evaluation step is completely analogous to the simulation step, 

except that the evaluation set must obviously be independent from the calibration set. 

The framework described above can be easily tailored to specific applications by changing 

two key components that are technically independent from each other: the modified capacity 

control approach and the optimized risk measure. Accordingly, we will identify the method 

used with an abbreviation of the form SBO-[MECHANISM]-[RISKMEASURE]. In the follow-

ing, we describe the variants of each of these components we consider in this study. Note that, 

in addition, the SBO technique can also be varied, but we do not investigate this rather tech-

nical issue and stick to a standard approach. 

 

Figure 1: Framework for risk-averse capacity control 
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Risk measures 

In the following, we briefly restate the risk measures used in this study. As customers’ arri-

vals and choices are stochastic, total revenue obtained with a given control mechanism is ran-

dom and denoted by the random variable 𝑅 with distribution function 𝐹(𝑦) = ℙ(𝑅 ≤ 𝑦). 

Note that bigger values of 𝑅 are preferred. 

One well established way to address risk-aversion is the use of expected utility which was 

introduced by von Neumann and Morgenstern (1944). The main idea behind this concept is 

that decision makers value the same revenue differently due to individual preferences. These 

preferences are encompassed in an utility function 𝑈 and two random revenues, say 𝑅1 and 

𝑅2, can be compared by the resulting expected utility, where 𝑅1 is preferred over 𝑅2 if 

𝔼[𝑈(𝑅1)] ≥ 𝔼[𝑈(𝑅2)]. Following Barz and Waldmann (2007), we consider an exponential 

utility function: 

 𝑈𝛾(𝑅) = 1 − 𝑒−𝛾⋅𝑅   (5) 

The parameter 𝛾 indicates the level of risk-aversion. The exponential utility function is the 

most widely used nonlinear utility function (see, e.g., Corner and Corner (1995)). In our com-

putational study, we abbreviate this risk measure as Utility(𝛾). 

The second risk-measure we consider, Conditional Value-at-Risk (CVaR), has attracted a lot 

of attention over the last decade. For a given probability level 𝛼 ∈ [0,1], the CVaR at level 𝛼 

is simply the expectation below the 𝛼-quantile of 𝐹: 

 𝐶𝑉𝑎𝑅𝛼(𝑅) = 𝔼[𝑅|𝑅 ≤ 𝐹−1(𝛼)]   (6) 

CVaR is often described as an advancement of the widely popular Value-at-Risk (VaR) to 

avoid certain theoretical and practical shortcomings of the latter (see, e.g., Artzner et al. 

(1999)). Note that, to be formally precise, the intuitive definition (6) is valid only for atomless 

distributions. As revenues are discrete in capacity control, we use CVaR’s less intuitive dual 

representation (not given here; see, e.g., Pflug and Römisch (2007)) to calculate the CVaR. In 

our computational study, we abbreviate CVaR at level 𝛼 as CVaR(𝛼). 

Capacity control mechanisms 

In total, we augment three standard control mechanisms for the optimization of arbitrary risk 

measures.  
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The first two mechanisms use bid prices 𝜋𝑡𝑖𝑐𝑖
 that, in case of a single resource, come directly 

from DP-EV (1) or, in case of multiple resources, from the DP decomposition proposed in Liu 

and van Ryzin (2008). Thus, the bid prices equal or approximate opportunity cost from the 

risk-neutral problem. Then, building on Koenig and Meissner (2015a) as well as on Huang 

and Chang (2011), we integrate a constant factor 𝜃𝑖 to adjust the bid prices to different levels 

of risk-aversion.  

Our first mechanism, BPF (“Bid Price control with Factor”), follows a traditional, independ-

ent demand bid price control approach. Hence, a product 𝑗 is available for sale if 

 𝑟𝑗 ≥ ∑ 𝑎𝑖𝑗 ⋅ 𝜃𝑖 ⋅ 𝜋𝑡+1,𝑖𝑐𝑖

𝑚
𝑖=1    (7) 

where the parameters 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑚)𝑇 > 𝟎 are determined using SBO as described 

above.  

In the second mechanism, AOF (“Assortment Optimization with Factor”), we adjust the bid 

prices within the exact assortment optimization problem. Compared to (7), this approach is 

able to consider more combinations of products. Accordingly, the offer set is determined by 

solving 

 max
𝒙

{∑ 𝑝𝑡𝑗(𝒙) ⋅ (𝑟𝑗 − ∑ 𝑎𝑖𝑗 ⋅ 𝜃𝑖 ⋅ 𝜋𝑡+1,𝑖𝑐𝑖

𝑚
𝑖=1 )𝑛

𝑗=1 }  (8) 

In order to solve (8) efficiently during our simulation step, we use the greedy algorithm of 

Miranda Bront et al. (2009). Although this approach is heuristic in nature, it is known to yield 

high-quality solutions. Please note that the bid prices (i.e., 𝜃𝑖 ⋅ 𝜋𝑡𝑖𝑐𝑖
) used in these approaches 

are artificially set to infinity if 𝑐𝑖 = 0. Furthermore, they are state-dependent with regard to 

the state definition from the risk-neutral problem and represent input parameters to the SBO-

algorithm altering the bid price control via the choice of 𝜽.  

For our third approach, BPB (“Bid Price control with Basis functions”), we broadly follow 

Klein (2007) and use state-dependent bid prices in (7). The state-dependency is given by a 

linear model of basis functions:  

 𝜋𝑡𝑖𝑐𝑖
≔ 𝜋𝑖

0 − 𝜃𝑖
𝑐𝑎𝑝 ⋅

𝑐𝑖

𝑐𝑖
0 + 𝜃𝑖

𝑡𝑖𝑚𝑒 ⋅
(𝑇−𝑡+1)

𝑇
    (9) 

with 𝜋𝑡𝑖𝑐𝑖
= ∞ if 𝑐𝑖 = 0. Again, the parameters 𝜽𝑐𝑎𝑝 = (𝜃1

𝑐𝑎𝑝, … , 𝜃𝑚
𝑐𝑎𝑝)

𝑇
 and 𝜽𝑡𝑖𝑚𝑒 =

(𝜃1
𝑡𝑖𝑚𝑒 , … , 𝜃𝑚

𝑡𝑖𝑚𝑒)
𝑇
 are estimated by SBO. The variables 𝑐𝑖 and (𝑇 − 𝑡 + 1) sufficiently de-

scribe the current booking situation. Note that we normalize these variables to ease the cali-
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bration. 𝜋𝑖
0 is our starting bid price coming from a linear approximation of (DP-EV) such as 

the well-known deterministic linear program (DLP; see, e.g., Talluri and van Ryzin (1998)) or 

choice-based deterministic linear program (CDLP; see, e.g., Gallego et al. (2004) and Gallego 

et al. (2004); Liu and van Ryzin (2008)).  

SIMULATION STUDY 

In this section, we illustrate the impact of our approaches for a risk-averse decision maker, 

that is, the improvement in risk measure and, if at all, the associated loss in expected revenue. 

We use four examples that are—as usual in the literature—expressed in airline terminology. 

However, the results can be transferred to other areas of application. Wherever available, we 

use standard example networks from literature. 

All algorithms were implemented in MATLAB (Version 8, Release R2014b). Linear Pro-

grams were solved by the function linprog from the Optimization Toolbox, Mixed-Integer 

Linear Programs by CPLEX from IBM ILOG (Version 12.6). In the optimization step, we 

used the function patternserach with standard settings from the Global Optimization Toolbox. 

For each problem instance, the size of the evaluation set is 𝑛𝑒𝑣𝑎𝑙 = 10,000. Regarding the 

three SBO-based approaches presented in the previous section, we use a calibration set of 

𝑛𝑐𝑎𝑙𝑖𝑏 = 5,000 demand streams. Additional notation introduced in this section is summarized 

in Table 3. 

 

Single-leg with independent demand 

𝑝𝑡𝑗  probability of selling product 𝑗 in period 𝑡  

 

Single-leg with choice-based demand 

𝑣𝑡𝑗  preference weight of product 𝑗 in period 𝑡 

𝑣0  no-purchase preference weight 

Parallel flights and one-hub network with 
choice-based demand 

𝑙 customer segment 

𝒞𝑙  consideration set of segment 𝑙 

𝜆𝑙  arrival probability of a customer from seg-
ment 𝑙 

𝑧𝑙𝑗   binary variable indicating whether consider-
ation set 𝒞𝑙 contains product 𝑗  

𝒗𝑙 = (𝑣𝑙𝑗)
|𝒞𝑙|×1

 preference weights of segment 𝑙 

𝑣𝑙0  no-purchase preference weight of segment 𝑙 

Table 3: Notation introduced in this section 

Example 1: Small single-leg flight with independent demand 

In our first experiment, we consider the classical single-leg example of Lee and Hersh (1993) 

which was also used by several previous studies on risk-averse capacity control (see, e.g., 

Barz (2007), Barz and Waldmann (2007), and Koenig and Meissner (2015a)). It represents a 
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small single-leg flight with a capacity of 𝑐0 = 10 seats and 𝑛 = 4 products (booking classes) 

with revenues 𝒓 = (200, 150, 120, 80)𝑇. Demand follows the independent demand assump-

tion, that is, the selling probabilities 𝑝𝑡𝑗(𝒙) are independent of 𝑥𝑖 , 𝑖 ≠ 𝑗, and given by 

 𝑝𝑡𝑗(𝒙) = {
𝑝𝑡𝑗 if 𝑥𝑗 = 1

0 else
   (10) 

The booking horizon consists of 𝑇 = 30 periods and is partitioned into five time intervals, so 

that higher value demand tends to arrive later in the booking horizon (see Table 4). 

𝑝𝑡𝑗 𝑗 = 1  𝑗 = 2  𝑗 = 3  𝑗 = 4  

𝑡 = 1, … ,5  0.08 0.08 0.14 0.14 

𝑡 = 6, … ,12  0.06 0.06 0.14 0.14 

𝑡 = 13, … ,19  0.10 0.10 0.10 0.10 

𝑡 = 20, … ,26  0.14 0.14 0.16 0.16 

𝑡 = 27, … ,30  0.15 0.15 0 0 

Table 4: Purchase probabilities in Example 1 

In this subsection, we consider the risk measures CVaR (6) and expected utility with an expo-

nential utility function (5). We combine these risk measures with the control mechanisms 

BPF and BPB and, thus, investigate the performance of SBO-BPF-CVaR(𝛼), SBO-BPB-

CVaR(𝛼), SBO-BPF-Utility(𝛾), and SBO-BPB-Utility(𝛾). Because we assume that demand is 

independent of the offer set, we do not need to consider the capacity control mechanism AOF. 

Furthermore, we implemented the following approaches as benchmarks: 

 BPF1 is our benchmark. This is the expected revenue-maximizing policy derived from 

(1), that is, using decision rule (4) with 𝜋𝑡1𝑐 ≔ 𝑉𝑡(𝑐) − 𝑉𝑡(𝑐 − 1).  

 BPF0.8 uses a constant discount factor of 0.8 on the opportunity cost 𝜋𝑡1𝑐 in line with 

Koenig and Meissner (2015a) and Huang and Chang (2011). 

 DP-CVaR(𝛼) is the CVaR-maximizing policy based on the DP formulation of Gönsch 

and Hassler (2014) and depends on the probability level 𝛼. 

 DP-Utility(𝛾) is the expected utility-optimal policy from Barz and Waldmann (2007) 

and depends on the level of constant absolute risk-aversion 𝛾. 
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Figure 2: CVaR and average utility in Example 1 

In the left (right) part of Figure 2, we consider a CVaR- (utility-) maximizing decision maker 

and depict the CVaR (utility) relative to that of our benchmark, the expected-value optimal 

policy from BPF1. We calculated and evaluated all policies for 𝛼 = 0.1, 0.15, … , 1 (𝛾 = 1 ⋅

10−3, … ,10 ⋅ 10−3). Taking a look at the left part of Figure 2, not surprisingly, the DP-based 

approach DP-CVaR(𝛼) performs best for all values of 𝛼. For 𝛼 < 0.6, all control mecha-

nisms, even DP-Utility(0.003), considerably improve CVaR in comparison to 𝐵𝑃𝐹1. A con-

stant discount on opportunity cost (𝐵𝑃𝐹0.8), as suggested in previous literature, seems to work 

very well for 𝛼 ∈ [0.2, 0.4] but the results quickly worsen for other values of 𝛼. Our simula-

tion-based approach SBO-BPF-CVaR(𝛼) is—after DP-CVaR(𝛼)—the second best control 

mechanism for all values of 𝛼. The factors 𝜃1 determined by the SBO monotonically increase 

from 0.4 to 1 in 𝛼. This shows the good performance of the intuitively appealing concept of 

discounts on opportunity cost, which leads to more accepted requests as risk-aversion increas-

es. Moreover, the fact that SBO-BPF-CVaR(𝛼) is able to reclaim most of the difference in 

CVaR between BPF0.8 and DP-CVaR(𝛼)—which is applicable only in single-leg settings due 

to its inherent DP formulation—is encouraging and underlines the performance of the more 

general SBO approach. However, SBO-BPB-CVaR(𝛼) and DP-Utility(0.003) yield a poorer 

performance in this example. This is due to the fact that the linear basis functions of SBO-

BPB-CVaR(𝛼) are not able to fully capture the monotonicity of the opportunity cost of the 



 

15 

expected revenue-maximizing value function (or, equivalently, the concavity of the value 

function). Therefore, given such a setting, using a simple discount on opportunity cost is ad-

vised. Regarding DP-Utility(0.003), the poorer performance is not surprising as the corre-

sponding policy is optimized in respect to a different risk measure.  

Now, please consider the upper right part of Figure 2. The upper bound on average relative 

utility is given by the exact DP-based approach DP-Utility(𝛾) of Barz and Waldmann (2007). 

Because the differences in relative average utility between the different control mechanisms 

are quite small, we chose to limit the range of values to a small interval, thus excluding 

BPF0.8 from the figure due to a poorer performance. SBO-BPF-Utility(𝛾) works fine for max-

imizing utility, as the results are nearly identical to DP-Utility(𝛾). The factors 𝜃1 are again 

discounts that range from 0.67 to 0.9 and decrease with increasing risk-aversion 𝛾. Similar to 

the optimization of CVaR, the results of SBO-BPB-Utility(𝛾) are slightly worse. However, all 

control mechanisms, including BPF1, show practically identical results for 𝛾 ≥ 0.007.  

On the lower right part of Figure 2, we compare average revenue and standard deviation for 

𝛾 ∈ {0.003, 0.007, 0.01}. Obviously, higher values of 𝛾 lead to a smaller average revenue but 

also a smaller standard deviation of revenues, yielding some kind of efficient frontier. This 

shows that although the differences in relative utility are often negligible, the approaches lead 

to different policies. 

Example 2: Single-leg flight with choice-based demand 

In the remainder of the paper, we assume customer choice behavior. Hence, our main bench-

mark mechanism is AOF1 with its near-optimal policy regarding expected revenue and—

unless stated otherwise—all results are given relative to this benchmark. Moreover, we now 

focus on the optimization of CVaR. We consider all three SBO-based mechanisms and addi-

tionally state the results of BPF1. Please note that DP-CVaR(𝛼) is not tractable for the follow-

ing examples. 

Unfortunately, we are not aware of an established choice-based single-leg setting from the 

literature for capacity control. There are only a few settings complementing analytical results. 

For example, Talluri and van Ryzin (2004a) use a simple example to illustrate demand esti-

mation by an expectation-maximization algorithm and as a proof of concept for their DP for-

mulation. However, in their example, capacity is not scarce (i.e., opportunity cost equals zero) 

and the authors only have to solve the same assortment optimization problem over time. 

Nonetheless, the following example is structurally similar. 
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In this subsection, we consider a single-leg flight with a capacity of 𝑐0 = 50, four products 

with revenues 𝒓 = (1000, 800, 600, 400)𝑇 and 𝑇 = 110 periods. Demand follows a multi-

nomial logit model. Thus, the purchase probabilities 𝑝𝑡𝑗(𝒙) depend on product-specific pref-

erence weights 𝑣𝑡𝑗 as well as the no-purchase preference weight 𝑣0 = 1 and are given by  

 𝑝𝑡𝑗(𝒙) =
𝑣𝑡𝑗⋅𝑥𝑗

1+∑ 𝑣𝑡𝑘⋅𝑥𝑘
𝑛
𝑘=1

    (11) 

We consider two variants regarding the distribution of demand over time. In the first variant, 

the purchase probabilities are time-homogenous. In the second variant, higher value demand 

tends to arrive later in the booking horizon. We call these settings time-homogenous and low-

before-high, respectively. The corresponding values of 𝑣𝑡𝑗 are given in Table 5. The 10−5 val-

ues in the second demand variant lead to virtually no demand for the corresponding products, 

but due to some technicalities, the weights must be strictly positive (also this is often not ex-

plicitly stated in the literature). 

𝑣𝑡𝑗  𝑗 = 1  𝑗 = 2 𝑗 = 3 𝑗 = 4 

time-homogenous 

𝑡 = 1, … ,110   0.05 0.1 0.5 0.6 

low-before-high 

𝑡 = 1, … ,80   10−5 0.2 0.6 0.8 

𝑡 = 81, … ,110   0.2 0.3 10−5 10−5 

Table 5: Preference weights in Example 2 

Figure 3 shows the CVaR of all control mechanisms relative to 𝐴𝑂𝐹1. Note that the spread of 

relative CVaR is higher in the low-before-high-setting. This reflects a well-known effect of 

capacity control, namely that the decision problem becomes more challenging when demand 

tends to arrive in low-before-high order. 

Naturally, SBO-AOF-CVaR(𝛼) performs best and, in both examples, with small benefits over 

SBO-BPB-CVaR(𝛼) as well as larger benefits over SBO-BPF-CVaR(𝛼). Interestingly, even 

the standard bid price control BPF1 is often competitive and yields a higher CVaR than AOF1 

for low levels of 𝛼 because more low value products are offered for sale. However, for medi-

um and high values of 𝛼, there are severe losses in CVaR. With SBO, these losses can be suc-

cessfully reduced.  

Regarding 𝜃1, we observe values of 0.45 to 1 for SBO-AOF-CVaR(𝛼) that are increasing in 𝛼 

and which represent discounts on the opportunity cost analogously to Example 1. Regarding 

SBO-BPF-CVaR(𝛼), 𝜃1 ranges from 0.85 to 1.87 and also increases with 𝛼. This reflects that 

with a bid price control, there is a trade-off between a discount on the opportunity cost to al-
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low for risk-aversion and a markup to prohibit buy-down behavior. This effect is better cap-

tured by the state-dependent bid prices of SBO-BPB-CVaR(𝛼) in comparison with SBO-BPF-

CVaR(𝛼), which uses a constant markup over the whole booking horizon. In a risk-neutral 

setting, increased bid prices to induce higher value demand were, for example, also observed 

in Meissner and Strauss (2012a). 

 

Figure 3: CVaR in Example 2 

We now delve deeper into the opportunities and threats that accompany risk-averse capacity 

control. For all SBO-based mechanisms and three selected values of 𝛼, the upper part of Fig-

ure 4 shows the absolute gains in CVaR compared to the absolute gains in average revenue. 

Please note that the gains in CVaR are subject to the specific level of risk-aversion 𝛼 and, 

thus, need to be treated with caution. A higher gain in CVaR usually leads to a bigger loss in 

expected revenue. For example, in low-before-high, improving the CVaR0.4 by around 250 

costs 500 in average revenue (see the upper right part of Figure 4). The lower part of Figure 4 

compares the sampled distribution of total revenues of SBO-AOF-CVaR(0.4) and AOF1 over 

the evaluation streams. In line with the results from the optimization of utility in Example 1, 

risk-averse capacity controls leads to a smaller support of the distribution and shorter tails. In 

other words, extreme outcomes are less likely. 
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Figure 4: CVaR vs. expected value and revenue distribution in Example 2 

Example 3: Parallel flights with choice-based demand 

Our third example is based on the parallel flight network of Miranda Bront et al. (2009). It 

consists of three flights with two products defined on each flight, that is, one low-class and 

one high-class product. In this example, we additionally investigate the impact of different 

capacity provision on the risk-profile: First, we consider an initial capacity of 𝒄0 =

(27, 45, 36)𝑇 and, second, an initial capacity of 𝒄0 = (21, 35, 28)𝑇. Demand follows a mix-

ture of multinomial logit models. More precisely, customers belong to different market seg-

ments 𝑙 = 1, … ,4, each of which has a subset of products to consider for purchase, namely the 

consideration set 𝒞𝑙. The variable 𝑧𝑙𝑗 indicates whether product 𝑗 ∈ 𝒞𝑙 (𝑧𝑙𝑗 = 1) or not (𝑧𝑙𝑗 =

0). A customer from segment 𝑙 arrives with probability 𝜆𝑙 and has preference weights 𝒗𝑙 =

(𝑣𝑙𝑗)
|𝒞𝑙|×1

 as well as 𝑣𝑙0 for the no-purchase alternative. Note that 𝑣𝑙𝑗 is only defined if 𝑧𝑙𝑗 =

1. Demand is time-homogenous over the booking horizon of 𝑇 = 300 periods. Then, the 

probability of selling product 𝑗 in period 𝑡 is given by  

𝑝𝑡𝑗(𝒙) = ∑ 𝜆𝑙 ⋅4
𝑙=1

𝑣𝑙𝑗⋅𝑧𝑙𝑗⋅𝑥𝑗

𝑣𝑙0+∑ 𝑣𝑙𝑘⋅𝑧𝑙𝑘⋅𝑥𝑘
𝑛
𝑘=1

    (12) 

The remaining data is summarized in Table 6 in Appendix A. The corresponding relative 

CVaRs are shown in Figure 5. Similar to the previous example, the absolute CVaR gains vs. 
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absolute expected revenue gains and the sampled distribution of total revenues for 𝛼 = 0.4 

are illustrated in Figure 6.  

 

Figure 5: CVaR in Example 3 

 

Figure 6: CVaR vs. expected value and revenue distribution in Example 3 
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In the following, we summarize the key observations complementing the former results. First, 

comparing the results for the two initial capacities, we see that only minor variations of the 

setting can lead to large differences in the risk profile. Second, there are settings, such as the 

first initial capacity, where the consideration of risk-aversion is more or less negligible. Given 

such a setting, the better the expected revenue of a policy is, the better is its CVaR for almost 

all levels 𝛼 and vice versa. More precisely, optimizing one can also increase the other and it 

suffices to optimize expected revenue. Third, standard bid price controls such as BPF1 can 

perform quite poorly when considering customer choice behavior (second initial capacity) and 

SBO can successfully address this. In this instance, SBO-BPF-CVaR(𝛼) uses factors 𝜃𝑖 of up 

to 3.97 and outperforms the other approaches. It is usually even better than the near-exact 

assortment optimization in AOF1. For example, the gain of SBO-AOF-CVaR(1) in expected 

revenue over AOF1 is almost 1%. This remarkable result can only be explained with the fact 

that all approaches, including 𝐴𝑂𝐹1, use approximate bid prices from a DP decomposition 

instead of the exact opportunity cost from the intractable DP formulation. 

Example 4: One hub-network with choice-based demand 

The last example is based on an airline network structure from Meissner and Strauss (2012b) 

with one hub H connecting two non-hub cities A and B with four flight legs (see Figure 7). 

There are six itineraries (A to H, A to B via H, H to B, B to H, B to A via H, and H to A). For 

each itinerary, one high-class and one low-class product are available. The demand behavior 

is the same as in the parallel flight example. For each itinerary, there is one customer segment 

with a higher preference for the low-class product. A detailed description of products (reve-

nues 𝑟𝑗 and capacity consumptions 𝒂𝑗) and segments (consideration sets 𝒞𝑙, preference 

weights 𝒗𝑙, no-purchase preference weights 𝑣𝑙0, and segment probabilities 𝜆𝑙) can be found in 

Table 7 in Appendix A. 

 

Figure 7: One-hub network of Example 4 

We assume an initial capacity 𝑐ℎ
0 = 15 (𝑐ℎ

0 = 60) for all ℎ and a booking horizon length 𝑇 =

300 (𝑇 = 1200). The corresponding relative CVaRs are shown in Figure 8. 
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In general, the observations confirm the results of the previous examples. However, it is re-

markable that large gains in CVaR and expected revenue in settings with connecting flights 

are possible. This is because AOF1 decomposes the network by flights and, apparently, this 

does not sufficiently capture the network effects. SBO is able to remedy this shortcoming and, 

thus, all three SBO-based approaches perform quite well. Comparing the two initial capacities 

shows that the differences between all mechanisms decline as we scale up the size of the net-

work. 

 

Figure 8: CVaR in Example 4 

DISCUSSION 

After analyzing the numerical results in detail in the previous section, we now take a broader 

perspective and discuss the relevance of our work. 

First, the relevance of risk-aversion in revenue management—and particularly network reve-

nue management—is the foundation of this paper, although risk-neutrality has been taken for 

granted for a long time in the literature. One reason is probably that risk-neutrality leads to 

mathematically simpler models. However, many people who are new to revenue management 

consider this assumption counter-intuitive and many industry partners question it at first. 
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Lancaster (2003) was the first to raise the issue of risk in revenue management. He pointed 

out that airlines, like all businesses, face risks which should be managed appropriately. By 

contrast, he observes that revenue management considers only the reward side, that is, in-

creasing expected revenue and completely ignores the risks assumed in doing so. Despite this 

early work, most authors cite experiences from practice to show the relevance of risk-

aversion. For example, smaller airlines asked a consultant about risk-averse capacity control 

(see Weatherford (2004)). Two other examples are due to Levin et al. (2008). Event promot-

ers may organize only a few large events per year in locations that are very expensive to rent. 

Accordingly, their first priority is to recover this fixed cost (see Levin et al. (2008)). In other 

industries, a manager’s primary concern is often to provide stable results because negative 

news can lead to negative stock market assessments that can far outweigh the marginal reve-

nue advantages of a risk-neutral policy. 

In contrast to the above-mentioned rather small businesses, many companies have a large 

number of similar events. Thus, the law of large numbers ensures that the average revenue of 

each event is maximized and also quite stable when using a risk-neutral model that focuses on 

the expected revenue. For example, network airlines have hundreds, major ones even several 

thousands of take-offs every day. Although risk-neutrality may be appropriate for these com-

panies as a whole, it may not be appropriate for every department and individual decision 

maker, leading to missing acceptance of risk-neutral revenue management systems. For ex-

ample, a consultant’s clients were not comfortable with their risk-neutral revenue manage-

ment system (see Barz (2007)). They manually altered the forecast to obtain less aggressive 

(and risky) results. Singh (2011) observed that analysts’ individual risk-aversion has a huge 

impact on their decisions when overwriting a revenue management system’s output at a cruise 

line company. He attributes this behavior largely to their personality because they made deci-

sions about exactly the same issues and possessed identical information. 

Second, we would like to point out that, regarding the company as a whole, the need to incor-

porate risk-aversion declines with the network size due to compensatory effects. However, 

our examples showed that there are also bigger settings where risk-aversion is relevant in the 

sense that a risk-averse solution differs from a risk-neutral one. For this purpose, we used es-

tablished examples from literature both for single-leg and network capacity control with mid-

sized capacity. In our opinion, these networks serve as a good representation of the sub-

networks that individual decision makers may control. Nonetheless, it would be worthy of 

future research to investigate the impact of risk-averse control mechanisms in large-scale 

problem instances from practice. 
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Third, our results show that we were able to sufficiently address customer choice behavior in 

most cases by using bid price rules instead of solving the exact assortment optimization prob-

lem. This is in line with the literature on the optimization of expected revenue: Chaneton and 

Vulcano (2011) and Meissner and Strauss (2012a) make similar observations. But, despite of 

their widespread use, bid price controls can sometimes yield a comparatively poor perfor-

mance. This may be due to the fact that bid price controls are not always able to represent the 

optimal policy in networks, especially if customer choice is considered (see, e.g., Talluri and 

van Ryzin (1998)). By contrast, the solution of the assortment optimization problem is able to 

represent all decision options. Thus, SBO-AOF-CVaR(𝛼) performs slightly better than the bid 

price controls. Nonetheless, our results indicate that SBP-BPF-CVaR(𝛼) and SBO-BPB-

CVaR(𝛼) perform very well and, thus, explain the favoritism of bid price controls in practice 

due to the trade-off between solution quality and simplicity.  

To summarize the discussion so far, the overall framework works quite well because arbitrary 

controls may be designed and optimized regarding a certain risk measure. We focused on en-

hancing existing control mechanisms with risk-averse components, since commercial revenue 

management systems are fixed in the long run. Given a control mechanism, our framework 

always improves the results of the original control. 

Finally, the framework presented can also be used to capture risk-aversion in dynamic pricing, 

where a firm decides on the products’ prices instead of their availability. Thus, instead of the 

assortment optimization problem (3), the firm has to solve a pricing problem in each period to 

determine the products’ prices. As in capacity control, the value of future sales is reflected by 

opportunity cost which is often approximated by bid prices. Therefore, our framework can be 

easily applied to risk-averse dynamic pricing because the bid prices can be modified via tuna-

ble parameters that capture risk-aversion. Moreover, if continuous prices are allowed, the 

pricing problem can be solved analytically for many demand models and, thus, much faster 

than the assortment optimization problem we consider. This could allow the SBO to perform 

more simulation runs, possibly leading to even better results.   

CONCLUSION 

We presented a flexible and modular framework for risk-averse capacity control that offers 

several advantages compared to existing approaches. First, the practical decision rules we 

consider can be implemented easily in existing operational systems because they build on 

well-established standard risk-neutral control mechanisms. Second, using SBO, the control 
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mechanisms can be tailored to every risk measure. Third, because SBO-algorithms are mean-

while widely available in standard software, the only prerequisite for using this model-free 

framework is being able to undertake Monte-Carlo simulations of the arrival process and 

choice behavior of customers. There is no need for a DP formulation of the decision problem, 

which is prohibitive for most risk measures, or an explicit model of customer behavior. 

For demonstration purposes, we conducted a simulation study with the widely used multino-

mial logit model, but our approach admits the use of any other choice model. Based on CVaR 

and expected utility, we showed that small and intuitive modifications in standard control 

mechanisms, if designed properly, can be sufficient to successfully incorporate risk-aversion 

into capacity control, including network settings and customer choice. This usually leads to a 

narrower distribution of revenues in comparison to standard controls as well as more predict-

able and stable revenues.  
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Appendix 

Appendix A 

Regarding Example 3 (parallel flights) and Example 4 (one hub), Table 6 and Table 7 summa-

rize the remaining product and segment data. 

Products  Segments 

𝑗  𝒂𝑗 𝑟𝑗  𝑙 𝒞𝑙 𝒗𝑙 𝑣𝑙0 𝜆𝑙 

1 (1, 0, 0)𝑇 400  1 {2, 4, 6} (5, 10, 1)𝑇  1 0.1 

2 (1, 0, 0)𝑇 800  2 {1, 3, 5} (5, 1, 10)𝑇  5 0.15 

3 (0, 1, 0)𝑇 500  3 {1, 2, 3, 4, 5, 6} (10, 8, 6, 4, 3, 1)𝑇   5 0.2 

4 (0, 1, 0)𝑇 1000  4 {1, 2, 3, 4, 5, 6} (8, 10, 4, 6, 1, 3)𝑇  1 0.05 

5 (0, 0, 1)𝑇 300       

6 (0, 0, 1)𝑇 600       

Table 6: Product and segment description in Example 3 

Products  Segments 

𝑗 𝒂𝑗 𝑟𝑗  𝑙  𝒞𝑙 𝒗𝑙 𝑣𝑙0 𝜆𝑙 

1 (1, 0, 0, 0)𝑇 300  1 {1,2} (0.5, 2)𝑇  1 0.1 

2 (1, 0, 0, 0)𝑇 150  2 {3,4} (0.5, 2)𝑇  1 0.06 

3 (1, 1, 0, 0)𝑇 600  3 {5,6} (0.5, 2)𝑇  1 0.1 

4 (1, 1, 0, 0)𝑇 300  4 {7,8} (0.5, 2)𝑇  1 0.1 

5 (0, 1, 0, 0)𝑇 350  5 {9,10} (0.5, 2)𝑇  1 0.09 

6 (0, 1, 0, 0)𝑇 175  6 {11,12} (0.5, 2)𝑇  1 0.07 

7 (0, 0, 1, 0)𝑇 300       

8 (0, 0, 1, 0)𝑇 150       

9 (0, 0, 1, 1)𝑇 500       

10 (0, 0, 1, 1)𝑇 250       

11 (0, 0, 0, 1)𝑇 250       

12 (0, 0, 0, 1)𝑇 125       

Table 7: Product and segment description in Example 4 
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