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Abstract 

We reconsider the stochastic dynamic program of revenue management with flexible products and cus-

tomer choice behavior as proposed by Gallego et al. [Gallego G, Iyengar G, Phillips RL, Dubey A (2004) 

Managing flexible products on a network. Working paper, Columbia University, New York]. In the scien-

tific literature on revenue management, as well as in practice, the prevailing strategy to operationalize 

dynamic programs is to decompose the network by resources and solve the resulting one-dimensional 

problems. However, to date, these dynamic programming decomposition approaches have not been appli-

cable to problems with flexible products, because sold flexible products must be included in the dynamic 

program’s state space and do not correspond directly to resources.  

In this paper, we contribute to the existing research by presenting a general approach to operationalizing 

revenue management with flexible products and customer choice in a dynamic programming environ-

ment. In particular, we reformulate the original dynamic program by means of Fourier-Motzkin elimina-

tion to obtain an equivalent dynamic program with a standard resource-based state space. This reformula-

tion allows the application of dynamic programming decomposition approaches. Numerical experiments 

show that the new approach has a superior revenue performance and that its average revenues are close to 

the upper bound on the optimal expected revenue from the choice-based deterministic linear program 

(CDLP). Moreover, our reformulation improves the revenues by up to 8% compared to an extended vari-

ant of a standard choice-based approach that immediately assigns flexible products after their sale. 

Keywords: Revenue Management, Flexible Products, Dynamic Programming Decom-
position, Customer Choice, Fourier-Motzkin Elimination 
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1 Introduction 

While the specification of common, regular products is fixed in advance, a flexible 

product consists of two or more alternative specifications, such that the seller will assign 

the purchaser to one of these alternatives at a later point in time (see, e.g., Gallego et al. 

(2004)). From a revenue management point of view, this supply-side flexibility leads to 

improved capacity utilization and mitigates the negative impact of forecast errors that 

often occur due to demand’s stochastic nature. From a marketing perspective, flexible 

products are an interesting tool for market segmentation. Owing to their inherent uncer-

tainty, and because they are offered at a lower price, they are perceived as inferior by 

the customer and induce additional low value demand, while avoiding excess cannibali-

zation. Flexible products have to be distinguished from opaque products, whose utilized 

resources the firm determines immediately after the sale, thus losing the benefit of post-

poning the products’ assignment. 

In this paper, we reconsider the problem of choice-based revenue management with 

flexible products, which Gallego et al. (2004) introduced. In their paper, these authors 

incorporated flexible products into the dynamic program (DP) for revenue management 

with arbitrary resource networks, while assuming choice-based demand behavior. To 

incorporate flexible products, they extended the state space of the DP from a purely 

resource-based one to a space that contains resources’ remaining capacity as well as 

commitments reflecting sold flexible products that must be assigned to alternatives later 

on. An inherent feasibility problem ensures that the remaining capacity can satisfy the 

commitments. 

In the traditional setting without flexible products, the standard way to make such a 

multidimensional DP operational is through dynamic programming decomposition 

(DPD). Standard DPD can be roughly summarized as follows: At first, a linear approx-

imation of the corresponding DP is solved to obtain dual variables which capture the 

network effects. The dual variables are then used to decompose the network by re-

sources. Doing so provides single-resource DPs that are easily solved to optimality. 

Within the single-resource DPs, only products that use the corresponding resource are 
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considered and the capacity consumption of other resources is captured by reducing the 

products’ revenues according to the dual variables from the linear approximation.  

However, this approach is not applicable to the DP with flexible products, because its 

state space contains commitments that do not correspond directly to resources. In other 

words, if a flexible product is sold, the resources whose capacity is consumed are un-

known, as they are determined later. Thus, an assignment to a single-resource DP and 

the immediate reduction of the remaining capacity are not possible if the flexibility 

should be preserved. 

Our main contribution is that we show how to obtain an equivalent reformulation of the 

original DP whose state space is no longer based on commitments. The central idea is to 

apply Fourier-Motzkin elimination (FME; see, e.g., Schrijver (1998), Chapter 12.2) to 

the feasibility problem inherent in the DP. In doing so, additional “artificial” resources 

are added, allowing the flexible products to directly correspond to the artificial re-

sources. This allows the reformulation as a standard revenue management problem 

without flexible products. We call this the surrogate approach. The key benefit of the 

new state space is that it enables the application of DPD and other standard methods, 

which make dynamic programming-based, large-scale implementations operational.  

The remainder of this paper is structured as follows: In Section 2, we review the rele-

vant scientific literature and position our work. In Section 3, we briefly summarize the 

standard DP of revenue management with flexible products, which Gallego et al. (2004) 

proposed, and restate the relevant notation. On this basis, we derive the surrogate refor-

mulation in Section 4. By using numerical experiments, we evaluate DPD of the surro-

gate reformulation in Section 5. We use the upper bound from the optimal objective 

value of the choice-based deterministic linear program (CDLP), as well as two standard 

methods―the CDLP’s primal solution and an adequate extension of the DPD ad hoc 

approach known from the literature―as benchmarks. In Section 6, we discuss our re-

sults and conclude the paper.  
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2 Related Literature 

Initially, revenue management research assumed that demand was independent of the 

available products and of other customers (the well-known independent demand as-

sumption). A considerable amount of work was done on the solution of single-resource 

problems (see, e.g., Littlewood (1972) for the earliest work; Belobaba (1987, 1989) for 

the expected marginal seat revenue heuristic; Lee and Hersh (1993), as well as Lauten-

bacher and Stidham (1999), for analyses of the exact DP formulation). However, as 

soon as networks of resources are considered, the corresponding DP formulations are 

difficult to solve even for small instances. Consequently, many heuristic approaches 

have been developed to approximate the DP. These approaches are mainly based on the 

idea of decomposing the network problem into a collection of smaller sub-problems. 

Decomposition is usually done by resources, while network effects are considered by 

adequately modifying the revenues of products that use more than one resource. The 

idea is to subsequently apply single-resource methods to the obtained sub-problems. We 

refer to Talluri and van Ryzin (2004b), Chapter 3.4, for an overview. Well-known de-

composition approaches are origin-destination factor methods, fare proration (see, e.g., 

Kemmer et al. (2011) for an extension of the standard approach to large-scale applica-

tions), and DPD, which is most common in practice and literature, and is this paper’s 

focus. The idea of DPD is to use the dual variables of a corresponding deterministic 

linear program (DLP) (see, e.g., Talluri and van Ryzin (1998)) to capture network ef-

fects and modify the products’ revenues in the sub-problems. A further refinement of 

the standard DPD approach is studied in Zhang (2011). In addition, there are a few spe-

cific decomposition ideas (see, e.g., Cooper and Homem-de-Mello (2007), who include 

ideas from mathematical programming, and Birbil et al. (2014), who decompose the 

network by product types that require the same combination of resources). 

Over the past decade, two major trends have emerged, which we will address in the fol-

lowing: first, the incorporation of demand-side substitution, which stems from customer 

choice behavior; second, the integration of supply-side substitution via flexible prod-

ucts. 
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Regarding the first trend, Talluri and van Ryzin (2004a) and Gallego et al. (2004) over-

come the assumption of independent demand by considering customer choice behavior 

in the context of a single resource and a network of resources, respectively. In order to 

have a counterpart to the traditional DLP, Gallego et al. (2004) formulated the now 

well-known CDLP as a linear approximation of the underlying DP. Liu and van Ryzin 

(2008) and Miranda Bront et al. (2009) analyze the CDLP further. They assume that 

customer segments follow a standard multinomial logit model (see, e.g., Train (2009), 

Chapter 3) and that these segments consider buying products from disjoint and overlap-

ping consideration sets, respectively. Gallego et al. (2015) reformulate the CDLP in 

respect of disjoint consideration sets; this reformulation avoids the exponential number 

of variables. Meissner et al. (2013) and Strauss and Talluri (2015) investigate weaker, 

but more efficient, deterministic linear approximations than the CDLP. Recent research 

has also examined many different customer choice models (see, e.g., Davis et al. (2014) 

for the nested logit model; Hosseinalifam (2014), Chapter 3, for a ranking-based cus-

tomer choice model). Analogously to the independent demand setting, the CDLP is then 

used within an appropriate DPD approach. Liu and van Ryzin (2008) were the first to 

adapt the standard DPD to the choice-based setting. A number of subsequent papers 

have investigated this approach further (see Miranda Bront et al. (2009), as well as 

Kunnumkal and Topaloglu (2010), for a refinement of the standard DPD and deriva-

tions of upper bounds, respectively; Zhang and Adelman (2009), as well as Vossen and 

Zhang (2015b), for derivations of upper bounds and connections of DPD and the linear 

programming approach for approximate dynamic programming).  

The second trend, that is, the consideration of flexible products, is also rooted in 

Gallego et al. (2004). These authors present a generalized DP formulation for flexible 

products in arbitrary resource networks that extends the state space by commitments. 

Their formulation, which also incorporates customer choice behavior, is standard for 

revenue management with flexible products today (see Section 3). However, subsequent 

research largely continued to follow the independent demand assumption. Among oth-

ers, flexible products were investigated in the context of passenger aviation (see, e.g., 

Gallego and Phillips (2004)), air cargo revenue management (see, e.g., Bartodziej et al. 

(2006)), and the broadcasting industry (see, e.g., Kimms and Müller-Bungart (2007)). 
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Upgrades can be seen as a special case of flexible products with hierarchically ordered 

alternatives (see, e.g., Gallego and Stefanescu (2009)).  

Overbooking problems with no shows are somehow also related, because there are also 

commitments in the state space of the corresponding DP formulations. At the end of the 

booking horizon, an optimization problem is solved to determine which reservations 

should be denied, which is similar to the feasibility problem inherent in the DP formula-

tion with flexible products. However, in overbooking, commitments correspond directly 

to resources, which is similar to the traditional revenue management setting without 

flexible products. Erdelyi and Topaloglu (2010) are thus able to separate the optimiza-

tion problem at the end of the booking horizon by resources, thus making standard DPD 

applicable. Similarly, Erdelyi and Topaloglu (2009) and Kunnumkal and Topaloglu 

(2008) approximate the optimization problem at the end of the booking horizon with a 

function that is separable by products reflecting the individual overbooking costs. In 

doing so, the authors are able to decompose the DP by products. 

In contrast, in revenue management with flexible products, the standard decomposition 

by resources as in DPD is not possible, because the products do not correspond directly 

to resources. Basically, two literature streams tackling this issue have emerged: 

 In the first stream, the supply-side flexibility is relinquished, allowing a flexible 

product to actually become an opaque product. Technically, the flexible product is 

irrevocably assigned immediately after the sale to one of the alternatives. We refer 

to Talluri (2001) and Chen et al. (2010) for revenue management with opaque prod-

ucts. In doing so, the need to store a commitment for later assignment is eliminated, 

and the solely resource-based state space is retained, which renders DPD possible 

again (see Gönsch and Steinhardt (2013) for DPD with opaque products). Other au-

thors have sought to at least partially retain the flexibility. For example, Petrick et 

al. (2010, 2012) use bid prices from a deterministic linear programming (DLP) for-

mulation and reassigned the sold flexible products when the DLP is resolved during 

the booking horizon. 

 In the second stream, the supply-side flexibility is preserved at the cost of a re-

striction to special network structures. Often, only parallel resources and just one 
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flexible product are considered (see, e.g., Gallego and Phillips (2004) and Oosten 

(2004)). Gönsch and Steinhardt (2015) also considered DPD approaches, but restrict 

themselves to independent demand and airline upgrading, where hierarchical up-

grades can be granted independently on each leg of a multi-leg flight. They use re-

sults from production planning that Leachman and Carmon (1992) obtained earlier.  

This paper overcomes the drawbacks inherent in both literature streams. It enables DPD 

under customer choice behavior with arbitrary network structures, while fully retaining 

the supply-side flexibility. Additionally, in order to obtain a valid benchmark procedure 

for comparison, we adequately adapt an existing approach from choice-based revenue 

management to the flexible products setting. Our benchmark approach follows the idea 

of the first literature stream described above. In particular, it incorporates flexible prod-

ucts into the DPD approach of Liu and van Ryzin (2008) by immediately assigning 

them after sale. 

3 Standard model formulation with flexible products 

In the following, we first summarize the choice-based revenue management problem 

with flexible products (see Gallego et al. (2004)) and repeat the relevant notation (Sec-

tion 3.1). Thereafter, we restate the corresponding DP (Section 3.2). 

3.1 Problem formulation and notation 

We consider a firm that sells regular products ∈ 1,… ,  and flexible prod-

ucts ∈ 1,… , . These products use resources ∈ 1,… ,  jointly 

and may be linked to sale restrictions or rules in order to segment the market. The cus-

tomers arrive successively and stochastically over time before service provision. The 

regular products are associated with revenues , … , . Furthermore, 

each regular product  has a capacity consumption , … , , which is 

1 if product  uses resource , and 0 otherwise. Regarding the flexible 

products with revenues , … , , the resources to be utilized can be 

decided just before service provision. More precisely, a customer who buys flexible 

product  is guaranteed the resources  of one of the alternative regular products 
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∈ ⊆ . The obtained revenue  is fixed in advance and independent of this 

assignment. 

For notational convenience, we use ,  to denote the network structure, where 

 is the regular products’ capacity consumption matrix and, by slightly 

abusing notation, , … ,  is the flexible products’ vector of alterna-

tives. 

The state of the selling process is described by the remaining capacity , … ,  

and the vector of commitments , … , , which denotes the number of sold 

flexible products. Selling a regular product  reduces the remaining capacity to , 

and selling a flexible product  increases the commitment vector to , with 	  

referring to the -th standard basis vector in . 

We discretize the booking horizon into  time periods, such that in each period  there 

is, at most, one customer arrival. The periods are numbered backward in time, and 

w.l.o.g., the probability  of a customer’s arrival is time-homogeneous. Any capacity 

remaining at the end of the booking horizon is worthless and overbooking of the given 

resources’ capacity is not allowed. In each period , the firm’s decision problem is to 

determine a subset of products to offer, called the offer set. Given an offer set ⊆ ∪

, an arriving customer purchases product  with probability , product  with 

probability , and makes no purchase with probability . The firm aims to 

maximize its total overall revenue.  

In what follows, we omit the index sets of the products and resources where possible. 

For example, the notation ∀  means ∀ ∈ , ∑ 	means ∑ ,∈  and max 	 means 

max ⊆ ∪ .  

3.2 Dynamic programming formulation 

Given the remaining capacity  and the commitments , the optimal expected revenue-

to-go with  time periods left is denoted by ,  and satisfies the Bellman equation 

(DP-flex) 

 , max ∑ ⋅ ⋅ ,    
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 ∑ ⋅ ⋅ ,   

 ⋅ 1 ⋅ ,      (1) 

with the boundary conditions , ∞ if , ∉ ,  and , 0 if 

, ∈ , . 

The condition , ∈ ,  describes a feasible state and holds if the capacity is non-

negative and can satisfy all commitments in the given network structure , . More 

formally, , ∈ ,  if and only if there exist (nonnegative and integer) distribution 

variables  denoting how many commitments regarding flexible product  will be 

fulfilled with alternative  satisfying the feasibility problem (see Gallego et al. (2004)): 

 ∑ ∑ ⋅∈ 	   ∀     (2) 

 ∑ ∈  ∀     (3) 

 ∈  ∀ , ∈     (4) 

To illustrate the problem, we introduce the following running example (expressed in 

airline terminology) that will also be reconsidered in Section 4 to illustrate the reformu-

lation as well as the transformation we propose. 

  
Figure 1: Airline network in running example 

Example: Consider an airline that offers transportation from A to B over a hub H at two 

different times of day as depicted in Figure 1, resulting in a small network with 4  

legs. There is one flexible product 1 that uses either legs 1 and 2 (alterna-

tive ) or legs 3 and 4 (alternative ). Table 1 represents the correspond-

ing instance of the feasibility problem (constraints (2) and (3)) without integrality con-

straints, where the first column refers to the row number (rows (i)–(iv) are instances of 

constraint (2), row (v) is an instance of constraint (3)): 

  

A H

Leg 1 ( ; morning)

Leg 3 ( ; afternoon)

B

Leg 2 ( ; morning)

Leg 4 ( ; afternoon)
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Row    Right-hand side 

(i) 1    

(ii) 1    

(iii)  1   

(iv)  1   

(v) 1 1   

Table 1: Feasibility problem in running example 

4 Surrogate approach 

The commitments in the state space of DP-flex (1) are obviously necessary to solve the 

feasibility problem (2)–(4) throughout the booking horizon. However, because the 

commitments do not correspond directly to resources, they inhibit the use of decomposi-

tion by resources. 

To overcome this problem, we suggest applying FME in order to project the distribution 

variables  out of the feasibility problem. In doing so, additional “artificial” resources 

are added, with the flexible products now corresponding directly to the artificial re-

sources (Section 4.1). In Section 4.2, we use the DP formulation to show that this allows 

the reformulation as a standard revenue management problem without flexible products, 

such that standard solution approaches and heuristics can be used. In Section 4.3, we 

analyze the problem size of several network types in which flexible products occur in 

practice.  

4.1 Transformation of the feasibility problem 

In this subsection, we focus on the feasibility problem (2)–(4) by thinking of it as a stat-

ic problem that must be solved for a given network ,  at some point in time during 

the booking horizon, in order to decide whether a state ,  is feasible. We show how 

the distribution variables can be eliminated and explain the output of this elimination 

process. 

In the feasibility problem, the integrality of the assignments of customers to alternatives 

is ensured by ∈  in (4). However, when projecting out the distribution variables 

by means of FME, we cannot keep this constraint and need a formulation that includes 

only  constraints:  



 

11 

 ∑ ∑ ⋅∈  ∀    (5) 

 ∑ ∈ 		 ∀     (6) 

 0 	∀ , ∈     (7) 

Constraints (5)–(7) are the linear relaxation of (2)–(4). Whereas (5) and (7) correspond 

directly to (2) and (the relaxed) (4), constraints (6) may be less obvious. They follow 

from rewriting (3) as ∑ ∈ 	∀ , which is equivalent, because the feasible re-

gion defined by (2) and (the relaxed) (4) with regard to  is a convex polytope includ-

ing . In order to ensure that (2)–(4) can technically be replaced with (5)–(7), we claim 

that the following condition needs to hold: 

Condition 1: If the linear relaxation (5)–(7) has an arbitrary solution, there exists also 

an integer solution (i.e., a solution given the same number of commitments which (addi-

tionally) satisfies (4)). 

Please note that Condition 1 is satisfied in most applications. For example, it is a suffi-

cient condition for Condition 1 to be valid that the left-hand side coefficient matrix of 

the feasibility problem (2)–(3) (or, equivalently, (5)–(6)) is totally unimodular, since 

adding an identity matrix as in (7) would preserve this property (see, e.g., Martin 

(1999), Chapter 14.2). Total unimodularity is, at least for relevant problem sizes, easy to 

check (see, e.g., Walter and Truemper (2013)). Please note that total unimodularity in 

our case refers to the complete feasibility problem including (3) and thus to a different 

matrix than in the common discussion in the revenue management literature, where it 

refers to the left-hand side matrix of the well-known deterministic linear program (DLP; 

see, e.g., Talluri and van Ryzin (2004b)), that is, (2) without (3) but with an additional 

identity matrix resulting from demand constraints. It is well-known that total unimodu-

larity is satisfied, for example, in problems for which corresponding network flow for-

mulations can be constructed. For our feasibility problem, the construction of such net-

work flow formulations can be performed analogously to the construction for the DLP 

(see, e.g., Glover et al. (1982), as well as Bertsimas and Popescu (2003) for the con-

struction of network flow formulations in origin-destination networks, and Chen (1998) 

for hotel networks). Even more, recall that total unimodularity is only a sufficient condi-
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tion, and there are also many other settings without total unimodularity which satisfy 

Condition 1.  

Note that in the case that Condition 1 does not hold, network instances whose capacity 

is slightly overestimated could potentially result from the linear relaxation (see also 

Proposition 1 and the note thereafter).  

Now, we can project the distribution variables  out of (5)–(7) by using FME. The 

classical FME idea can be summarized as follows: Consider that we want to project 

variable  out of the inequality system ⋅ 	∀ , ⋅ 	∀ . This inequality 

system has a feasible solution if and only if max min , which is equal to the 

system of linear inequalities ⋅ ⋅ 	∀ , . Therefore, the initial inequality 

system can be replaced equivalently by the latter constraints. 

We can now apply this idea to our setting, considering one distribution variable after 

another. The important point here is that we also treat the state of the selling process as 

variables. To formalize this approach, let  and  be the left-hand side and right-

hand side coefficient matrices of (5)–(7), respectively. With the ∑ | | 1 vector of 

distribution variables denoted by 
∀ , ∈

, (5)–(7) can be rewritten as: 

 ⋅ ⋅ | |      (8) 

Please note that  and  only depend on the network structure ,  and are the 

coefficients. Now, Algorithm 1 creates a projection of (8) by applying a sequence of 

FMEs to the distribution variables. It can briefly be explained as follows: The distribu-

tion variables are projected out step-wise (line 1), considering one column (i.e., distribu-

tion variable) of LHS after another. In an iteration, the row indices of the current feasi-

bility problem are partitioned by their coefficient of LHS into sets of rows with posi-

tive, negative, and null coefficients (lines 2–5). Based on this, the new number of rows 

(after eliminating the current distribution variable) is determined (line 6), and an arbi-

trary indexation of these rows is introduced (line 7). Finally, in lines 8–15, the current 

distribution variable is projected out. Please note that  ( ) refers to the 

-th row of  ( ).  



 

13 

Algorithm 1: Elimination of distribution variables from the feasibility problem 

1 for 1 to ∑ | | do   consider one distribution variable 

2  ⟵ number of rows of   

3  ⟵ ∈ 1,… , : lhs , 0    partition row indices 

4  ⟵ ∈ 1,… , : lhs , 0   

5  ⟵ ∈ 1,… , : lhs , 0   

6  ⟵ | ∪ |  

   number of rows after eliminating the current distribution variable 

7  Let  be a bijection that maps 1,… , onto ∪   

    is an arbitrary indexation of the new rows after the elimination

8  for 1 to  do   construct a new row

9   if ∈  then   copy row without change

10    ⟵  and ⟵   

11   else   ∈  and add these rows 

12    , ⟵   

13    ⟵ lhs , ⋅ lhs , ⋅   

14    ⟵ lhs , ⋅ lhs , ⋅   

15  Set ⟵  and ⟵   

16 return   return only , because 

Additionally, as pointed out by Bertsimas and Tsitsiklis (1997), Chapter 2.8, redundant 

rows should be regularly eliminated while performing FME (see, e.g., Paulraj and Su-

mathi (2010) on finding redundant constraints in linear inequality systems). 

Example (cont’d): Returning to the example from Section 3.2, the algorithm is illustrat-

ed by Table 2. The first set of rows (i)–(vii) refers to the initial feasibility problem, the 

second  (i’)–(vii’) to the feasibility problem after projecting out , and the third (i’’)–

(viii’’) to the transformed feasibility problem after projecting out . The last column 

refers to the operation performed to obtain the row. 

In the first set of rows, there are only 	-constraints according to (5)–(7). Now, to pro-

ject out , the rows with null coefficient ( iii , iv , vii ) are copied without 

change (resulting in rows (i’)–(iii’)). The rows with positive coefficient (

i , ii  and negative coefficient ( v , vi ) are added according to lines 13–

14 of the algorithm (resulting in rows (iv’)–(vii’)). The second iteration is performed 

analogously, finally leading to the transformed feasibility problem given by rows (i’’)–

(viii’’). The transformed feasibility problem obviously consists of non-negativity con-

straints of regular resources’ remaining capacity, i.e., 0 	∀ 1,… ,4, as well as 
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four additional constraints that each check non-negativity of the sum of two regular re-

sources’ remaining capacity less the commitments for the flexible product: 

0
0
0
0

1
1
0
0

⋅

0
0
1
1

⋅

1
0
1
0

⋅

0
1
0
1

⋅

1
1
1
1

⋅   

 
Row    Right-hand side Operation 

(i) 1     
(ii) 1     
(iii)  1    
(iv)  1    

(v) 1 1    

(vi) 1   0  

(vii)  1  0  

(i’)  1   (iii) 

(ii’)  1   (iv) 

(iii’)  1  0 (vii) 
(iv’)  1   (i) + (v) 
(v’)     (i) + (vi) 
(vi’)  1   (ii) + (v) 
(vii’)     (ii) + (vi) 

(i’’)     (v’) 

(ii’’)     (vii’) 

(iii’’)     (i’) + (iii’) 

(iv’’)     (ii’) + (iii’) 
(v’’)     (i’) + (iv’) 
(vi’’)     (ii’) + (iv’) 
(vii’’)     (i’) + (vi’) 

(viii’’)     (ii’) + (vi’) 

Table 2: Algorithm 1 in running example 

In general, we obtain the following transformed feasibility problem (9) and (10) which 

has the same form as the feasibility check in the traditional setting without flexible 

products, in which only the non-negativity of the remaining capacity is checked (see, 

e.g., Talluri and van Ryzin (2004b), Chapter 3.2): 

 0  ∀ ∈     (9) 

 0 ∑ ⋅ ∑ ⋅  ∀ ∈ 1,… ,    (10) 

Constraints (9), in which the non-negativity of the regular resources’ remaining capacity 

 is checked, are in fact identical. Constraints (10) can be interpreted as analogous 

conditions that require the non-negativity of some additional, artificial resources 
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1,… , . Please note that the number  of artificial resources as well as the val-

ues of  and  are determined by FME. In Section 4.3, we investigate the number  

subject to different network types.  

Each artificial resource  has a capacity of ̃ ∑ ⋅ ∑ ⋅  and can be con-

sidered a pool of several regular resources that captures their alternative usage: It pools 

the capacity of some resources (those with 1) and is required by regular products 

needing these resources, as well as by one or more flexible products that use these re-

sources alternatively (those with 1).  

To ease notation in the following, we group the coefficients  and  into 

,  and , . Furthermore, we group the artificial resources repre-

sented by the right hand side of (10) into , , , ∑ , 	 ⋅

∑ , ⋅ . Finally, we define , ∑ , ⋅ , which can 

be interpreted as a regular product’s capacity consumption of artificial resources. Given 

these definitions, (9) and (10) can be abbreviated to  

     (11) 

 , , , ,     (12) 

and we can state the following result: 

Proposition 1: Given Condition 1 holds, , ∈ ,  (that is, the feasibility problem 

(2)–(4) has a solution) if and only if , , , ,  (that is, (11)–(12) has a so-

lution). 

Proof: See Appendix A. 

Note that if Condition 1 does not hold, the transformed feasibility problem in (11)–(12) 

becomes heuristic, and the artificial resources slightly overestimate capacity for flexible 

product  by, at most, | | capacity units.  

Example (cont’d): To illustrate the notation in our example, there are 4 artificial 

resources. Resource 1 is included in artificial resources 1 and 2, (

1,1,0,0 ) and so on, that is, 0,0,1,1 , 	 1,0,1,0 , 	 0,1,0,1 . The 

flexible product consumes capacity on all artificial resources ( 1,1,1,1 ). 
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4.2 Reformulation as a standard revenue management problem 

We next consider the dynamic revenue management problem again and show how 

Proposition 1 allows for managing the sales process of flexible products. A straightfor-

ward application of the transformed feasibility problem would be to replace (2)–(4) re-

peatedly to check which products can be offered for sale. More precisely, consider the 

check whether a regular product  (a flexible product ) can be sold given the current 

state , . One could, of course, reduce the regular resources’ remaining capacity to 

 (increase the commitments to ), then apply FME, and finally check 

whether , , , ,  ( , , , , ) has a solution. 

However, it is not necessary to repeat FME so frequently throughout the booking hori-

zon, which we will show in the following. 

Proposition 2: Let , ∈ ,  be an arbitrary state of DP-flex. Then, we have  

(a) , ∈ ,  if and only if , , , , 	∀   

and  

, ∈ ,  if and only if , , , , 	∀  

(b) , , , , 	 , , , , , 	∀   

and   

, , , , , , , , , 	∀   

Proof: Expression (a) obviously follows from Proposition 1. Appendix B.1 provides the 

proof of expression (b). 

Expression (a) implies that the decision whether a regular product  (a flexible product 

) can be offered in state , ∈ ,  need not be made by the original feasibility 

check (5)–(7), but can be equivalently made by using (11)–(12) instead. Expression (b) 

implies that, after a sale of a regular product  (of a flexible product ), FME need not 

be repeated. Instead, the regular and artificial resources capacity , , , ,  can 

simply be reduced by , ,  (by , , ), in order to obtain the trans-

formed feasibility problem of the following state. 

By exploiting the previous results, we can derive an alternative DP formulation. Con-

sider an arbitrary instance of the transformed feasibility problem given by regular and 
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artificial resources’ remaining capacity  and , respectively, as well as by the coeffi-

cients , , and . We define the DP’s state space directly as , . Let ,  

denote the optimal expected revenue-to-go with  periods left, which can be computed 

recursively using the following Bellman equation (DP-surr): 

 , max ∑ ⋅ ⋅ ,   

 ∑ ⋅ ⋅ ,   

 ⋅ 1 ⋅ ,      (13) 

with the boundary conditions , ∞ if , ≱  and ,

0	∀ , . Subsequently, we can formulate the following result: 

Proposition 3: , , , , ,  for all , , . 

Proof: See Appendix B.2. 

Propositions 2 and 3 imply that DP-flex (1) is indeed fully equivalent to DP-surr (13). 

The optimal expected value from the initial state is identical, and both DP formulations 

can be thought of as being carried out in parallel. More precisely, they allow the same 

decision options (due to Proposition 2 (a)) and virtually make the same decision (due to 

Proposition 2 (b) and Proposition 3). Thus, DP-surr can be used instead of DP-flex, we 

can drop the commitments from the state space, and, instead, track regular and artificial 

resources’ capacity.  

Accordingly, it suffices to apply FME only once to a given network, namely at the be-

ginning of the booking horizon. In doing so, we fully retain the supply-side flexibility 

by postponing the assignment of flexible products. From a technical point of view, flex-

ible products now correspond directly to resources. A flexible product is treated like a 

regular one; that is, the remaining capacity of artificial resources  is immediately re-

duced by , and the regular resources are left unchanged. In comparison, a regular 

product  requires—apart from the standard consumption —one unit of capacity of 

artificial resource  for every resource pooled in  and used by ; that is, 

∑ ⋅ . Thus, DP-surr (13) has the same form as a standard revenue management 

problem without flexible products. This finally enables the application of standard solu-

tion approaches like DPD.  
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We call the network of products and resources underlying DP-surr the surrogate net-

work of the original network underlying DP-flex. The surrogate networks are not only a 

technical output of FME, but are usually quite intuitive.  

Example (cont’d): In the running example, the artificial resources are interpretable as 

upper limits on the total amount of the flexible product that can be sold. Obviously, the 

number of sales is restricted by the legs out of A ( ̃ )  and into B ( ̃

). Additionally, remember that passengers travel either in the morning (legs 1 and 2) 

or in the afternoon (legs 3 and 4). If legs 1 and 4 are fully booked, no additional flexible 

product can be sold. This restriction is captured by ̃ . Similarly, legs 2 and 3 

may be the bottleneck ( ̃ ). Together, these four artificial resources consider 

in an meaningful way all four combinations of bottlenecks for the number of sales that 

may occur and restrict sales of the flexible product to min min .  

Later, we also give an analogous interpretation of the example networks used in the 

numerical experiments (see Sections 5.2.2 and 5.3.2). 

4.3 Network types and size of the surrogate networks  

In the previous subsection, we have shown how an arbitrary revenue management prob-

lem with flexible products can be reformulated as an equivalent standard revenue man-

agement problem without flexible products. In this subsection, we focus on the size of 

the resulting surrogate network. This is an important issue, since FME can, in general, 

add a large number of constraints and there are examples where the number of added 

constraints is exponential in the problem size. Clearly, such examples also exist in the 

context of revenue management. When formulating the surrogate network, two or more 

of the  regular resources form an artificial resource, which a subset of the flexible 

products then uses. Thus, we have a maximum of 2  artificial resources. Exam-

ples that reach this upper bound can be easily constructed.  

However, the networks (or, often, subnetworks), in which flexible products actually 

occur in practice, usually have a structure in which the number of artificial resources is 

mostly far less and stays polynomially bounded. It is important to observe that the num-

ber of artificial resources only depends on the structure of flexible products; that is, their 
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alternatives . This number is completely independent of the regular products and 

also independent of flexible products’ prices. That is, it does not increase if, besides an 

existing flexible product , a second flexible product ′ is added with identical alterna-

tives , but a different revenue and/or demand. Moreover, if arbitrary flexible 

products are deleted from a network, the number of artificial resources never increases. 

In the following, we thus focus on flexible products’ structure and consider several net-

work types whose flexible products are frequently used along with the resulting number 

of artificial resources.  

Network type 1 (fully flexible parallel resources)  

This network type consists of  parallel resources and a single flexible product that 

may be assigned to each of the  resources: | ⋅ , 1,… , , where 

the columns to the right of  denote the arbitrary resource consumption of regular 

products. 

In practice, this network type occurs, for example, in the travel industry. Many tour op-

erators offer travel roulette, which assigns customers to one of several similar hotels in 

their destination area. 

In terms of the surrogate network, there is only one artificial resource that pools the ca-

pacity of all regular resources; that is, ̃ ∑ . This resource is used by all prod-

ucts. 

Proposition 4: In network type 1, the number of artificial resources is 1 (and thus 

constant in the number of regular resources ). 

We show Proposition 4 by induction in Appendix C.1. 

Network type 2 (pairwise flexible parallel resources) 

This network type consists of  parallel resources and 1 flexible products. Flexi-

ble product  may be assigned to resource  or 1: | ⋅ , 

, 1 	∀ . 

This network type arises, for example, in manufacturing. In a chain of factories, each 

factory  might be able to produce products 1 and . When quantifying the benefit 

of flexibility, Jordan and Graves (1995) find that such a chain of factories yields nearly 
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the same output as a set of fully flexible factories, that can each produce every product. 

However, we leave out the last link in the chain here; there is no product that can be 

produced alternatively in factory  or 1. Another example is upgrading to the next 

higher resource in revenue management with parallel resources, for example, single-

resource airline revenue management. Among others, Gallego and Stefanescu (2009) 

consider this upgrading “limited-cascading upgrading,” while Shumsky and Zhang 

(2009) consider it “single-step upgrading.” Moreover, the flexibility can also relate to 

time if, for example, guests’ alternative stays on a cruise ship are considered. 

Regarding the surrogate network, for all ∈ 1,… , 1  and ∈ 1,… , , 

there is an artificial resource ̃ ∑  that pools the capacity of the adjacent regu-

lar resources  to . Artificial resource ̃  is jointly used by flexible products  to 

1. 

Proposition 5: In network type 2, the number of artificial resources is 
⋅

 

(and thus polynomial in the number of regular resources ). 

We show Proposition 5 by induction in Appendix C.2. 

Network type 3 (adjacent flexible parallel resources) 

This is a generalization of network type 2 and consists of  parallel resources, but 
⋅

 flexible products. More precisely, for all ∈ 1,… , 1  and ∈

1,… , , there is a flexible product that may be assigned to the adjacent resources 

 to . Therefore, the flexible product  may be described in terms of the topologically 

first alternative  and last alternative , and we have: | ⋅ , 

|	 	∀ . 

In practice, this network type arises in generalizations of type 2, where, for example, a 

factory can produce more than two products; that is, some factories  are able to pro-

duce products 2, 1, and . In single-resource revenue management, Gallego and 

Stefanescu (2009) have termed this generalization “full-cascading upgrading,” while 

Shumsky and Zhang (2009) call it “multi-step upgrading.” 
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We obtain the same set of artificial resources as in network type 2. However, the artifi-

cial resource ̃  that pools capacity from  to  is now shared by all flexible products 

whose first, as well as last alternative, is between  and  ( ⊆ , 1,… , ). 

Proposition 6: In network type 3, the number of artificial resources is 
⋅

 

(and thus polynomial in the number of regular resources ). 

The structure of the proof is similar to the proof of Proposition 5 and omitted. 

Network type 4 (independent flexible block wise resources) 

This network type has a block structure, which consists of resource blocks ∈

1,… ,  with (w.l.o.g.) an identical number of  resources in each block, 

such that there are ⋅  resources in total. A flexible product  simulta-

neously uses resources from an arbitrary subset of blocks ⊆ . If  uses a block 

, the flexibility there is defined according to network type 3 (types 1 and 2 are also 

possible): | ⋅ , | , , 	∀ . The key point 

here is that the blocks are independent in the sense that the final assignment of flexible 

product  to a regular resource in one block is independent of its assignment in other 

blocks; that is, an alternative ∈  combines arbitrary  for all ∈  and 

| | ∏ ∈ . 

In practice, this setting occurs, for example, in multi-stage production processes (see, 

e.g., Leachman and Carmon (1992)), in which the blocks correspond to the stages and 

the resources in a stage correspond to its machines. Another example is upgrading in 

network airline revenue management. Here, the blocks correspond to legs in the net-

work and a ticket (i.e., a flexible product) encompasses one or more legs. On each leg, 

the passenger may be arbitrarily upgraded to a higher compartment (i.e., another re-

source in this block), for example, from economy to business class (see, e.g., Gönsch 

and Steinhardt (2015)). 

In respect of the surrogate network, each resource block can be considered independent-

ly. In each block , we obtain 
⋅

 artificial resources. As in network types 

2 and 3, each resource ̃  pools the capacity of the adjacent regular resources  to  for 

all ∈ 1,… , 1  and ∈ 1,… , . 
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Proposition 7: In network type 4, the total number of artificial resources is 

⋅
⋅ ⋅

 (and thus polynomial in the number of regular 

resources ). 

The proof is similar to the proof of Proposition 5 and omitted. 

Network type 5 (dependent flexible block wise resources) 

Like network type 4, this network type has a block structure, which consists of resource 

blocks ∈ 1,… , . Again, a flexible product  simultaneously uses re-

sources from an arbitrary subset of blocks ⊆ . 

In contrast to network type 4, we now consider resource types. There are the same re-

source types ∈ 1,… ,  in each resource block. Let the tuple ,  refer to a re-

source of type  from a specific block , and let ,  denote its capacity, such that 

there are ⋅  resources in total. The resource types follow a nested upgrade 

hierarchy. A higher index indicates a higher position in the hierarchy; that is, a more 

versatile resource. 

The flexible product  is associated with resource type ; that is, it can be assigned to 

 or upgraded to any . Regarding block , we have: | ⋅ , 

	∀ , . The important point here is that the assignment of product  

must be the same  for all blocks; that is, an alternative ∈  combines the 

 for all ∈  and one . Thus, we have | | 1. 

The car rental industry is one of the most important users of such upgrades (see, e.g., 

Geraghty and Johnson (1997), Pachon et al. (2003), and Fink and Reiners (2006)). 

There, the blocks correspond to the days of the planning horizon and the resource types 

in a block correspond to different car types following a given upgrade hierarchy (e.g., 

economy, compact, and full-size car types). Another example is upgrading in the hotel 

industry, where the resource types correspond to different room types. 

Regarding the surrogate network, we cannot consider the resource blocks independently 

anymore, because the assignments must be the same for all blocks. In the following, for 

all ∈ 1,… , 1 , we define  

, , 1, , . . . , , | ∈ 	∀ ∈ , … , . Each 
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element ∈  refers to a set of resources with exactly one resource ,  of 

each type  from an arbitrary block . Thus,  contains 1 resources. 

As all combinations of blocks are considered,  contains  sets of re-

sources. Now, there is one artificial resource ̃  for each ∈  and ∈

1,… , 1  that simply adds up the capacity of the resources in : 

̃ ∑ ,, ∈ 	∀ ∈ , ∈ 1,… , 1    (14) 

Let  denote the set of resource blocks from which resources are contained in 

∈ . The artificial resource ̃  is shared by all products with  and 

⊇ . 

Proposition 8: In network type 5, the total number of artificial resources is 

∑  (and thus polynomial in the number of blocks and exponential in the 

number of resource types). 

The structure of the proof is similar to the proof of Proposition 5 and is omitted. 

Please note that the number of resource types is relatively small and constant in most 

practical applications. For example, in the car rental industry, there are often three to 

five car types in the upgrade hierarchy. In contrast, the number of resource blocks con-

sidered varies across rental stations and is often subject to the individual decision mak-

er. Thus, also in this setting, the problem stays polynomially bounded in the relevant, 

potentially scalable problem parameters, that is, the resource blocks.  

5 Computational experiments 

In this section, we evaluate the revenue performance of the surrogate approach from 

Section 4. We use two airline networks introduced by Liu and van Ryzin (2008), which 

became de facto standard test instances for choice-based revenue management (see, e.g., 

Miranda Bront et al. (2009); Meissner and Strauss (2012)). We describe the experi-

mental setup in Section 5.1, and we evaluate the approaches’ revenue performance in 

detail in Sections 5.2 and 5.3, separately for the two networks under consideration.  
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5.1 Experimental setup 

We summarize the implemented revenue management methods in Section 5.1.1. Please 

note that the technical details are provided in Appendix D. Furthermore, we describe the 

customer choice behavior in Section 5.1.2 and explain the consideration of forecast un-

certainty in Section 5.1.3. 

5.1.1 Implemented revenue management methods 

Our main method is DPD-surr, which implements the surrogate approach described in 

the previous section. In this method, the surrogate reformulation is solved with the DPD 

approach of Liu and van Ryzin (2008). Details can be found in Appendix D.4. As 

benchmarks, we implemented the two methods DPD-ah and CDLP-surr as well as an 

upper bound (UB) on the optimal expected revenue of DP-flex (1): 

 DPD-ah is a DPD approach that forgoes flexibility and immediately assigns flexible 

products (ad hoc) after sale (see Appendix D.2). Several studies report a good reve-

nue performance of this approach in settings with independent demand (see Section 

2). We incorporated this ad hoc assignment into the DPD approach of Liu and van 

Ryzin (2008). 

 CDLP-surr refers to the optimal primal solution of the corresponding CDLP formu-

lation (D.1.8)–(D.1.12) that gives us the time a set  should be offered during the 

booking horizon (see Appendix D.3). This is in line with a benchmark used by Liu 

and van Ryzin (2008). 

 UB is the upper bound obtained from the optimal objective value of the CDLP (see 

Appendix D.1). This value can be obtained by either solving the CDLP model with 

flexible products (CDLP-flex (D.1.1)–(D.1.6); see Gallego et al. (2004)) or by using 

the surrogate reformulation in the standard CDLP formulation without flexible 

products (CDLP-surr (D.1.8)–(D.1.12); see, e.g., Liu and van Ryzin (2008) and Mi-

randa Bront et al. (2009)).  

All algorithms were implemented in MATLAB (Version 8, Release R2013a). Linear 

programs were solved by the function linprog from the Optimization Toolbox. We use 
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Monte Carlo simulation to evaluate the described methods and report values averaged 

over 200 customer streams for each problem instance.  

5.1.2 Customer choice behavior 

We assume the same choice behavior as Liu and van Ryzin (2008). Therefore, the 

choice model and the notation required to describe our computational experiments are 

only summarized in brief. Each customer belongs to a segment ∈ , and customers 

from  are only interested in a subset of the entire product set, namely their considera-

tion set . Furthermore, the consideration sets are disjoint for customers belonging to 

different segments. With probability , a customer from segment  arrives. Her seg-

ment-specific purchase probabilities, that is,  for regular product ,  for 

flexible product , and  for the no-purchase alternative, are given by the standard 

multinomial logit model. They are computed using her product-specific preference 

weights, denoted by the parameters , , and  for regular product , flexible 

product , and the no-purchase alternative, respectively. Then, for this choice model, 

the purchase probability is computed by 

 
∑ ∈ ∩ ∑ ∈ ∩

     (15) 

for a regular product. For a flexible product and the no-purchase alternative, only the 

numerator changes. Please note that, because of the assumption of a multinomial logit 

model and disjoint consideration sets, the large number of (column generation) sub-

problems arising in DPD-surr, DPD-ah, CDLP-surr, and UB (i.e., the problems deter-

mining the offer set) can be solved efficiently by a simple ranking procedure (see Liu 

and van Ryzin (2008)).  

Regarding the segment probabilities’ temporal distribution, we consider two arrival pat-

terns. The first one models time-homogenous demand. In the second arrival pattern, 

called mixed, we consider that low-value demand tends to arrive earlier. This pattern is 

obtained by assuming that 50% of demand is time-homogenous, and 50% arrives ac-

cording to the classical low-before-high assumption. We straightforwardly adapt our 

models by introducing time-dependent arrival probabilities in the DPD approaches and 

in the CDLP approximations used therein.  
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5.1.3 Forecast uncertainty 

To incorporate forecast uncertainty, we implemented stochastic forecast errors as stud-

ied in Petrick et al. (2012) to disturb the regular products’ preference weights. The fore-

cast errors are itinerary-based. All forecasted preference weights concerning a specific 

itinerary are disturbed by the same factor. Therefore, a uniformly distributed random 

number ∈ ,  is drawn within every simulation run for each of the regular 

products’ itineraries, and the corresponding preference weights are multiplied by the 

factor 1 . The size of the error is controlled by the error bound ∈ 0,1 .  

5.2 Network 1: Parallel flights 

In the following sections, we explain how we modified the first example from Liu and 

van Ryzin (2008) to include flexible products (Section 5.2.1) and interpret the corre-

sponding surrogate reformulation (Section 5.2.2). We then evaluate the approaches’ 

revenue performance in detail (Section 5.2.3). 

5.2.1 Network description 

Network 1 consists of three parallel legs with capacity 30, 50, 40  that can be 

thought of as flights on the same route at different times of day. On each leg, the firm 

offers a high fare class regular product (products 1–3) and a low fare class regular 

product (products 4–6). The prices are given by 

800, 1000, 600, 400, 500, 300 . In addition, we consider a flexible product 

(product ) which can be sold at a price of 240. The flexible product guaran-

tees transportation on one of the three legs. 

There is a high fare class customer segment  (consideration set 1,2,3 ), a low 

fare class segment  (consideration set 4,5,6 ) and a flexible segment  (consid-

eration set ). The preference vectors are given by 5,10,1 , 

5,1,10 , and 10 .  

As usual in revenue management experiments, we tested different network loads. We 

varied the scarcity of capacity using a capacity factor ∈ 0.4, 0.5, … , 1.2 . Different 

customer attitudes were captured by four no-purchase preference vectors 
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, , that is, 0.01, 0.01 , 1, 5 , 	 5, 10 , and 10, 20 . The flexible cus-

tomer segment’s preference weight for the no-purchase alternative is 0.01, and the 

number of periods is set to 300.  

In the time-homogenous arrival pattern, customers of segments , , and  arrive with 

probabilities 0.2, 0.3, and 0.1, respectively. Accordingly, in the mixed 

arrival pattern, the probabilities , , 	 are 0.1, 0.15, 0.35 , 0.1, 0.45, 0.05 , 

and 0.4, 0.15, 0.05  in periods 300–251, 250–101, and 100–1, respectively. 

5.2.2 Surrogate reformulation 

The surrogate network consists of four resources: the three regular resources and one 

artificial resource with capacity . It can readily be interpreted. The artificial 

resource pools the capacity of all resources that can potentially be used to fulfill the 

flexible product. More precisely, it represents the maximum amount of flexible and reg-

ular products that can be sold, because they all jointly use the capacity of the three legs. 

Accordingly, if a product is actually sold, the artificial resource’s capacity is reduced. A 

flexible product needs capacity on this artificial resource alone, because the number of 

flexible product sales is constrained only by the joint capacity of the three legs. By con-

trast, a regular product requires one unit of capacity on ‘its’ regular resource and one 

unit of capacity on the artificial resource. The consumption of the regular resource re-

flects that one seat fewer is now available on this leg. The consumption of the artificial 

resource reflects that the seat can be used neither for a flexible nor a regular product.  

5.2.3 Performance evaluation 

Figure 2 shows the average revenues of DPD-surr, DPD-ah, and CDLP-surr relative to 

UB in all scenarios subject to the capacity factor . Each column relates to a specific 

no-purchase preference vector, and each row represents one of the two arrival patterns 

(time-homogenous or mixed). Forecast errors are not considered here. 

In general, all three methods’ revenue performance is rather good, as expected from the 

literature on DPD without flexible products (see, e.g., Miranda Bront et al. (2009)). 

There seems to be no major impact of the arrival pattern. DPD-ah usually yields 94%–
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98% of UB and CDLP-surr yields 96%–98%. DPD-surr attains even higher revenues of 

97%–99% of UB. As usual, revenue management is relatively easy for extreme network 

load factors. If capacity is very scarce ( 0.4	 and , 0.01, 0.01 ), only 

the high fare class products are offered. Similarly, revenue management becomes more 

or less obsolete when all products are offered in case of ample capacity ( 1.0), and 

all methods yield revenues close to UB. But for intermediate capacity, where revenue 

management is most relevant, considerable differences can be observed. Here, DPD-

surr shows a very stable revenue performance, whereas DPD-ah yields considerably 

lower revenues in many cases. This is most obvious for preference weights of 

, 0.01, 0.01 . In both the time-homogeneous and the mixed arrival pat-

terns, DPD-ah’s revenue falls to under 90% at 0.8, whereas DPD-surr still attains 

about 98% and CDLP-surr remains at 96%.  

Next, we focus on the relative performance of the two DPD methods and consider fore-

cast errors. Figure 3 shows the revenue gain of DPD-surr over DPD-ah, subject to the 

upper error bound  on the forecast uncertainty. To keep the figure simple, we only de-

pict the most relevant capacity factors ( ∈ 0.5, 0.6, 0.7, 0.8 ). Furthermore, we tested 

whether these revenue gains are significant at the 99% level of confidence. We calculat-

ed the revenue difference together with the empirical standard deviation on a per-stream 

basis and conducted a standard paired t-test. If the 99% confidence interval of the reve-

nue difference does not include zero, the gain is significant. For reasons of clarity and 

because all confidence intervals are similar in size, we only included error bars for the 

top and bottom lines in the plots of Figure 3. 

For the original setting without forecast errors ( 0), we observe revenue gains of 

around 1% and 2% in the majority of cases. In general, the gains increase with higher 

forecast uncertainty. The higher the , the more important it is to use flexible products 

to mitigate demand uncertainty. Obviously, DPD-surr can benefit considerably from 

retaining full flexibility of the requests already accepted. This is in line with an 

observation from Petrick et al. (2010) who obtained similar results regarding linear 

programming-based heuristics that retained flexibilities to varying degrees. 
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At first glance, it seems strange that there is almost no influence of the forecast error in 

network 1 for preference weights of , 0.01, 0.01 . This is due to the spe-

cial demand structure in this standard setting where the probability for the no-purchase 

alternative is almost zero, as long as a product can be bought ( 0	∀ ∩ ∅). 

The customers’ preference weights, which are disturbed by the forecast error, essential-

ly do not influence whether a customer buys, they only influence which product she 

buys. However, correctly anticipating this decision is not important, because the prod-

ucts in a customer’s consideration set have similar revenues, and if a leg is fully booked, 

only the other legs’ products are offered and bought with probability one.  

 
Figure 2: Average revenues of DPD-surr, DPD-ah, and CDLP-surr relative to UB in network 1 
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Figure 3: Revenue gains of DPD-surr over DPD-ah in network 1 

5.3 Network 2: Small hub-and-spoke network 

Again, we first describe the specific product and demand data of the second problem 

instance (Section 5.3.1) and interpret the corresponding surrogate reformulation (Sec-

tion 5.3.2). We then turn to the computational results (Section 5.3.3). 

5.3.1 Network description  

Network 2 consists of seven flight legs connecting the four cities A, B, C, and H (see 

Figure 4). There are 11 itineraries, and on each itinerary, the airline offers a high fare 

class and a low fare class product. Details on prices and capacity consumption of these 

22 regular products are identical to Liu and van Ryzin (2008) and provided in Table E.1 

in Appendix E. In addition, we consider five flexible products (products 1– 5). The 

first one offers transportation from A to B, either on leg 1, legs 2 and 4, or legs 3 and 5. 

The second flexible product is from A to C on either (2, 6) or (3, 7). The last three flexi-

ble products guarantee short-haul transportation on one of the two possible legs from A 

to H, H to B, and H to C. The prices of these five products are given by 

240, 280, 160, 120, 200 . We consider 15 customer segments: one high fare class 

and one low fare class segment interested in regular products for each of the origin-

destination pairs AB, AH, HB, HC, and AC, and one segment for each of the five flexi-
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ble products. Details on consideration sets, preference vectors, and segment probabili-

ties can be found in Table E.2 in Appendix E. Different customer attitudes are again 

captured by the four values of the no-purchase preference vector already used in net-

work 1. The flexible product segments’ weights for the no-purchase alternative are fixed 

at 0.01. Analogously to network 1, we consider the two arrival patterns time-

homogenous and mixed as well as a capacity factor.  

 
Figure 4: Small hub-and-spoke network (Network 2; see Liu and van Ryzin (2008)) 

5.3.2 Surrogate reformulation 

The surrogate network comprises 11 artificial resources. The artificial resources and 

flexible products’ capacity consumption are shown in Table 3.  

Regular products require one unit of capacity of the corresponding regular resource(s) 

(see Table E.1) and one unit of capacity of each artificial resource containing the regular 

resource. 

Again, the artificial resources are interpretable. For example, sales of 4 (H to B) are 

limited by the joint capacity of legs 4 and 5. This restriction is captured by the artificial 

resource ̃ . Note that the restriction imposed by artificial resource ̃

 is obviously weaker and never limiting for 4 sales, but it is necessary to cap-

ture an interaction with 1, which will be described later. 

A H

Leg 1 ( 100; morning)

Leg 2 ( 150; morning)

Leg 3 ( 150; afternoon)

C

B
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Product 1 (A to B) is a bit more tedious. Similar to the running example from Section 

4, the number of sales is restricted by the joint capacity of the legs out of A ( ̃

) and into B ( ̃ ). Furthermore, legs 2 and 5 ( ̃ ) 

or legs 3 and 4 ( ̃ ) may be the bottleneck. Together, these four artificial 

resources restrict sales of 1 to min min . 

Besides the restrictions on sales for individual flexible products, the capacity shared by 

multiple flexible products has to be taken into consideration. Artificial resource 9 is a 

simple example: Capacity on legs 4 and 5 used by 4 customers cannot be used by 1 

customers. Thus, this artificial resource – which was derived above as an individual 

restriction for 1 – is in fact not only used by 1 but also by 4. Furthermore, there can 

also be additional artificial resources that are only required because of such interactions 

between flexible products. Artificial resource 6 ( ̃ ) is an example 

of this: It restricts joint sales of 1 and 2, because customers going from A to B ( 1) 

or A to C ( 2) either leave in the morning (legs 1 and 2) or arrive in the afternoon (legs 

5 and 7). Note that this interaction between 1 and 2 is not captured by artificial re-

sources 1, 2, 9, and 11 described above, because the routing of 2 may also be restricted 

by capacity on legs 6 and 7. An analogous example is ̃ . 

 
Artificial resource Flexible product 

Index  Capacity ̃  1 2 3 4 5 

1   X 

2   X 

3   X 

4   X 

5   X 

6   X X 

7   X X 

8   X X 

9   X X 

10   X X 

11   X X X 

Table 3: Artificial resources of small hub-and-spoke network 
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5.3.3 Performance evaluation 

Analogously to network 1, Figure 5 and Figure 6 show the average revenues of DPD-

surr, DPD-ah, and CDLP-surr, as well as the revenue gain of DPD-surr over DPD-ah 

in network 2.  

Compared with network 1, average revenues in the standard setting without forecast 

errors (Figure 5) are slightly higher in network 2 for both DPD-ah (97.5%–99%) and 

DPD-surr (99%–100%). Again, the performance of DPD-surr is more stable without 

any outliers, while DPD-ah’s revenue often falls below 98% of UB for capacity factors 

of 0.8. By contrast, CDLP-surr performs considerably worse with many revenues 

around 93% and only a few values exceeding 96%. 

For , 0.01, 0.01 , the revenue gain (Figure 6) of DPD-surr is considera-

bly smaller at around 1%–2%. With the other three preference weights of ,  

considered, the gain is more or less the same as in network 1. However, especially for 

, 10,20  and time-homogeneous demand, considerably higher gains are 

observed.  

 
Figure 5: Average revenues of DPD-surr, DPD-ah, and CDLP-surr relative to UB in network 2 
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Figure 6: Revenue gains of DPD-surr over DPD-ah in network 2 

6 Discussion and future research 

Several managerial implications follow from our work. Most importantly, the inclusion 

of flexible products no longer excludes the use of standard dynamic programming tech-

niques. We presented a novel generic way to overcome the commitment-based state 

space and the feasibility problem inherent in network revenue management problems 

regarding flexible products. In the surrogate approach, the problem is reformulated by 

applying FME to the feasibility problem, and an equivalent standard revenue manage-

ment problem is obtained. This allows the direct use of standard DPD. Moreover, it al-

lows the continued use of arbitrary methods and existing software systems, albeit with 

modified input data.  

In a large number of numerical experiments, we compared the approach with a bench-

mark approach adapted from the literature that forgoes flexibility and obtains a re-

source-based state space by immediately assigning flexible products (ad hoc) after sale. 

The surrogate approach consistently obtains the highest revenues, which are close to the 

theoretical upper bound. In test instances with intermediate capacity, this approach in-

creases revenues by up to 8% compared to the ad hoc approach. Moreover, revenue 

gains increase when forecast errors are considered. Thus, we think the surrogate ap-
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proach should be the first choice when incorporating flexible products into revenue 

management.  

Moreover, the difference between the revenue of the surrogate approach and that ob-

tained with the ad hoc approach can also be roughly interpreted as the supply-side bene-

fit of offering flexible products instead of opaque products. Flexible products should be 

offered if this benefit outweighs their demand-side disadvantages (customers usually 

prefer an opaque product where they are immediately informed of what they get). How-

ever, there is no clear advice here. The difference is marginal in some cases (extreme 

capacity situations, low forecast errors) and considerable in others (intermediate capaci-

ty, medium to high forecast errors). 

We think that our results are promising, and we encourage future work on this topic. 

First, research could focus on problem instances where our transformed feasibility prob-

lem is heuristic. In this respect, a starting point might be projection for integer problems 

(see, e.g., Williams and Hooker (2016)). Second, our results indicate that heuristics re-

stricting flexible products’ flexibility can also yield a good revenue performance. Con-

sequently, we think it is promising to develop approximate dynamic programming tech-

niques tailored to flexible products that retain more flexibility than the ad hoc approach. 

For example, the linear programming approach for approximate dynamic programming 

(see, e.g., Adelman (2007) for the traditional revenue management setting; Tong and 

Topaloglu (2014), as well as Vossen and Zhang (2015a) for refinements) could be ex-

tended to flexible products.  
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Online Appendix 

Appendix A: Proof of Proposition 1 

Proposition 1: Given Condition 1 holds, , ∈ ,  (that is, the feasibility problem 

(2)–(4) has a solution) if and only if , , , ,  (that is, (11)–(12) has a so-

lution). 

Proof: First, (2)–(4) is reformulated as (8) using Condition 1. This is transformed into 

(11)–(12) by projecting out one distribution variable after the other, using Algorithm 1. 

To show that the whole algorithm keeps equivalence, it is sufficient to show that the 

inequality system before an iteration implies the inequality system after the iteration and 

vice versa. In the following, we show this for an arbitrary iteration . Please note that, 

due to the construction of the algorithm,  always refers to the first column of the cur-

rent , which contains at least one nonzero coefficient. 

W.l.o.g., assume that the coefficients in the first column are 1, 1, or 0. The system 

before the iteration starts is given by 

1 ⋅ ∑ lhs , ⋅|∑ |
 for all ∈  (A.1) 

1 ⋅ ∑ lhs , ⋅|∑ |
 for all ∈  (A.2) 

∑ lhs , ⋅|∑ |
 for all ∈  (A.3) 

and the system after the iteration by 

∑ lhs , ⋅|∑ |
 for all ∈  (A.4) 

∑ lhs , lhs , ⋅|∑ |
   

   for all , ∈ .  (A.5) 

Now, note that (A.1) and (A.2) imply 
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∑ lhs , ⋅|∑ | ∑ lhs , ⋅|∑ |
  

   for all , ∈ ,  (A.6) 

which itself implies  

∑ lhs , ⋅|∑ | ∑ lhs , ⋅|∑ |
  

   for all , ∈ .  (A.7) 

The proof that (A.1)–(A.3) implies (A.4)–(A.5) is particularly easy. Consider an arbi-

trary solution , … , |∑ | from (A.1)–(A.3). Then, (A.4) has a solution, because it 

is equivalent to (A.3). Moreover, because (A.1) and (A.2) hold, (A.7) holds and, there-

fore, also (A.5), which is (A.7) slightly reformulated.   

Now, in order to show that (A.4)–(A.5) implies (A.1)–(A.3), consider an arbitrary solu-

tion , … , |∑ |  from (A.4)–(A.5). (A.3) has a solution, because it is equiva-

lent to (A.4). Moreover, because (A.5) and its reformulation (A.7) have a solution, we 

can construct a  for which max ∈ ∑ lhs , ⋅|∑ |
 

and min ∈ ∑ lhs , ⋅|∑ |
 holds. Therefore (A.2) and 

(A.1) hold, too.  
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Appendix B: Equivalence of DP-flex and DP-surr  

Appendix B.1: Proof of Proposition 2 

Proposition 2: Let , ∈ ,  be an arbitrary state of DP-flex. Then, we have  

(a) , ∈ ,  if and only if , , , , 	∀   

and 

, ∈ ,  if and only if , , , , 	∀  

(b) , , , , 	 , , , , , 	∀   

and 

, , , , , , , , , 	∀   

Proof: Expression (a) obviously follows from Proposition 1, because we can simply 

define the state , 	 ≔ , 	  (and , ≔ , ) and apply Proposi-

tion 1 to the so-defined state. 

To show expression (b), first consider the upper case; that is, the sale of a regular prod-

uct . Regarding the first term in both brackets ( , i.e., the regular resources), the 

equality is trivial. Regarding the second term in the brackets (i.e., the artificial re-

sources), we have:  

, , ,   

∑ , ⋅ ∑ , ⋅   

∑ , ⋅ ∑ , ⋅ ∑ , ⋅   

, , , ,   

The first equality simply follows from the definition of the function ⋅  with reduced 

capacity, the second is algebra, and the third uses the definitions of ⋅  and ⋅ . 

Next, consider the lower case of Proposition 2 (b); that is, the sale of a specific flexible 

product  (in the summations, flexible products are denoted as  in the following). 

Similarly to the considerations above, we only have to consider the second term in 

brackets: 

, , ,   
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∑ , ⋅ ∑ , ⋅ , ⋅ 1   

∑ , ⋅ ∑ , ⋅ , ⋅ 1   

, , , ,   

The first and the third equality follow from the definition of ⋅  with increased com-

mitments and the second is algebra.   

Appendix B.2: Proof of Proposition 3 

Proposition 3: , , , , ,  for all , , . 

Proof: The equality is shown by induction over . It holds for 	 0, because, from the 

boundary conditions, we have , , , , , 0 for , ∈

, ⟺ , , , ,  and , , , , , ∞ other-

wise, where the equivalence is Proposition 1. 

Now, assume that the result holds for 1. In respect of , two cases have to be distin-

guished again. If the boundary condition , ∉ , ⟺ , , , , ≱  

applies, we have , , , , , ∞. Otherwise, we have 

, max ∑ ⋅ ⋅ ,   

∑ ⋅ ⋅ ,   

⋅ 1 ⋅ ,   

max ∑ ⋅ ⋅ , , , ,   

∑ ⋅ ⋅ , , , ,   

⋅ 1 ⋅ , , , ,    

max ∑ ⋅ ⋅ , , , , ,   

∑ ⋅ ⋅ , , , , ,   

⋅ 1 ⋅ , , , ,    

, , , ,   

The first equality is simply the definition of DP-flex (1), the second uses the induction 

hypothesis, the third equality follow from Proposition 2 (b), and the fourth is the defini-

tion of DP-surr (13).  
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Appendix C: Derivation of artificial resources for network types 1 and 2 

Appendix C.1: Proof of Proposition 4 

Proposition 4: In network type 1, the number of artificial resources is 1 (and thus 

constant in the number of regular resources ). 

Proof: Network type 1 consists of  parallel resources and one flexible product that 

may be assigned to the  resources. Thus, the feasibility problem (5)–(7) is given by 

	∀ 1, … ,      (C.1.1) 

∑      (C.1.2) 

 0	∀ 1,… ,      (C.1.3) 

Throughout the proof, we refer to the FME-steps as given by Algorithm 1. W.l.o.g., we 

assume that the elimination of  by Algorithm 1 is done iteratively in increasing order 

of . We index the iterations of Algorithm 1 with 1,… , 1, each referring to the 

feasibility problem before eliminating the distribution variable  (and after eliminating 

, ). Please note that iteration 1 corresponds to the initial feasibility problem and 

that the dummy iteration 1 gives us the feasibility problem after eliminating all 

the distribution variables.  

Now, by induction over , we show the following: 

Induction hypothesis: The feasibility problem in iteration  is given by 

	∀ , … ,     (C.1.4) 

 0	∀ ,… ,     (C.1.5) 

0 	∀ 1,… , 1    (C.1.6) 

∑ ∑     (C.1.7) 

Induction basis: The induction hypothesis holds for 1, because (C.1.4), (C.1.7), and 

(C.1.5) equal (C.1.1), (C.1.2), and (C.1.3), respectively, and because (C.1.6) drops out 

(∀ 1,… , 0). 
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Induction step: Assume that the hypothesis holds for . We next show that it will then 

also hold for 1. The feasibility problem of iteration 1 is obtained by applying 

FME on  in (C.1.4)–(C.1.7). The constraints/rows with null coefficients for  stay 

the same according to lines 9 and 10 of Algorithm 1: 

	∀ 1, … ,  (second constraint to last constraint of (C.1.4))  (C.1.8) 

0	∀ 1,… ,  (second constraint to last constraint of (C.1.5))  (C.1.9) 

0 	∀ 1,… , 1 (constraints (C.1.6)) 

The constraints with coefficient 1 or 1 for  are given by 

 (first constraint of (C.1.4))    (C.1.10) 

0 (first constraint of (C.1.5))    (C.1.11) 

∑ ∑  (constraint (C.1.7)) 

Consequently, adding (C.1.10) and (C.1.11), as well as (C.1.10) and (C.1.7), according 

to lines 13 and 14 of Algorithm 1 leads to 

0     (C.1.12) 

∑ ∑ ∑    (C.1.13) 

Thus, in total, we obtain the following set of constraints from iteration : 

	∀ 1, … ,   (constraints (C.1.8)) 

0	∀ 1,… ,  (constraints (C.1.9)) 

0 	∀ 1,… ,  (consisting of constraints (C.1.6) and (C.1.12)) 

∑ ∑  (constraint (C.1.13) 

These constraints equal (C.1.4)–(C.1.7) with increased ≔ 1, which concludes the 

induction step. 

Given this result, we subsequently consider the feasibility problem after completely 

executing Algorithm 1, that is, after eliminating all the distribution variables. The result-

ing problem is given by (C.1.6) and (C.1.7) with 1, because (C.1.4) and (C.1.5) 

drop out (∀ 1,… , ): 
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0 	∀ 1,… ,  (regular resources, constraints (C.1.6)) 

0 ∑  (artificial resource, constraint (C.1.7)) 

Therefore, we obtain a total of 1 artificial resource.   

Appendix C.2: Proof of Proposition 5 

Proposition 5: In network type 2, the number of artificial resources is 
⋅

 

(and thus polynomial in the number of regular resources ). 

Proof: Network type 2 consists of  parallel resources and 1 flexible products. 

Flexible product  may be assigned to resource  or 1. Thus, the feasibility prob-

lem (5)–(7) is given by 

   (C.2.1) 

, 	∀ 1, … , 2    (C.2.2) 

,     (C.2.3) 

	∀ 1, … , 1   (C.2.4)  

0	∀ 1,… , 1   (C.2.5)  

0	∀ 1,… , 1    (C.2.6)  

W.l.o.g., we assume that the 2 ⋅ 1  distribution variables are eliminated in the 

order of , , , … , , . For this purpose, we conduct the iterations 

1,… , 1, with  referring to the feasibility problem after eliminating ,  (for 

1) and before eliminating . Please note that dummy iteration 1 corresponds to the 

initial feasibility problem, that each iteration comprises eliminating both distribution 

variables of flexible product  (and thus, two of the iterations of Algorithm 1), and that 

 refers to the feasibility problem after eliminating all the distribution variables, 

that is, after iteration 1. 

Now, by induction over , we show the following: 
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Induction hypothesis: The feasibility problem in iteration 1,… , 1 is given by 

    (C.2.7) 

, 	∀ , … , 2    (C.2.8) 

,     (C.2.9) 

 	∀ , … , 1   (C.2.10) 

0	∀ ,… , 1    (C.2.11) 

 0	∀ ,… , 1    (C.2.12) 

0 ∑ ∑ 	∀ 1,… , 1, ∀ , … , 1  (C.2.13) 

 ∑ ∑ 	∀ 1,… , 1   (C.2.14) 

Induction basis: The induction hypothesis holds for 1, because (C.2.7)–(C.2.12) 

equal (C.2.1)–(C.2.6), respectively, and because (C.2.13) and (C.2.14) drop out 

(∀ 1,… , 0). 

Induction step: Assume that the hypothesis holds for . We now show that it will then 

also hold for 1. We first eliminate  by performing one iteration of Algorithm 1. 

The constraints/rows with null coefficients for  stay the same according to lines 9 

and 10 of Algorithm 1: 

, 	∀ , … , 2 (constraints (C.2.8))   

,  (constraint (C.2.9))     

	∀ 1, … , 1 (second constraint to last constraint  

of (C.2.10))    (C.2.15) 

0	∀ 1,… , 1 (second constraint to last constraint  

of (C.2.11))    (C.2.16) 

0	∀ ,… , 1 (constraints (C.2.12))    

0 ∑ ∑ 	∀ 1,… , 1, ∀ , … , 1 (constraints (C.2.13))  

The constraints with coefficient 1 or 1 for  are given by 

 (constraint (C.2.7)) 

∑ ∑ 	∀ 1,… , 1 (constraints (C.2.14)) 
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	 (first constraint of  (C.2.10))   (C.2.17) 

0 (first constraint of (C.2.11))    (C.2.18) 

Consequently, adding (C.2.7) and (C.2.17), (C.2.7) and (C.2.18), (C.2.14) and (C.2.17), 

as well as (C.2.14) and (C.2.18), according to lines 13 and 14 of Algorithm 1 leads to 

    (C.2.19) 

0    (C.2.20) 

∑ ∑ ∑ ∑ 	∀ 1,… , 1  (C.2.21) 

0 ∑ ∑ 	∀ 1,… , 1   (C.2.22) 

Thus, in total, we obtain the following set of constraints after the elimination of : 

, 	∀ , … , 2 (constraints (C.2.8))    

,  (constraint (C.2.9))     

	∀ 1, … , 1 (constraints (C.2.15))  

0	∀ 1,… , 1 (constraints (C.2.16))    

0	∀ ,… , 1 (constraints (C.2.12))    

0 ∑ ∑ 	∀ 1,… , , ∀ , … ,  (consisting of constraints (C.2.13),  

(C.2.20), and (C.2.22))    (C.2.23) 

∑ ∑ 	∀ 1,… ,  (consisting of constraints (C.2.19) and  

(C.2.21))   (C.2.24) 

For this set of constraints, we show that, when applying another iteration of Algorithm 1 

to eliminate , we obtain the feasibility problem of iteration 1; that is (C.2.7)–

(C.2.14) with increased ≔ 1. The constraints/rows with null coefficients for  

stay the same according to lines 9 and 10 of Algorithm 1: 

, 	∀ 1, … , 2 (second constraint to last constraint of 

(C.2.8); drops out in case that 2)   (C.2.25) 

,  (constraint (C.2.9); note that 1 according to the hypothesis; 

thus this constraint always has null coefficients for ) 

	∀ 1, … , 1 (constraints (C.2.15)) 
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0	∀ 1,… , 1 (constraints (C.2.16)) 

 0	∀ 1,… , 1 (second constraint to last constraint  

of (C.2.12))    (C.2.26) 

0 ∑ ∑ 	∀ 1,… , , ∀ , … ,  (constraints (C.2.23)) 

The rows with coefficient 1 or 1 are 

,  (first constraint of (C.2.8); note that 1 according to the 

hypothesis, thus this constraint always exists)   (C.2.27) 

0 (first constraint of (C.2.12))    (C.2.28) 

∑ ∑ 	∀ 1,… ,  (constraints (C.2.24)) 

Consequently, adding (C.2.27) and (C.2.28), as well as (C.2.27) and (C.2.24), according 

to lines 13 and 14 of Algorithm 1 leads to 

,    (C.2.29) 

, ∑ ∑ ∑ ∑ 	∀ 1,… ,   (C.2.30) 

Thus, in total, we obtain the following set of constraints after the elimination of : 

,  (constraint (C.2.29)) 

, 	∀ 1, … , 2  (constraints (C.2.25)) 

,  (constraint (C.2.9)) 

	∀ 1, … , 1 (constraints (C.2.15)) 

0	∀ 1,… , 1 (constraints (C.2.16)) 

 0	∀ 1,… , 1 (constraints (C.2.26)) 

0 ∑ ∑ 	∀ 1,… , , ∀ , … ,  (constraints (C.2.23)) 

, ∑ ∑ 	∀ 1,… ,  (constraints (C.2.30)) 

These constraints equal (C.2.7)–(C.2.14) with increased ≔ 1, which concludes the 

induction step. Given this result, we can now formally state the feasibility problem after 

performing 2 iterations by simply setting 1 in the hypothesis. We obtain 
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,      

,      

, ,      

, 0	      

 , 0	     

0 ∑ ∑ 	∀ 1,… , 2, ∀ , … , 2    

, ∑ ∑ 	∀ 1,… , 2     

Finally, we perform the remaining 1-th iteration, that is, two final iterations of Al-

gorithm 1 to subsequently eliminate ,  and , . After the elimination of , , 

we obtain the following set of constraints: 

,     

, 0	  

0 ∑ ∑ 	∀ 1,… , 1	∀ , … , 1   

, ∑ ∑ 	∀ 1,… , 1     

After eliminating ,  ― that is, after eliminating all the distribution variables of the 

original feasibility problem ― we obtain the constraints 

0 ∑ ∑ 	∀ 1,… , 	∀ , … ,   

which may be rewritten as  

0 	∀ 1,… ,  (regular resources) 

0 ∑ ∑ 	∀ 1,… , 1, ∀ 1	, … ,  (artificial resources) 

Therefore, we have a total of ∑  artificial resources.   
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Appendix D: Technical details of the implemented methods 

In Section 5, we evaluated the average revenues obtained by using our surrogate ap-

proach (DPD-surr) in comparison with two revenue management methods (DPD-ah 

and CDLP-surr), as well as an upper bound (UB) on the optimal expected revenue of 

DP-flex (1). In the following, we provide the technical details. 

Appendix D.1: Upper bound (UB) 

As the upper bound on the optimal expected revenue of (1), we use the optimal objec-

tive value of the corresponding CDLP formulation, which Gallego et al. (2004) propose 

(CDLP-flex): 

 Maximize ∑ ⋅ ⋅ ∑ ⋅ ∑ ⋅  (D.1.1) 

subject to 

 ∑ ⋅ ⋅ ∑ ⋅ ∑ ∑ ⋅∈ 	∀   (D.1.2) 

 ∑ ⋅ ⋅ ∑ ∈ 	∀     (D.1.3) 

 ∑     (D.1.4) 

 0	∀     (D.1.5) 

 0	∀ , ∈     (D.1.6) 

In this model, the variable  denotes how long set  is offered. Please note that con-

straints (D.1.2), (D.1.3), and (D.1.6), after some minor rearrangements, equal the (re-

laxed) feasibility problem (5)–(7). 

In order to solve CDLP-flex and obtain UB, we use column generation (see, e.g., Liu 

and van Ryzin (2008) and Miranda Bront et al. (2009) for an extensive description in 

the context of standard revenue management). We start with a reduced number of col-

umns in CDLP-flex; that is, with only a subset of the possible offer sets. Let , , 

and  denote the optimal dual prices for restrictions (D.1.2), (D.1.3), and (D.1.4) of 

this reduced problem. Thereafter, we have to check whether there is an offer set with 

positive reduced costs that must be included. More precisely, a column corresponding to 

a new offer set is the optimal solution of the following column generation sub-problem: 
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 max ⋅ ∑ ⋅ ∑ ⋅   

 ∑ ⋅     (D.1.7) 

The second term in the argument of the maximum function is due to the consideration 

of flexible products. The solution technique depends on the choice model used.  

Please note that we can obtain UB alternatively by using the surrogate reformulation 

from Section 4. To see this, we apply the surrogate network on the standard CDLP for-

mulation without flexible products (see, e.g., Liu and van Ryzin (2008)) and obtain the 

following formulation (CDLP-surr): 

 Maximize ∑ ⋅ ⋅ ∑ ⋅ ∑ ⋅∈  (D.1.8) 

subject to 

 ∑ ⋅ ⋅ ∑ ⋅ 	∀     (D.1.9) 

 ∑ ⋅ ⋅ ∑ ⋅ ∑ ⋅ ̃ 	∀   (D.1.10) 

 ∑     (D.1.11) 

 0	∀     (D.1.12) 

A comparison of CDLP-flex with CDLP-surr shows that they only differ in the con-

straints representing the feasibility problem: While CDLP-flex contains the original 

feasibility problem, CDLP-surr contains the transformed feasibility problem (constraints 

(D.1.9) and (D.1.10)). Thus, both CDLPs are equivalent. This result is intuitive, because 

both the original and the surrogate networks represent the same stochastic problem (rep-

resented by the DPs). In this sense, this result for the deterministic equivalent (given by 

the CDLP) of the stochastic problem parallels the result obtained in Section 4.2 in re-

spect of the DPs. Please note that Condition 1 is not required for equivalence here.  

Appendix D.2: Ad hoc assignment DPD approach (DPD-ah) 

This method is based on an idea that was already investigated by Steinhardt and Gönsch 

(2012) in respect of the special case of upgrades and without customer choice. It forgoes 

flexibility and immediately assigns flexible products (ad hoc) after sale. As this assign-

ment is irrevocable, we can immediately reduce the remaining capacity and do not need 
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to store any commitments. Thus, a resource-based state space is obtained, and DPD by 

resources is possible. However, existing choice-based approaches do not include the 

described ad hoc assignment of flexible products and have to be modified appropriately. 

In the following, we carry out these modifications on the DPD approach of Liu and van 

Ryzin (2008). 

The immediate assignment of a flexible product  to the current best of its alternatives 

∈  is captured by the second line in the Bellman equation 

 max ∑ ⋅ ⋅   

 ∑ ⋅ ⋅ max ∈   

 ⋅ 1 ⋅     (D.2.1) 

with the boundary conditions ∞ if ≱  and 0	∀ .  

The standard starting point of the decomposition is the corresponding CDLP formula-

tion CDLP-flex (D.1.1)–(D.1.6). Let  denote the optimal dual prices associated with 

the capacity of resource  (constraint (D.1.2)). We then obtain the following one-

dimensional problem to assess the value of capacity of each resource ∈ :  

 , max ∑ ⋅ ⋅ ∑ ⋅ ,   

 ∑ ⋅ ⋅ max ∈ ∑ ⋅ ,   

 ⋅ 1 ⋅ ,     (D.2.2) 

with boundary conditions , ∞ if 0 and , 0	∀ 0. 

During the booking horizon (that is, during the simulations), we approximate the oppor-

tunity cost of a regular product  and all flexible products’ alternatives ∈ , respec-

tively, as the sum of the required resources’ opportunity cost. More formally, with re-

source ’s opportunity cost defined as  

 Δ , ≔ , , 1 ,   (D.2.3) 

the offer set is the optimal solution of  

 max ∑ ⋅ ⋅ ∑ ⋅ Δ ,   

 ∑ ⋅ ⋅ max ∈ ∑ ⋅ Δ ,   (D.2.4) 



 

15 

Note that compared to the standard setting described, for example, in Liu and van Ryzin 

(2008), the second lines in equations (D.2.2) and (D.2.4) are extensions that are due to 

the consideration of flexible products. These modifications follow the lines of the modi-

fications performed without customer choice in Steinhardt and Gönsch (2012) in respect 

of upgrades, and in Gönsch and Steinhardt (2013) in respect of opaque products. Similar 

to the column generation sub-problems used to solve CDLP-flex and CDLP-surr, the 

solution technique applied to find the optimal offer set  in (D.2.2) and (D.2.4) depends 

on the choice model used. 

Appendix D.3: Primal solution of CDLP-surr (CDLP-surr) 

This method operationalizes the optimal primal solution of CDLP-surr (D.1.8)–

(D.1.12). Recall that the optimal solution gives us the time a set  is offered. Alterna-

tively, the same solution is obtained by CDLP-flex (D.1.1)–(D.1.6). 

We round fractional values of the decision variables  to the nearest integer. The 

sequence in which we offer the sets follows the lexicographic order in which the sets 

appear in the optimal solution. Please note that the offer sets are static over a number of 

periods. Thus, we have to check continuously (i.e., in each period) whether the capacity 

allows for offering the products contained in the static set. To do so, we use the capacity 

check of the surrogate network (i.e., constraints (11) and (12)). If the capacity is not 

sufficient to sell a product, it is removed from the set. Note that it is also possible to 

check capacity by solving the original feasibility problem (2)–(4). 

Appendix D.4: Surrogate DPD approach (DPD-surr) 

Our main method DPD-surr is obtained by applying the surrogate network to the DPD 

approach of Liu and van Ryzin (2008). 

Analogously to DPD-ah, the starting point of the decomposition is the corresponding 

CDLP formulation; that is, CDLP-surr (D.1.8)–(D.1.12). Let  denote the optimal dual 

prices of regular resource  (constraint (D.1.9)). Furthermore, let  denote the optimal 

dual prices of artificial resource  (constraint (D.1.10)). 
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We subsequently obtain the following two types of one-dimensional problems to assess 

the value of capacity of resources ∈  and ∈ :  

 , max ∑ ⋅ ⋅ ∑ ⋅ ∑ ⋅ 	 

 , 	 ⋅ 1 ⋅ ,  (D.4.1) 

with boundary conditions , ∞ if 0 and , 0	∀

0 and 

 , ̃ max ∑ ⋅ ⋅ ∑ ⋅ 	 ∑ ⋅   

 , ̃ ∑ ⋅ ⋅ ∑ ⋅   

, ̃ ⋅ 1 ⋅ , ̃   (D.4.2) 

with boundary conditions , ̃ ∞ if ̃ 0 and , ̃ 0	∀ ̃ 0. 

During the booking horizon, we approximate the opportunity cost as the sum of the re-

quired resources’ opportunity cost. More formally, let regular resource ’s opportunity 

cost be defined as  

Δ , ≔ , , 1    (D.4.3) 

and artificial resource ’s opportunity cost be defined as 

Δ , ≔ , , 1 .   (D.4.4) 

Then the offer set is the optimal solution of  

max ∑ ⋅ ⋅ ∑ ⋅ Δ , ∑ ⋅ Δ ,   

∑ ⋅ ⋅ ∑ ⋅ Δ ,    (D.4.5) 
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Appendix E: Detailed values for products and segments in network 2 

Regarding network 2, Table E.1 and Table E.2 summarize regular products’ capacity 

consumption and revenues, as well as the segments’ arrival probabilities, consideration 

sets, and preference weights. 

Product Legs Revenue Product Legs Revenue 

1 1 1000 12 1 500 

2 2 400 13 2 200 

3 3 400 14 3 200 

4 4 300 15 4 150 

5 5 300 16 5 150 

6 6 500 17 6 250 

7 7 500 18 7 250 

8 2,4  600 19 2,4  300 

9 3,5  600 20 3,5  300 

10 2,6  700 21 2,6  350 

11 3,7  700 22 3,7  350 

Table E.1: Description of regular products for network 2 

 

Segment Class Probability Consideration set Preference vector 

1 H	 0.08 1,8,9 10,5,5 	
2 L	 0.16 12,19,20 10,10,5 	
3 H	 0.05 2,3 10,10 	
4 L	 0.16 13,14 10,10 	
5 H	 0.10 4,5 10,10 	
6 L	 0.12 15,16 10,5 	
7 H	 0.02 6,7 10,5 	
8 L	 0.04 17,18 10,10 	
9 H	 0.02 10,11 10,5 	

10 L	 0.04 21,22 10,10 	
11 –	 0.05 1 10 	
12 –	 0.02 2 10 	
13 –	 0.05 3 10 	
14 –	 0.04 4 10 	
15 –	 0.02 5 10 	

Table E.2: Descriptions of customer segments for network 2 

 


