
Electronic copy available at: http://ssrn.com/abstract=2179231

 1

Dynamic Control Mechanisms
for Revenue Management with Flexible Products

24.09.2009

Anita Petrick, Jochen Gönsch, Claudius Steinhardt, Robert Klein

Anita Petrick

Chair of Operations Research, Department of Business Administration,
Technische Universität Darmstadt, Hochschulstr. 1, 64289 Darmstadt
e-mail: petrick@bwl.tu-darmstadt.de

Jochen Gönsch

Chair of Mathematical Methods, Department of Statistics and Economic Theory,
Universität Augsburg, Universitätsstraße 16, 86159 Augsburg
e-mail: jochen.goensch@wiwi.uni-augsburg.de

Claudius Steinhardt

Chair of Mathematical Methods, Department of Statistics and Economic Theory,
Universität Augsburg, Universitätsstraße 16, 86159 Augsburg
e-mail: claudius.steinhardt@wiwi.uni-augsburg.de

Robert Klein ()

Chair of Mathematical Methods, Department of Statistics and Economic Theory,
Universität Augsburg, Universitätsstraße 16, 86159 Augsburg
Phone: +49 821 598 4150

Fax: +49 821 598 4226

e-mail: robert.klein@wiwi.uni-augsburg.de

Abstract
Revenue management with flexible products has experienced a growing interest in the academic literature within

the last few years. Flexible products allow supply-side substitution between resources and can therefore help to

maximize overall revenue as well as capacity utilization in markets with highly uncertain demand. This paper

addresses the question of how the mathematical models which have been developed for capacity control with

flexible products should be used over time to exploit the substitution opportunities, while keeping practical ap-

plicability in mind. Several dynamic control mechanisms are proposed, each of which makes use of the flexibili-

ty to a different extent. A comprehensive computational study shows the potential of the different approaches by

revealing their strengths and weaknesses.

Keywords: Flexible Products, Revenue Management, Capacity Control

Electronic copy available at: http://ssrn.com/abstract=2179231

 2

1 Introduction

During the last three decades, revenue management has evolved into one of the most impor-

tant fields of application of Operations Research methods. Basically, it is concerned with the

task of optimally selling a fixed capacity of perishable resources within a given selling hori-

zon, thereby maximizing the overall revenue or contribution margin. This is essentially

achieved by the application of two instruments (see, e.g., [1]): In a first step, on a rather tac-

tical planning level, price differentiation is performed, leading to a variety of differently

priced products defined on the same set of resources. In a second step, on the operational lev-

el, the availability of the products is permanently adjusted by means of capacity control, ac-

cording to the current forecast regarding future demand within the selling horizon.

Thus far, many mathematical models have been proposed to solve the capacity control prob-

lem. The most accurate approach is the formulation of a stochastic dynamic program (see,

e.g., [2, 3]), which explicitly takes demand’s stochastic nature and temporal distribution into

consideration. However, as this approach is computationally intractable even for small re-

source networks, some kind of static approximation is typically used. In practical applica-

tions, one common approximation is the use of a deterministic linear program (DLP), which

calculates an optimal allocation of the available resources’ capacity to the products given the

expected values of future demand (see, e.g., [4–6]). Within the selling period, the output of

the DLP is then either used directly to define booking limits by specifying the maximum

amount of units that should be offered for each product, or is used indirectly via its dual pro-

gram as bid prices, which denote the minimum amount of money to be gained for each re-

source. Owing to demand’s stochastic nature, the DLP has to be periodically reoptimized

within the selling horizon to adapt to the current demand realization and forecast. For the sake

of completeness, it should be mentioned that many other static approximations have been dis-

cussed in the literature. One group of papers aims at better incorporating the parameters of the

demand distribution (see, e.g., [7, 8]), whereas others try to minimize the need for reoptimiza-

tion by analytically calculating a whole set of time and/or resource-dependent bid prices in

advance (see, e.g., [9, 10]). Furthermore, approaches using simulation-based optimization

have been proposed to calculate booking limits (see, e.g., [11, 12]) and bid prices (see, e.g.,

[13, 14]).

 3

A relatively new aspect of revenue management research is the incorporation of flexible prod-

ucts into capacity control (see [15, 16]). Following the initial definition of Gallego and Phil-

lips [16], a flexible product is a menu of several alternatives offered by a supplier, who re-

serves the right to assign customers to one of the alternatives at a predefined point in time

after purchase. The supply-side flexibility arising from this delay in resource allocation can

help to mitigate the negative impact of forecast errors which often occur in an early phase of

the selling horizon (see [17]). From an application point of view, revenue management with

flexible products has been discussed in the context of air cargo (see, e.g., [18, 19]) or make-

to-order environments (see, e.g., [20, 21]), where the flexibility arises from given time win-

dows that allow the supplier to autonomously arrange accepted requests with respect to time

and resources. Other service industry applications explicitly confront the customer with the

flexibility. Examples include applications in passenger air transport, the hotel industry, cruise

lines, or the scheduling of commercials in the broadcasting industry, where customers have to

be notified of their specific itinerary, room, cabin, or commercial break, respectively (see,

e.g., [22, 23]).

In the literature mentioned above, several traditional DLP-based model formulations have

been extended to problem-specific flexible product settings. However, from a more general

perspective, it has not yet been intensively discussed how mathematical models for revenue

management with flexible products should be used over time within a capacity control me-

chanism, thereby exploiting the supply-side substitution opportunities after purchase and, si-

multaneously, guaranteeing the provision of all sold flexible products. In this paper, we con-

centrate on this issue and propose several dynamic control mechanisms that differ in the ex-

tent to which they exploit the flexibility and in the effort related to their practical application.

The paper is organized as follows: In Section 2, we formulate a basic static model for capacity

control incorporating flexible products, which is an extension of the traditional DLP. On this

basis, we develop several dynamic control mechanisms and judge them according to their

flexibility utilization as well as their practical applicability (Section 3). In Section 4, we per-

form a computational study that compares the different control mechanisms and their impact

on the overall revenue in realistic revenue management scenarios. In Section 5, the results are

summarized and overall conclusions are drawn.

 4

2 Basic model formulation

In the following, we briefly describe the basic deterministic linear programming model for

revenue management with flexible products (see, e.g., [15, 23] for similar model formula-

tions). For this purpose, let { }1, ,l= …H be a firm’s resource network at a point in time t ,

consisting of l resources with available capacity ()1 lc , ,c=c … . We consider a set of specific

products { }1 s, ,n= …I defined on H . The capacity consumption of a single unit of product

i∈ I with respect to a resource h∈H is expressed by hia . For the sake of simplicity, we

assume that { }0 1hia ,∈ for all h∈H , i∈ I . Furthermore, we consider a set of flexible prod-

ucts { }1 f, ,n= …J . For each j∈J , there is a set j ⊆M I describing its possible execution

modes, which we assume to be a subset of the existing specific products without loss of gene-

rality. ir and jf denote the revenues obtained when selling one unit of product i and j , re-

spectively. The expected aggregated demands-to-come at the point in time t are expressed by
s
itD and f

jtD .

We use decision variables ix , denoting the number of expected future requests to be accepted

for each product i . As { }0 1hia ,∈ , these contingents correspond directly to allocations of ca-

pacity with regard to the resources required by i . Furthermore, the decision variables jmy

denote allocations to the expected requests for flexible products for each of the possible ex-

ecution modes jm∈M . The optimization problem can then be stated as follows (DLP-flex):

 ()
j

t i i j jm
i j m

V max r x f y
∈ ∈ ∈

= ⋅ + ⋅∑ ∑ ∑c
I J M

 (1)

subject to

j

hi i hm jm h
i j m

a x a y c
∈ ∈ ∈

⋅ + ⋅ ≤∑ ∑ ∑
I J M

 for all h∈H (2)

j

f
jm jt

m

y D
∈

≤∑
M

 for all j∈J (3)

 s
i itx D≤ for all i∈ I (4)

 0jmy ≥ for all j∈J , jm∈M (5)

 0ix ≥ for all i∈ I (6)

 5

The objective function (1) maximizes the total revenue-to-go. Constraints (2) guarantee that

the remaining capacity c is sufficient for the allocations ix and jmy . Furthermore, ix and

jmy should not exceed the expected demands (constraints (3); (4)) and all allocations must be

nonnegative (constraints (5); (6)). Like in the standard DLP for revenue management (see,

e.g., [24]), integrality constraints for the decision variables are omitted; consequently, the re-

sulting linear program can be efficiently solved and allows information contained in the op-

timal dual solution to be used in order to obtain an operational control policy.

In practical applications, the derivation of bid prices is a widely used approach to obtain such

a control policy. For each resource h∈H , the related bid price hπ represents a threshold for

the amount of money to be gained when giving away one unit of h . In DLP-flex, bid prices

can be derived by using the shadow prices of the corresponding capacity constraints (2) ob-

tained from the optimal dual solution. Given that there is enough capacity, an incoming re-

quest for a specific product i∈ I should be accepted if (and only if) the following condition

holds:

 i hi h
h

r a π
∈

≥ ⋅∑
H

 (7)

This result is well-known for the traditional DLP formulation. The term on the right-hand side

can be regarded as an approximation of the opportunity cost resulting from the acceptance of

a request for product i . A similar result holds for the extended setting with flexible products

(see [25]), namely that an incoming request for a flexible product j∈J should be accepted if

(and only if) there is at least one available execution mode jm∈M with

 j hm h
h

f a π
∈

≥ ⋅∑
H

 (8)

The important questions arising in this context are: How should the availability checks be

performed and how does the acceptance of a request affect the remaining capacity for future

requests? If a request for a specific product has been accepted, it is obvious that each of the

required resources’ capacity should immediately be reduced by one. With respect to flexible

products’ requests, however, this is not straightforward because an immediate allocation and

reduction of a specific execution mode’s capacity would limit the flexibility within the re-

maining selling horizon. Therefore, it may be quite difficult to check whether there is at least

one available execution mode. We examine these issues in the next section.

 6

3 Dynamic control mechanisms

The complexity related to the incorporation of flexible products arises from the fact that all

accepted requests for flexible products must ultimately be served. In other words, the feasi-

bility of the underlying allocation problem – considering the remaining resources’ capacity –

has to be guaranteed at all times during the control process. In this section, we present several

dynamic control mechanisms that serve this purpose and can be classified according to the

following two dimensions (see Fig. 1):

• In one way or another, all of the mechanisms (temporarily) allocate resources in order

to ensure feasibility. However, they differ in the extent to which they allow for the

reallocation of capacity with regard to accepted requests for flexible products within

the selling horizon. In this context, we distinguish between mechanisms with time-

based reallocation, meaning that a rearrangement of requests for flexible products is

only permitted at certain predefined points in time, and request-based reallocation,

which allows rearrangements with each incoming request.

• The mechanisms also vary in terms of the frequency with which a reoptimization of

the underlying static optimization model is performed in order to obtain updated bid

prices. As before, a differentiation can be made between time-based reoptimization,

with the control parameters, especially bid prices, being only updated in predefined in-

tervals, and request-based reoptimization, which performs reoptimizations with each

incoming request.

The degree of flexibility, which denotes the extent to which the mechanisms exploit the sub-

stitution opportunities inherent in flexible products, increases with the reallocation frequency

and that of the reoptimization. We will, however, see that, simultaneously, the control effort

also increases, which can be crucial for practical applications.

In the following subsections, we describe the five dynamic control mechanisms from Fig. 1 in

detail. To support understanding, a consistent example is used throughout the paper to illu-

strate how each mechanism processes the same given set of ten requests. Additionally, Table

1 at the end of this section summarizes all mechanisms’ acceptance/rejection decisions.

Moreover, a semi-formal procedure using both math notation and verbal descriptions is for-

mulated for each mechanism.

 7

→increasing degree of flexibility →

re
op

tim
iz

at
io

n

re
qu

es
t-b

as
ed

CEC

→
in

cr
ea

si
ng

 d
eg

re
e

of
 fl

ex
ib

ili
ty

 →

tim
e-

ba
se

d

Ad-hoc
allocation

Temporary
allocation

Shifting

Pooling

none time-based request-based

reallocation

Fig. 1. Overview of dynamic control mechanisms

3.1 Ad-hoc allocation

The simplest way to guarantee feasibility is the ad-hoc allocation of resources to incoming

requests for flexible products, meaning that the final execution mode is irrevocably deter-

mined immediately after acceptance. The aim of this approach is to treat flexible requests ex-

actly like specific requests once the execution mode is fixed, which greatly simplifies the con-

trol process. Hence, DLP-flex can be directly applied in the following way: If the bid price

condition (8) is fulfilled for at least one execution mode m with hm ha c≤ for all h∈H , the

request is accepted. Intuitively, it is assigned to the mode that causes the least opportunity

cost; that is, to the mode jm'∈M with
j

hm h hm h
m h

m' arg min a a c hπ
∈ ∈

⎧ ⎫
= ⋅ ≤ ∀ ∈⎨ ⎬

⎩ ⎭
∑

M H

H . Since

this assignment is final, the capacity of the needed resources can now simply be reduced as

for specific products (:h h hm'c c a= −), so that the availability check for later incoming specific

or flexible product requests can be uniformly undertaken against the remaining capacity.

Example 1. We consider a small resource network consisting of three resources A , B , and

C with capacity A Bc c 2= = and Cc 1= . Four products are defined using these resources.

Three specific products AP , BP , and CP need one unit of the resources A , B , and C , respec-

tively, and yield revenues of Ar $100= , Br $120= , and Cr $110= . Additionally, a flexible

product flexP with three execution modes using either resource A , B , or C , respectively, is

offered at flexf $40= . We consider the following ten requests arriving successively: flexP , flexP ,

AP , AP , AP , flexP , flexP , BP , flexP , CP .

To process these requests with the ad-hoc mechanism, DLP-flex is solved first, using a de-

mand forecast because exact demand is, of course, not known in advance. We assume that the

 8

bid prices A B C $40π π π= = = are obtained. As $40 is below or equal to every product’s

price, all requests are accepted as long as the capacity is sufficient. Thus, the first two re-

quests for flexP are accepted and, one after another, randomly assigned to the first execution

mode, reducing the capacity of resource A to 0Ac = (see also Table 1). As this assignment is

irrevocable, the following two requests for AP have to be declined due to the lack of capacity

on A, even though the bid price Aπ is well below the revenue Ar . A reoptimization scheduled

after the fourth request yields the new bid prices A $100π = , B $40π = , and C $110π = , us-

ing an updated demand forecast predicting strong demand for A and C and no demand for

B . The following request for AP is declined again, but the two subsequent flexible ones are

accepted and assigned to B because the bid price Bπ equals flexf and there is enough free

capacity (Bc 2=). With respect to the last three requests, only CP is accepted, leading to a

total revenue of $270.

The complete control mechanism can be summarized as follows:

Procedure 1. Ad-hoc allocation

Precondition: an incoming request for i∈ I or j∈J , bid prices hπ h∀ ∈H , remaining ca-

pacity hc h∀ ∈H , expected demands-to-come s
ntD n∀ ∈ I and f

ktD k∀ ∈J .

(1) if a reoptimization of the underlying model is scheduled:
(1a) solve DLP-flex with hc h∀ ∈H , s

ntD n∀ ∈ I and f
ktD k∀ ∈J as input para-

meters;
(1b) update the bid prices hπ h∀ ∈H according to the model’s output;

(2) if the incoming request is for specific product i∈ I :
(2a) if i hi h

h
r a π

∈

≥ ⋅∑
H

 and hi ha c≤ h∀ ∈H :

accept request;
set :h h hic c a= − h∀ ∈H ;

 (2b) else: reject request;
(3) if the incoming request is for flexible product j∈J :

(3a) if jm∃ ∈M with j hm h
h

f a π
∈

≥ ⋅∑
H

 and hm ha c≤ h∀ ∈H :

accept request;
set :h h hm'c c a= − h∀ ∈H with

j

hm h hm h
m h

m' arg min a a c hπ
∈ ∈

⎧ ⎫
= ⋅ ≤ ∀ ∈⎨ ⎬

⎩ ⎭
∑

M H

H ;

(3b) else: reject request;

 9

Note that we define the arg min -operator to randomly return one of the minimizing argu-

ments if there are several. Ad-hoc allocations of this type have gained some popularity due to

the simplicity of their practical implementation. The resulting products are called opaque

products, which guarantee one of several fully specified products but hide the identity of the

product that the consumer will actually obtain until after the purchase is completed (see, e.g.,

[16], [26]). Opaque products are used, for example, in the hotel and tourism industry as well

as in passenger air transport. In the latter, they are offered either directly (e.g., “blind book-

ing” by Lufthansa’s low cost subsidiary Germanwings) or by intermediaries (like Priceline,

Hotwire, and Travelocity) who combine seats on similar flights by different airlines as alter-

native execution modes of a single product. Immediately after the purchase of this opaque

product, the execution mode is fixed and the customer is informed about the airline and flight

details like the exact itinerary or arrival and departure times. Hence, the opaque product effec-

tively becomes a specific one after the sale; the relevant airline is informed about the sale as if

it were a specific product, without having to consider that the booking originally stemmed

from an opaque product. Thus, such products are often not intended to improve any kind of

capacity control but simply serve as an instrument of price discrimination, allowing the sup-

plier to induce additional low-value demand. Since the exact product specification is unknown

at the time of purchase, cannibalization of high-value customers’ demand is prevented.

3.2 Temporary allocation

As pointed out in the introduction, bid prices are regularly updated by reoptimization of the

underlying static model. Likewise, we propose that the accepted requests for flexible products

should be rearranged periodically. Since updating the bid prices anyway requires solving a

mathematical optimization problem, it is intuitive to simultaneously allow the rearrangement

of the accepted requests for flexible products according to the current demand forecast and

capacity utilization. This will improve the previously described ad-hoc allocation mechanism.

Therefore, some extensions of DLP-flex are required: First, we define additional model para-

meters a
jY for all j∈J , which denote the number of requests that have already been ac-

cepted for a flexible product j . Furthermore, we introduce decision variables a
jmy for all

j∈J , jm∈M , which represent capacity allocations to the accepted requests in the different

 10

execution modes. In order to ensure that an adequate amount of capacity remains available for

all accepted flexible requests 1 f
a a

n
Y , ,Y… , we add the constraints

j

a a
jm j

m
y Y

∈

=∑
M

 for all j∈J (9)

and replace jmy with ()a
jm jmy y+ in constraint (2).

With these modifications at hand, the control process is basically unchanged. However,

checking against capacity now requires explicitly considering the allocations of requests for

flexible products within the selling process, that is, the check has to be performed against re-

duced capacity
j

a
h hm jm

j m
c a y

∈ ∈

− ⋅∑ ∑
J M

 instead of hc . While the required resources are still im-

mediately reduced if a request for a specific product i is accepted (:h h hic c a= − h∀ ∈H),

there is no immediate reduction of capacity for any accepted flexible request j , but the cor-

respondent variable that stores the number of accepted requests in mode m' must be adjusted

accordingly, namely : 1a a
jm' jm'y y= + . However, these allocations are only temporary: Just be-

fore the extended model is resolved to obtain updated bid prices, all accepted requests for

each flexible product j∈J are consolidated in the corresponding model parameter a
jY (that

is, :
j

a a
j jm

m
Y y

∈

= ∑
M

 k∀ ∈J) and can thus be rearranged, leading to new temporary allocations
a
jmy .

Example 2. To illustrate temporary allocation, we again use the setting described in Example

1. After handling the first four requests as the ad-hoc mechanism did (see also Table 1), the

reoptimization not only yields the bid prices A $100π = , B $40π = , and C $110π = , but also

rearranges the two accepted flexible requests from resource A to B , leading to Ac 2= ,

Bc 0= and Cc 1= . Compared to ad-hoc, AP can now be accepted. The following four re-

quests for flexP and BP are rejected. Finally, CP is accepted, obtaining a total revenue of

$290.

The complete control mechanism is as follows:

Procedure 2. Temporary allocation

Precondition: an incoming request for i∈ I or j∈J , bid prices hπ h∀ ∈H , capacity hc

h∀ ∈H , temporary allocations a
kmy kk ,m∀ ∈ ∈J� M , expected demands-to-

come s
ntD n∀ ∈ I and f

ktD k∀ ∈J .

(1) if a reoptimization of the underlying model is scheduled:

 11

(1a) set :
k

a a
k km

m
Y y

∈

= ∑
M

 k∀ ∈J ;

(1b) solve DLP-flex with the extensions described in Section 3.2 with hc h∀ ∈H ,
a

kY k∀ ∈J , s
ntD n∀ ∈ I and f

ktD k∀ ∈J as input parameters;

(1c) update the bid prices hπ h∀ ∈H and the temporary allocations a
kmy

kk ,m∀ ∈ ∈J� M according to the model’s output;

(2) if the incoming request is for specific product i∈ I :
(2a) if i hi h

h
r a π

∈

≥ ⋅∑
H

 and
k

a
hi h hm km

k m
a c a y

∈ ∈

≤ − ⋅∑ ∑
J M

 h∀ ∈H :

accept request;
set :h h hic c a= − h∀ ∈H ;

 (2b) else: reject request;
(3) if the incoming request is for flexible product j∈J :

(3a) if jm∃ ∈M with j hm h
h

f a π
∈

≥ ⋅∑
H

 and
k

a
hm h hm km

k m
a c a y

∈ ∈

≤ − ⋅∑ ∑
J M

 h∀ ∈H :

accept request;
set : 1a a

jm' jm'y y= + with

j k

a
hm h hm h hm km

m h k m
m' arg min a a c a y hπ

∈ ∈ ∈ ∈

⎧ ⎫⎪ ⎪= ⋅ ≤ − ⋅ ∀ ∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑

M H J M

H ;

(3b) else: reject request;

3.3 Pooling

According to our classification scheme (see Fig. 1), the temporary allocation mechanism de-

scribed before allows for time-based reallocations of requests for flexible products. However,

quite obviously, temporary allocation of resources may lead to suboptimal control decisions.

In particular, incoming high-value requests for specific products might not be accepted be-

cause some or all of the resources needed are temporarily occupied by requests for flexible

products, although there is enough capacity left in other possible execution modes. Hence, it

is desirable to find some kind of request-based mechanism that can take the capacity available

for other execution modes into account when having to decide whether to accept a request.

One way to achieve this flexibility is to construct a common resource pool for accepted re-

quests for flexible products by deriving an appropriate surrogate constraint from the previous-

ly presented model. The intuition of the approach is to pool the capacity still available for

flexible products, instead of considering each execution mode separately, as done by the

aforementioned mechanisms. More precisely, multiple potential execution modes’ capacity is

 12

aggregated in a pool whose “virtual” capacity then directly delivers the maximum number of

requests for flexible products that can be accepted in the remaining booking horizon, given

that the bid price condition is satisfied. In the following, we facilitate the presentation by ex-

plaining the resulting mechanism for a network with a single flexible product j that uses only

one resource in each execution mode. The mechanism is simple to handle and can be adapted

to more complex networks, but is not applicable to arbitrary network structures.

The pooling mechanism is based on the extended static model formulation presented in Sec-

tion 3.2. After having solved the model, the temporary allocations a
jmy for all jm∈M are

discarded and a common resource pool H� is constructed. However, it is not mandatory to

include all potential resources in the flexible product pool, as it could be better to protect

some of them for higher valued requests. Thus, only resources with bid prices below or equal

to the revenue jf of product j are aggregated in H� . Furthermore, the following special case

has to be considered: After a phase of low bid prices leading to the acceptance of requests for

the flexible product, a subsequent reoptimization could yield higher bid prices, preventing the

acceptance of further requests for the flexible product. Even in this case, it is desirable to

maintain flexibility with respect to the already accepted requests for the flexible product

when deciding on incoming requests for specific products. Thus, the resources with the lowest

bid price are included in H� .

Let mπ denote the bid price of the resource used in execution mode m (that is m lm l
l

aπ π
∈

= ⋅∑
H

). Then the two aforementioned cases are combined by including all execution modes with bid

prices below or equal to { }
j

j mm
max f , minπ

∈M
 in the pool, where jf comes into effect when the

flexible product is still sold and
j

mm
min π
∈M

 when no further requests for the flexible product are

accepted because the bid prices mπ of all execution modes exceed jf (
j

j mm
f min π

∈
<

M
). Thus,

the set H� can be defined as follows:

 { }: with 1 and
j

j hm h j mm
h m a max f ,minπ π

∈

⎧ ⎫
= ∈ ∃ ∈ = ≤⎨ ⎬
⎩ ⎭M

H H M� (10)

The aggregated, virtual capacity pc of the pool then simply equals the sum of the capacity hc

of the resources included in �H , decreased by the number of requests for the flexible product

already accepted:

 :
j

p a
h jm

h m
c c y

∈ ∈

= −∑ ∑
H M�

 (11)

 13

Note that, by construction, the calculation of pc by (11) always leads to nonnegative values.

This results from all resources with capacity temporarily allocated to accepted requests for the

flexible product also being included in �H , due to the latter’s definition based on bid prices

(see (10)).

Compared to the previously described temporary allocation mechanism, the control process

differs only slightly. While the bid price conditions (7) and (8) remain as before, the check

against capacity is now accomplished by means of the resource pool instead of using the ad-

justed values
j

a
h hm jm

j m

c a y
∈ ∈

− ⋅∑ ∑
J M

. Hence, a request for the flexible product j is simply ac-

knowledged if there is enough capacity left in the pool (1pc ≥). If the request is accepted, the

pool capacity is reduced by one. When a request for a specific product i∈ I comes in, the

required resources’ capacity must be sufficient (hi ha c≤ h∀ ∈H). Furthermore, if the re-

sources included in the pool are required for product i , the virtual capacity pc of the pool has

to be sufficient as well (p
hi

h

a c
∈

≤∑
H�

). If i is accepted, the resources’ specific capacity values

must be reduced accordingly. Moreover, the virtual pool capacity also has to be reduced to

reflect that the capacity needed by specific product i is no longer available to the flexible

product.

Example 3. The resource pool H� is constructed using the initial bid prices from the previous

examples. As all the bid prices do not exceed flexf , it contains A , B , and C with pc 5= (see

Table 1). The first two requests for flexP are accepted because the bid price condition has

been fulfilled and pc is sufficient. Consequently, the pool capacity is reduced to pc 3= . After

successfully performing a bid price check on Aπ to decide on the acceptance of the following

request for AP , Ac and – since A is included in the pool – pc are checked to ensure sufficient

capacity. Both requests for AP are accepted, leading to a remaining capacity of Ac = 0 and
pc = 1 , respectively. Afterwards, the reoptimization is performed and the new pool encom-

passes only resource B with pc = 0 , according to the new bid prices. The following five re-

quests are rejected due to a lack of capacity with respect to resource A and the pool. CP is

accepted because the bid price Cπ equals Cr and the capacity Cc 1= is sufficient. pc is not

considered here, because C is not included in the pool. The resulting revenue is $390.

The following procedure summarizes the complete algorithm:

 14

Procedure 3. Pooling

Precondition: an incoming request for i∈ I or j , bid prices hπ h∀ ∈H , remaining capacity

hc h∀ ∈H , remaining capacity pc of the resource pool of the sole flexible

product j with 1hm j
h

a m
∈

= ∀ ∈∑
H

M , the set of resources H� included in the

pool; expected demands-to-come s
ntD n∀ ∈ I and f

jtD

for the flexible product j .

(1) if a reoptimization of the underlying model is scheduled:
(1a) set :a p

j h
h

Y c c
∈

= −∑
H�

;

(1b) solve DLP-flex with the extensions described in Section 3.2 with hc h∀ ∈H ,
a
jY , s

ntD n∀ ∈ I and f
jtD as input parameters;

(1c) update the bid prices hπ h∀ ∈H according to the model’s output;

(1d) set { }: with 1and
j

j hm h j mm
h m a max f , minπ π

∈

⎧ ⎫
= ∈ ∃ ∈ = ≤⎨ ⎬
⎩ ⎭

�
M

H H M ;

(1e) set :
j

p a
h jm

h m
c c y

∈ ∈

= −∑ ∑
H M�

;

(2) if the incoming request is for specific product i∈ I :
(2a) if i hi h

h
r a π

∈

≥ ⋅∑
H

 and hi ha c≤ h∀ ∈H and p
hi

h

a c
∈

≤∑
H�

:

accept request;
set :h h hic c a= − for all h∈H ;

set :p p
hi

h
c c a

∈

= −∑
H�

;

 (2b) else: reject request;
(3) if the incoming request is for flexible product j :

(3a) if jm∃ ∈M with j mf π≥ and 1pc ≥ :

accept request;
set : 1p pc c= − ;

(3b) else: reject request;

The intuition behind step (1) is as follows: Whenever a reoptimization of the underlying static

model has to be performed, the number of accepted requests for flexible products a
jY is de-

termined by calculating the difference between the sum of the pooled resources’ capacity

h
h

c
∈
∑
H�

 and the capacity pc of the pool, that is :a p
j h

h
Y c c

∈

= −∑
H�

. Knowing a
jY , DLP-flex with

the extensions from Section 3.2 can now be used to update the bid prices hπ . The resource

pool is then again constructed according to (10), based on the new set of bid prices. To com-

plete the reoptimization step, the capacity pc of the resource pool is calculated as given by

 15

(11). Steps (2) and (3) represent the control process for specific requests and flexible ones,

respectively, which are handled as described above.

3.4 Shifting

Although pooling circumvents the temporary allocation of requests for flexible products, the

static ex ante construction of the resource pool H� may lead to suboptimal results when decid-

ing whether to accept incoming requests for specific products. More precisely, the decision

whether a resource’s capacity should be made available for the pool is actually strongly de-

pendent on the value of the incoming request requiring capacity from the resource pool, which

is not known in advance. Consequently, a somewhat more sophisticated algorithm may be

helpful. From a practical perspective, however, it is important that such a mechanism remains

intuitive for it to be realized with little effort: Similar to the aforementioned approaches, it

should exclusively rely on the current set of bid prices having been calculated during the last

optimization.

In order to ensure practical applicability, in the following, we therefore suggest a simple and

straightforward greedy heuristic extending the temporary allocation mechanism in a different

way by partially allowing the rearrangement of temporary assigned requests for flexible prod-

ucts between two scheduled optimizations. For restricted settings to which pooling is applica-

ble, it can even be shown that the procedure always leads to optimal decisions given the cur-

rent set of bid prices. The basic idea of the proposed heuristic – after which the resulting me-

chanism is named – is to make room on the resources that are scarce with respect to the cur-

rent request for a specific product by shifting accepted requests for flexible products to alter-

native execution modes requiring resources that are not scarce. Note that in this context, scar-

city of a particular resource means that its remaining capacity is not sufficient to fulfill the

request under consideration. Hence, as a first step, the resources that are scarce with respect to

the current request for a specific product are successively processed, trying for each h of

them to find a flexible product k with current execution mode m that can be transferred to an

alternative execution mode 'm such that capacity on the current resource h is freed up. If

there are several possibilities, a rearrangement that leads to the lowest opportunity cost is se-

lected. This cost can be calculated by simply taking the sum of the current bid price values for

the resource requirements in the potential execution mode 'm obtained from the last optimiza-

 16

tion, minus the corresponding sum for the resources currently required in mode m , which

would be freed up. That is, in a “greedy” manner, a triple ()'*k*,m*,m with a minimal

'*hm h hm* h
h h

a aπ π
∈ ∈

⋅ − ⋅∑ ∑
H H

 is chosen as a candidate for shifting.

After having processed all the scarce resources and, thus, having identified a potential set U

of rearrangements, which would, in total, allow the current request for specific product i to be

accepted, the final decision has to be made. Therefore, the revenue obtained from i must be

compared to the total opportunity cost resulting from the acceptance, similar to the classical

bid price condition. In this case, however, the opportunity cost does not only consist of the

direct cost resulting from the acceptance, but also incorporates the indirect costs implied by

the rearrangements defined by U as explained above. That is, the request is accepted and the

proposed shifts of requests for flexible products are finally performed if (and only if) the fol-

lowing condition holds:

()

'
'

i hi h hm h hm h
h k ,m,m h h

r a a aπ π π
∈ ∈ ∈ ∈

⎛ ⎞
≥ ⋅ + ⋅ − ⋅⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑
H U H H

 (12)

Example 4. Applied to the setting outlined in Example 1, the shifting mechanism accepts the

two requests for flexP and, in the same way as temporary allocation, assigns them to A (see

Table 1). However, contrary to temporary allocation, the following two requests for AP can

be accepted by shifting the flexible requests to B . The request for AP after the reoptimization

as well as the two for flexP are declined, whereas BP is accepted. This is because the bid price

condition (12) is fulfilled and capacity on B is freed up by shifting an accepted flexible re-

quest from B to C . Although Cπ prevents the acceptance of flexible requests using C , this

rearrangement can be performed because the revenue Br is not lower than the total opportu-

nity cost resulting from accepting BP and performing the rearrangement

B B C B(r ()π π π≥ + −). Thus, all capacity is occupied, leading to a revenue of $400.

More formally, the entire shifting mechanism can be stated as follows:

Procedure 4. Shifting

Precondition: an incoming request for i∈ I or j∈J , bid prices hπ h∀ ∈H , capacity hc

h∀ ∈H , temporary allocations a
kmy kk ,m∀ ∈ ∈J� M , expected demands-to-

come s
ntD n∀ ∈ I and f

ktD k∀ ∈J .

(1) if a reoptimization of the underlying model is scheduled:
 ……see Procedure 2…….

 17

(2) if the incoming request is for specific product i∈ I :
(2a) if i hi h

h
r a π

∈

≥ ⋅∑
H

 and
k

a
hi h hm km

k m
a c a y

∈ ∈

≤ − ⋅∑ ∑
J M

 h∀ ∈H :

accept request;
set :h h hic c a= − h∀ ∈H ;

(2b) elseif i hi h
h

r a π
∈

≥ ⋅∑
H

 and h∃ ∈H with
k

a
hi h hm km

k m
a c a y

∈ ∈

> − ⋅∑ ∑
J M

and hi ha c≤ h∀ ∈H :

set : = ∅U ;

set ':
k

a
h h hi h hm km

k m
c c min a ,c a y

∈ ∈

⎧ ⎫⎪ ⎪= − − ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑
J M

 h∀ ∈H ;

set ':a a
km kmy y= kk ,m∀ ∈ ∈J� M ;

set :
k

a
hi h hm km

k m

ˆ h a c a y
∈ ∈

⎧ ⎫⎪ ⎪= ∈ > − ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑
J M

H H ;

foreach ˆh∈H :
if 'h hc c= :

set : ' 0
k

a
hm km

m
k a y

∈

⎧ ⎫⎪ ⎪= ∈ ⋅ >⎨ ⎬
⎪ ⎪⎩ ⎭

∑
M

P J ;

set { }: ' 0 a
k k hm kmm a y= ∈ ⋅ >N M k∀ ∈P ;

set () ': ' , ' 0, k k hmk ,m,m k m ,m ,a
⎧

= ∈ ∈ ∈ =⎨
⎩

S P N M

{ }'' ' 0 0 0
q

a
g go qo lm lm

q o
c a y g l | a ,a

∈ ∈

⎫⎪− ⋅ > ∀ ∈ ∈ = > ⎬
⎪⎭

∑ ∑
J M

H ;

if = ∅S� : break;

set ()
()

'
'

'* : hm h hm h
k ,m,m h h

k*,m*,m arg min a aπ π
∈ ∈ ∈

⎧ ⎫
= ⋅ − ⋅⎨ ⎬

⎩ ⎭
∑ ∑

S H H

;

set (): '*k*,m*,m= ∪U U ;

set ': ' 1a a
k*m* k*m*y y= − ;

set '* '*': ' 1a a
k*m k*my y= + ;

set ': '
k

a
g g gi g gm km

k m
c c min a ,c a y

∈ ∈

⎧ ⎫⎪ ⎪= − − ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑
J M

 g∀ ∈H ;

if '
k

a
hi h hm km

k m

ˆa c a y h
∈ ∈

≤ − ⋅ ∀ ∈∑ ∑
J M

H and

()
'

'
i hi h hm h hm h

h k ,m,m h h
r a a aπ π π

∈ ∈ ∈ ∈

⎛ ⎞
≥ ⋅ + ⋅ − ⋅⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑
H U H H

:

accept request;

 18

set : 'a a
km kmy y= kk ,m∀ ∈ ∈J� M ;

set :h h hic c a= − h∀ ∈H ;

(2c) else: reject request;
(3) if the incoming request is for flexible product j∈J :

……see Procedure 2…….

The formulation of step (2b) can be explained as follows: While temporary allocation simply

declines an incoming request for specific product i if the bid price condition has been satis-

fied but the current temporary allocations prevent acceptance, shifting now comes into play.

We first create duplicates 'hc and 'a
kmy of the resources’ current capacity and the temporary

allocations, respectively. This allows us to roll matters back if it turns out that there is no suit-

able shifting strategy that permits the acceptance of the incoming specific request. In particu-

lar, 'hc is required to implement the general idea of the heuristic’s chosen design, which is to

always reserve space for the incoming specific request as soon as capacity is made available.

Consequently, given the temporary allocations of flexible products, we begin by allocating

capacity on the duplicated resources needed by the requested product i by reducing the values

'hc wherever possible (': '
k

a
h h hi h hm km

k m
c c min a ,c a y

∈ ∈

⎧ ⎫⎪ ⎪= − − ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑
J M

h∀ ∈H). Through this kind

of reservation, we avoid reoccupying resources through a later shifted request for a flexible

product. All resources that are scarce, in the sense that they are needed to accept the request

but for which reduction is not possible at the moment, are included in the set Ĥ . To try to

make room for the incoming request on these resources, Ĥ is now processed, as described

before, by iteratively considering each ˆh∈H . To find a candidate for shifting, we define the

set S of potential triples ()'k ,m,m , freeing up the current resource h . In this context, the sets

P� and kN are used to ensure the existence of at least one request of product k in execution

mode m that uses resource h . If there is no direct shifting possibility that frees up h , mean-

ing that S is empty, the current iteration can be skipped. Otherwise, the “best” shifting possi-

bility ()'*k*,m*,m is identified as described before and added to set U of potential rear-

rangements. At the end of each iteration, the temporary allocations’ values are adjusted ac-

cording to the identified candidate for shifting (': ' 1a a
k*m* k*m*y y= − and '* '*': ' 1a a

k*m k*my y= +). Fur-

thermore, following the general intuition of the design mentioned before, the values 'hc are

again updated for all resources, so that all freed-up resources are immediately reserved if they

are required to fulfill the request for product i . Note that this is why each iteration is only

performed if 'h hc c= ; otherwise ('h hc c<), the current resource has already been freed up by

 19

an earlier iteration and reconsideration is not necessary. If, after having completely processed

set Ĥ , the rearrangements contained in U are sufficient to permit acceptance and if, accord-

ing to (12), the overall decision is to perform them in order to accept the request, acceptance

is finalized by simply overwriting the temporary allocations’ original values with their dupli-

cates (: 'a a
km kmy y= kk ,m∀ ∈ ∈J� M) and adjusting capacity with respect to the incoming re-

quest (:h h hic c a= − h∀ ∈H). The procedure can be extended in a straightforward manner so

that shifting is also performed when a request for a flexible product comes in, which becomes

relevant if there are several flexible products that are not disjoint with respect to the resources

they can use. Furthermore, in this case, one might be tempted to further extend the procedure

to allow arbitrary recursive rearrangements of requests for flexible products. Remember,

however, that extensions of this dimension are contrary to the heuristic’s primary objective to

arrive at a comprehensible, intuitive-to-use mechanism suitable for practical applications.

3.5 Certainty equivalent control (CEC)

The most accurate way of exploiting a static model’s output for capacity control is the appli-

cation of certainty equivalent control (CEC), which has originally been proposed for tradi-

tional DLP formulations by Bertsimas and Popescu [3]. The approach is a straightforward

result of considering the capacity control problem’s original stochastic dynamic program for-

mulation and replacing the stochastic demand influences with their deterministic equivalents.

In the fundamental literature on approximate dynamic programming, this technique is usually

referred to as CEC (see, e.g., [27]); the term is also common in revenue management (see, e.g.

[3]). However, to avoid misunderstanding, remember that all other approaches presented in

this paper also assume that demand is deterministic, as they basically rely on the same under-

lying mathematical model formulation.

Instead of using bid prices, CEC directly calculates the “true” opportunity cost of each incom-

ing request. For this purpose, two instances of DLP-flex with the extensions described in Sec-

tion 3.2 are solved for each request. While the first one calculates an approximation to the

optimal revenue-to-go under the assumption that the current request has been rejected, the

second one calculates the approximated optimal revenue-to-go as if it has been accepted. If

the current request is for a specific product, the latter model is obtained by additionally re-

serving the capacity for the requested product i through the appropriate adjustment of the

 20

right-hand sides of the constraints (2). If there is an incoming request for a flexible product,

the right-hand side of the related constraint (9) is simply incremented by one. The difference

between the two models’ objective function values then obviously corresponds to the oppor-

tunity cost caused by accepting the current request. Consequently, the request should be ac-

cepted if (and only if) this cost is not larger than the proceeds of the sale. If the second model

has no feasible solution due to the resource restrictions, the incoming request can obviously

not be accepted. For simplicity’s sake, we define the value of the objective function to be mi-

nus infinity in this case, so that the opportunity cost is infinite and the request will not be ac-

cepted by the aforementioned criteria.

Example 5. In order to decide on the first request of the example, CEC first calculates a

model with the initial capacities. Then, as the request is a flexible one, a second model with

the number of accepted flexible request incremented by one (aY = 1 , as if the request had

been accepted) is calculated. We assume that the opportunity cost – as calculated by the dif-

ference between the two objective values – does not exceed $40, allowing the request to be

accepted. A bit later, the second request comes in. Again, two models (one with aY = 1 and

the second with aY = 2) are calculated, using the updated demand forecast available at this

point in time. This leads to an opportunity cost of more than $40 and the request is rejected.

The remaining eight requests are processed likewise, leading to the decisions given in Table 1

and a total revenue of $470.

The whole CEC mechanism is given as follows:

Procedure 5. CEC

Precondition: an incoming request for i∈ I or j∈J , capacity hc h∀ ∈H , accepted re-

quests for flexible products a
kY k∀ ∈J , expected demands-to-come s

ntD

n∀ ∈ I and f
ktD k∀ ∈J .

(1) if the incoming request is for specific product i∈ I :
(1a) solve DLP-flex with the extensions described in Section 3.2 with hc h∀ ∈H

and a
kY k∀ ∈J as input parameters; set 1V to the optimal value;

(1b) solve DLP-flex with the extensions described in Section 3.2 with h hic a−

h∀ ∈H and a
kY k∀ ∈J as input parameters; set 2V to the optimal value (set

2:V = −∞ if the model has no feasible solution);

(1c) if 1 2ir V V≥ − :

 21

accept request;
set :h h hic c a= − h∀ ∈H ;

(1d) else: reject request;
(2) if the incoming request is for flexible product j∈J :

(2a) solve DLP-flex with the extensions described in Section 3.2 with hc h∀ ∈H

and a
kY k∀ ∈J as input parameters; set 1V to the optimal value;

(2b) solve DLP-flex with the extensions described in Section 3.2 with hc h∀ ∈H ,
a

kY k∀ ∈J \{ }j and 1a
jY + as input parameters; set 2V to the optimal value

(set 2:V = −∞ if the model has no feasible solution);

(2c) if 1 2jf V V≥ − :

accept request;
set : 1a a

j jY Y= + ;

(2d) else: reject request;

Note that according to our classification scheme (see Fig. 1), CEC is the approach that max-

imally exploits the flexibility arising from flexible products, as it simultaneously allows for

request-based reallocation as well as for request-based reoptimization. Nevertheless, it has to

be noted that CEC is often only of theoretical interest, as most practical applications need

rather simpler mechanisms, especially without the need to permanently resolve mathematical

optimization problems. This is also crucial for many fields of application where the selling

process requires quick responses and even solving linear problems is too time-consuming due

to the practical problem size.

Table 1
Overview of Examples 1–5

no type / (cA,cB,cC) rev. / (cA,cB,cC) rev. / pool cp (cA,cB,cC) rev. / (cA,cB,cC) rev. / Ya (cA,cB,cC) rev.

(2,2,1) (2,2,1) {A,B,C} 5 (2,2,1) (2,2,1) 0 (2,2,1)
1 PFlex (1,2,1) $40 (1,2,1) $40 {A,B,C} 4 (2,2,1) $40 (1,2,1) $40 1 (2,2,1) $40
2 PFlex (0,2,1) $40 (0,2,1) $40 {A,B,C} 3 (2,2,1) $40 (0,2,1) $40 1 (2,2,1)
3 PA (0,2,1) (0,2,1) {A,B,C} 2 (1,2,1) $100 (0,1,1) $100 1 (1,2,1) $100
4 PA (0,2,1) (0,2,1) {A,B,C} 1 (0,2,1) $100 (0,0,1) $100 1 (0,2,1) $100

(0,2,1) (2,0,1) {B} 0 (0,2,1) (0,0,1)
5 PA (0,2,1) (1,0,1) $100 {B} 0 (0,2,1) (0,0,1) 1 (0,2,1)
6 PFlex (0,1,1) $40 (1,0,1) {B} 0 (0,2,1) (0,0,1) 1 (0,2,1)
7 PFlex (0,0,1) $40 (1,0,1) {B} 0 (0,2,1) (0,0,1) 1 (0,2,1)
8 PB (0,0,1) (1,0,1) {B} 0 (0,2,1) (0,0,0) $120 1 (0,1,1) $120
9 PFlex (0,0,1) (1,0,1) {B} 0 (0,2,1) (0,0,0) 1 (0,1,1)

10 PC (0,0,0) $110 (1,0,0) $110 {B} 0 (0,2,0) $110 (0,0,0) 1 (0,1,0) $110

remaining cap.: (0,0,0) (1,0,0) (0,0,0) (0,0,0) (0,0,0)
total revenue: $270 $290 $390 $400 $470

starting bid prices:
40/40/40

starting bid prices:
40/40/40

starting bid prices:
40/40/40

reoptim. bid prices:
100/40/110

reoptim. bid prices:
100/40/110

reoptim. bid prices:
100/40/110

starting bid prices:
40/40/40

reoptim. bid prices:
100/40/110

CECrequest ad-hoc temporary allocation pooling shifting
�H

 22

4 Computational experiments

4.1 Simulation experiment design

To perform the computational experiments, a simulation framework was implemented which

allows for the definition of several problem classes with different instances automatically be-

ing generated. The problem classes are based on two underlying resource networks which are

motivated by passenger airline revenue management, but also occur in a wide range of other

areas.

Network 1 consists of four similar and independent flight legs with no connection possibilities

and a total capacity of 200hC = homogeneous seats each, as this is typical of low cost carri-

ers. We define 16 specific products for each combination of flight and one of four booking

classes which are priced at 550, 400, 300, and 210 on each flight. Furthermore, a flexible

product is offered that assures transportation on one of the four flights, priced at 168. For each

flight leg h, a nominal load factor (hLF) is defined as the total expected demand for seats di-

vided by the total number of available seats. hLF splits up into 85% expected demand for

specific products, which in turn is assigned according to the ratios 1:2:3:4 to the four booking

classes, and 15% demand for the flexible product. By using different sets of input values hLF ,

we define three problem classes reflecting high demand (1-H), medium demand (1-M), and

low demand (1-L) with an average nominal load factor of 1.4, 1.1, and 0.9, respectively.

Network 2 represents a part of the daily network of a full service carrier and therefore allows

for a combination of flight legs to form connection flights. As the network is much more

complex, we do not go into too much detail but restrict ourselves to a description of its gener-

al properties. Network 2 consists of 15 flight legs, each of which corresponds to a possible

itinerary, connecting four cities A, B, C, and D (see Fig. 2): There are three short haul flights

from A to B (1–3) and three from C to D (4–6). Seven medium haul flights connect A with C

(7–9) and B with D (10–13). D can be reached from A directly with two long haul flights (14,

15). Capacity varies between 250 and 400 homogeneous seats. Furthermore, nine two-leg

itineraries, consisting of one short and one medium haul leg, are available. They connect A

and D with a transfer in B or C. We consider only one compartment and four booking classes

for each of the itineraries, leading to a total of 96 specific products. The direct long haul

flights from A to D are priced at 1200, 950, 700, and 500, depending on the booking class.

 23

Passengers with a transfer in B or C obtain a discount of 8% on these fares. Single medium

flights are charged at 80%, short haul flights at 30% of the corresponding booking class on a

long haul flight. Furthermore, three different flexible products connecting A to D are offered

at 25% below the direct flight’s fare in the cheapest booking class. The first product guaran-

tees a direct flight from A to D with flexible departure time either early in the morning (14) or

late in the evening (15). The second one offers transportation on a one-stop itinerary from A

to D with early departure, consisting of one of the pairs of flights (1,10), (1,11), (7,4), or (7,5).

The third product is a one-stop itinerary from A to D with late departure and possible trans-

portation modes (3,12), (3,13), or (9,6). As with network 1, we define three problem classes

reflecting high (2-H), medium (2-M), and low (2-L) demand with capacity weighted average

nominal load factors hLF of 1.3, 1.1, and 0.9, respectively. On legs being involved by one of

the flexible products, hLF splits up into 80% for specific products, with demand ratios 1:2:3:4

with respect to the booking classes, and 20% for the corresponding flexible product. Note that

these assumptions regarding the amount of flexible product demand in relation to the net-

work’s total demand situation are rather conservative. More specific details on the different

problem classes of networks 1 and 2, like the individual values of load factors and expected

demands, can be found in the appendix of [17], from which the simulation setting has been

adopted.

Fig. 2. Network 2 (time space network)

 24

In order to obtain simulation runs for both networks, we generate booking requests for the

different products according to independent, nonhomogeneous Poisson processes, a common

assumption in revenue management (see [28]). The corresponding arrival rates ()i tλ for all

i∈ I and ()j tλ for all j∈J , which are called booking curves in the context of airline reve-

nue management, distribute the given total expected demand over time. We assume that these

functions have a triangular shape (see [13]). As flight tickets are usually available one year in

advance, we set the length of the booking period to 360 days. Identical parameter values are

used for the beginning, maximum, and end of the corresponding triangle for all products

based on the same booking class. The values have been chosen so that more expensive book-

ing classes are generally requested near departure (see [17]).

To incorporate forecast accuracy in the simulations, we have implemented a stochastic fore-

cast error. In order to make simulations with different forecast qualities easily comparable

within the simulation study, this error has no influence on the generation of the requests them-

selves, but simply distorts the expectation of demand s
itD for each specific product i (f

jtD for

each flexible product j , respectively) used within the optimization models and the control

process after the requests have been generated as outlined above. Reflecting typical real-world

correlation in demand behavior, we define the forecast error as itinerary-based, meaning that

the forecasts of all products concerning a particular itinerary are distorted by the same value.

This allows some itineraries to have higher demand than expected, while others are less popu-

lar than predicted. The size of the error is controlled by the parameter []0 1,δ ∈ , which serves

as the distortion’s upper error bound. Given this parameter, a random value ()ˆ U ,δ δ δ−∼ is

drawn within each simulation run for each itinerary, and the expected demand for each specif-

ic product i based on this itinerary is distorted by δ̂ . That is, ()1 s
it

ˆ Dδ+ ⋅ is used as a forecast

of the expected aggregated demand-to-come. The expectation f
jtD is altered accordingly, but

with independent values δ̂ drawn for each flexible product j .

A problem class, as defined earlier, combined with a specific value for the upper error bound

δ , defines a certain test case. For each of the considered test cases, we investigate the five

different control mechanisms introduced in Section 3, with the bid prices (re)calculated 13

times during the booking horizon by reoptimizing the underlying model 360, 180, 110, 80, 65,

50, 40, 30, 20, 10, 5, 3, and 1 day(s) before departure, thereby increasing the frequency to-

wards the end of the booking horizon when demand intensity is higher. Unless otherwise

 25

noted, all accepted requests for flexible products are finally assigned to execution modes 15

days before departure. To judge the performance of the control mechanisms, 200K = inde-

pendent simulation runs are performed for the test cases, each consisting of a complete selling

period with requests for all products. All implementations have been undertaken by means of

“Java 2 Platform, Standard Edition” (J2SE) version 1.6.0 by Sun Microsystems. The simula-

tions ran on a PC with two 3 GHz Intel Pentium processors, 1 GB RAM and Windows XP.

4.2 Computational results

To evaluate the control mechanisms presented in Section 3, each of them is used to decide on

the acceptance of requests in the previously described problem classes. The considered test

cases are obtained by varying the upper error bound δ between 0 (very good forecast) and 1

(poor forecast). To facilitate the discussion, the results of selected problem classes are graphi-

cally illustrated. Table 2–5 at the end of this section provide detailed figures of all problem

classes.

We begin with the first control mechanism presented in Section 3, the ad-hoc allocation. For

our investigation, two relative measures are used: optimality gap (OG) and capacity utiliza-

tion (CU). OG is the relative difference between the revenue of the ad-hoc control mechan-

ism and the optimal value that could theoretically be realized under complete demand infor-

mation. For each simulation run κ , this hindsight upper bound OptVκ on the revenue of any

control mechanism can easily be computed after observing the demand realization. Given the

ad-hoc mechanism’s revenue by AHVκ , OG is calculated as follows:

1

1 100%
AH OptK

Opt
V VOG

K V
κ κ

κ κ=

−
= ⋅∑ (13)

The second measure is the average capacity utilization across all resources in the network,

with hR κ being the quotient of occupied and total capacity on leg h in simulation run κ :

1

1 100%
K

h
h

CU R
K l κ

κ= ∈

= ⋅
⋅ ∑∑H

 (14)

In practice, this ratio of occupied to total capacity is often reported as an important perfor-

mance indicator, although a higher capacity utilization obviously does not necessarily lead to

a higher revenue.

 26

a) Network 1

b) Network 2

Fig. 3. Optimality gap of the ad-hoc mechanism

In Fig. 3a), the optimality gap of each demand situation (high, medium, and low) is plotted

against δ for network 1. As OG measures the deviation from the optimum under complete

information, values closer to zero indicate better performance. The respective values for net-

work 2 are illustrated in Fig. 3b).

The ad-hoc mechanism obviously yields 2%–15% less revenue than the optimal value under

complete information. Thus, the optimality gap is always negative. Two trends can be clearly

observed: First, the optimality gap depends on demand. Demand scenarios with high demand

relative to capacity – implying higher average nominal load factors – show larger optimality

gaps than scenarios with weaker demand. Second, the optimality gap increases with forecast

impreciseness. For a good forecast (0δ =) the optimality gap is between 2.5% and 5.5% in

network 1, and 1.5% and 3.5% in network 2. However, the ad-hoc approach is hampered by a

bad forecast, while the hindsight upper bound OptVκ only depends on the actual demand reali-

zation. Thus, for a less accurate forecast (e.g., 1δ =), the revenue is 5.5%–15% (network 1)

and 4%–11% (network 2) below OptVκ .

Capacity utilization (Fig. 4) also depends on the accuracy of the forecast. A bad forecast in-

creases the risk of declining a request and waiting for a more valuable one which never ar-

rives and, thus, ending up with unsold capacity. This is reflected by a decrease in capacity

utilization of about 1% for every 0.25 increase in the upper error bound δ . Note that even for

0δ = , the capacity utilization does not reach 100% because the variance of the Poisson

process (see Section 4.1) remains and demand may be unbalanced.

 27

a) Network 1

b) Network 2

Fig. 4. Capacity utilization of the ad-hoc mechanism

These results show that the ad-hoc mechanism leaves a significant revenue potential unused,

especially when confronted with high demand and imprecise forecasts. Therefore, in the fol-

lowing, we analyze the performance of the other mechanisms presented in Section 3: tempo-

rary allocation, pooling, shifting and CEC. To facilitate this comparison, we define the meas-

ure revenue gain (RG), which shows the relative improvement of revenue sVκ of mechanism

s over the ad-hoc mechanism’s revenue AHVκ :

1

1 100%
s AHK

s
AH

V VRG
K V

κ κ

κ κ=

−
= ⋅∑ (15)

We begin our investigation with network 1. Fig. 5 illustrates temporary allocation (TA), pool-

ing (Pool) and CEC’s revenue gain for the three demand situations. Owing to the special

structure of network 1, pooling is applicable in this setting. Shifting yields almost exactly the

same results as pooling. Thus, it is not explicitly included in Fig. 5.

The temporary allocation mechanism attains up to 4.5% more revenue than the ad-hoc one.

The gain initially increases with δ in all demand situations, as it becomes more important to

correct inappropriate allocations of resources to requests for flexible products accepted earli-

er. However, as δ increases further, TARG remains constant or even decreases. This effect is

especially striking in the 1-L problem class: initially, TARG increases slightly from just under

2% to 2.5% for 0 6.δ = , but then falls sharply to around 1% at 1δ = . This is because even

though temporary allocation tries to improve the allocation by moving requests for flexible

products when reoptimizing, the new allocation remains constant until the next reoptimiza-

tion. If the forecast is very poor, this new allocation may not be much better than the previous

 28

one. Thus, the benefit obtained from moving the requests for flexible products is small, but –

in realistic scenarios – remains positive.

a) High demand (1-H)

b) Medium demand (1-M)

c) Low demand (1-L)

Fig. 5. Revenue gain in network 1

By aggregating the capacity of the flexible product’s multiple execution modes, pooling suc-

cessfully circumvents this temporary allocation shortcoming. While pooling generates almost

exactly the same revenue given small upper error bounds, its revenue gain PoolRG continues

to rise with increasing δ when TARG already stagnates or declines. There is a difference of

up to 1.5% (e.g. 1-M, 1δ =). When individual demand streams are analyzed in detail, it turns

out that temporary allocation and pooling accept exactly the same requests until about 60 days

prior to departure. But as soon as the first resources become scarce, temporary allocation has

to decline high-value requests for specific products because there is no remaining capacity on

the required resources. Any requests for flexible products that occupy space on a scarce re-

source cannot be moved to other execution modes until the next reoptimization. In contrast,

pooling does not need to wait for the reoptimization and can continue to accept requests for

specific products as long as there is sufficient capacity and the revenue exceeds the corres-

 29

ponding bid price. Thus, pooling accepts more requests for specific products near the end of

the booking horizon. Although the number of accepted requests for flexible products is almost

the same (see Table 3), the capacity utilization increases by up to 1%.

As mentioned before, the shifting mechanism nearly yields the same results as pooling. Only

negligible improvements in five test cases (see 1-H and 1-M in Table 4) indicate its theoreti-

cal advantage. Although shifting allows rearranging accepted requests for flexible products

whenever a new request for a specific product comes in, it still uses bid prices from the pre-

vious reoptimization to approximate the opportunity cost of accepting a request. Conversely,

the CEC mechanism calculates two value functions for each request and thus further improves

the revenue by 0.5% to 2.5%. An exception is 1-L, where demand is less than capacity. Here,

CEC performs roughly as well as shifting or pooling, but also yields slightly less revenue in

some test cases. The well-known trade-off between the maximization of capacity utilization

and revenue can be demonstrated by comparing CEC with temporary allocation: For 1-H, for

example, CEC yields strictly more revenue, but has lower capacity utilization than temporary

allocation.

a) Medium demand (2-M)

b) Low demand (2-L)

Fig. 6. Revenue gain in network 2

The analysis of network 2 confirms our results (see Fig. 6 for 2-M and 2-L, and Table 5 for all

demand situations). Here, temporary allocation yields 0.25%–2% more revenue than the ad-

hoc mechanism. Initially, the revenue gain rises but from a certain threshold onwards, it stays

constant or decreases for higher upper error bounds δ . Until this threshold is reached, shifting

leads to the same results, but as soon as temporary allocation ceases to improve, shifting –

pooling is not applicable here – continues to increase its revenue gain with increasing δ . The

maximal difference is 0.2% for 2-L and 1 1δ = . As before, CEC further improves the revenues,

 30

in this network up to 1.25% over shifting. Overall, the impact of the controls – which mainly

improve the handling of accepted requests for flexible products – is less significant in the

more conservative network 2 because the ratio of flexible to specific demand is much smaller

than in network 1. Only a subset of 9 of the 24 itineraries can be booked with flexible prod-

ucts.

Table 2
Optimality gap (OG), capacity utilization (CU), and number of requests for flexible products accepted
(# flex.) for the ad-hoc mechanism (network 1)

Table 3
Optimality gap (OG), capacity utilization (CU), and number of requests for flexible products accepted
(# flex.) for the ad-hoc mechanism (network 2)

Table 4
Revenue gain (RG), capacity utilization (CU), and number of requests for flexible products accepted
(# flex.) for temporary allocation, pooling, shifting, and CEC (network 1)

1-H 1-M 1-L
OG CU # flex. OG CU # flex. OG CU # flex.

0 -5.39 99.35 48 -3.60 98.60 125 -2.62 91.72 111
0.25 -6.45 98.87 47 -4.44 98.04 126 -2.73 91.42 112
0.5 -9.12 97.32 61 -6.05 96.67 126 -3.47 91.03 112

0.75 -11.84 95.37 74 -7.97 94.82 126 -4.29 89.85 110
1 -14.98 94.08 88 -9.76 92.95 124 -5.59 88.72 112

δ

2-H 2-M 2-L
OG CU # flex. OG CU # flex. OG CU # flex.

0 -3.46 98.51 113 -2.73 96.17 280 -1.50 89.62 271
0.25 -4.35 97.81 125 -3.39 95.52 281 -1.89 89.30 271
0.5 -6.56 96.52 148 -5.02 94.36 281 -3.00 88.24 268

0.75 -9.11 95.04 183 -6.53 93.03 278 -3.92 87.35 270
1 -11.49 93.56 206 -8.20 91.29 278 -4.79 86.29 263

δ

RG CU # flex. RG CU # flex. RG CU # flex. RG CU # flex.
1-H

0 0.67 99.47 45 0.69 99.48 45 0.68 99.47 45 3.11 98.75 19
0.25 1.05 99.15 42 1.06 99.16 42 1.06 99.15 42 3.14 98.25 21
0.5 2.52 98.06 48 2.52 98.07 48 2.52 98.06 48 4.33 97.09 30

0.75 3.80 96.79 60 3.91 96.87 60 3.92 96.85 60 5.48 96.01 42
1 4.65 95.81 73 5.24 96.10 70 5.27 96.05 71 6.95 95.41 55

1-M
0 1.02 99.03 120 1.02 99.03 120 1.02 99.03 120 1.87 99.03 120

0.25 1.44 98.72 120 1.44 98.72 120 1.45 98.72 120 2.14 98.72 120
0.5 2.33 97.92 119 2.36 97.94 119 2.36 97.94 119 2.83 97.92 119

0.75 2.88 96.48 120 3.10 96.63 119 3.12 96.63 119 3.55 96.48 120
1 2.80 94.52 120 4.24 95.50 120 4.27 95.50 120 4.57 94.52 120

1-L
0 1.88 93.23 111 1.88 93.23 111 1.88 93.23 111 1.84 93.14 111

0.25 2.07 92.94 112 2.07 92.94 112 2.07 92.94 112 2.02 92.83 112
0.5 2.43 92.68 112 2.48 92.70 112 2.48 92.70 112 2.40 92.58 112

0.75 2.04 91.16 110 2.41 91.38 110 2.41 91.38 110 2.34 91.25 110
1 1.20 89.44 112 2.66 90.34 112 2.66 90.34 112 2.70 90.33 111

shifting CECClass temporary allocation poolingδ

 31

Table 5
Revenue gain (RG), capacity utilization (CU), and number of requests for flexible products accepted
(# flex.) for temporary allocation, shifting, and CEC (network 2)

5 Summary & Conclusion

In this paper, we proposed and investigated several dynamic capacity control mechanisms for

revenue management with flexible products, which allow for supply-side flexibility even after

the time of sale. In our computational experiments, it turned out that total revenue can be sig-

nificantly increased by these mechanisms compared to the “ad-hoc” approach used in the con-

text of opaque products, which allocates resources immediately after the acceptance of re-

quests. The mechanisms can be ordered according to the degree to which they make use of

flexibility opportunities. In this context, it could be shown that the revenue gain when using a

more sophisticated mechanism – which exploits the flexibility to a greater extent – is strongly

dependent on the forecast quality as well as the proportion of flexible products on the net-

work. While the simplest mechanism, the temporary allocation of resources over time be-

tween two optimizations, is sufficient for applications with a rather good forecast, advanced

mechanisms like shifting and pooling are even more gainful if the forecast quality is rather

poor. Further improvements could theoretically be reached by making use of CEC.

However, there is a general trade-off between the level of the mechanism’s sophistication

with the resulting revenue gain on the one hand and the practical applicability on the other.

Exploiting supply-side flexibility makes high demands on the organizational environment,

integration into existing software systems, degree of automation, and existing business

RG CU # flex. RG CU # flex. RG CU # flex.
2-H

0 0.25 98.68 109 0.25 98.68 109 1.59 98.33 65
0.25 0.53 98.05 118 0.53 98.05 118 1.63 97.72 79
0.5 1.07 96.87 133 1.07 96.87 133 2.24 96.71 99

0.75 1.56 95.54 164 1.58 95.55 164 2.96 95.57 130
1 1.86 94.26 186 2.02 94.31 185 3.48 94.40 158

2-M
0 0.40 96.40 273 0.40 96.40 273 1.24 96.14 248

0.25 0.68 95.90 273 0.68 95.90 273 1.34 95.65 249
0.5 1.14 94.92 270 1.15 94.92 270 1.73 94.77 254

0.75 1.54 93.76 269 1.56 93.77 269 2.21 93.75 256
1 1.73 92.15 269 1.85 92.21 269 2.48 92.35 261

2-L
0 0.47 90.05 270 0.47 90.05 270 0.63 90.01 269

0.25 0.62 89.74 270 0.62 89.74 270 0.77 89.72 268
0.5 0.95 88.83 265 0.95 88.83 265 1.15 88.89 263

0.75 1.13 88.00 266 1.18 88.02 266 1.40 88.10 263
1 0.95 86.87 260 1.16 86.96 260 1.43 87.15 260

Class temporary allocation shifting CECδ

 32

processes. In particular, it can be crucial if many requests have to be answered real-time in a

semi-automated process during which permanent mathematical optimizations, which are, for

example, required for the CEC mechanism, are impossible or at least undesirable. The pro-

posed pooling and shifting mechanisms, which are heuristics formalizing intuitive ideas that

can easily be comprehended and implemented, seem to be a reasonable trade-off between the

revenue gain obtained by the CEC and the simplicity of a pure ad-hoc mechanism.

References
[1] Belobaba PP. Air travel demand and airline seat inventory management. Ph.D. Thesis, Flight Transporta-

tion Laboratory, Massachusetts Institute of Technology, Cambridge, 1987.

[2] Talluri KT, Van Ryzin GJ. An analysis of bid-price controls for network revenue management. Manage-
ment Science 1998;44(11):1577-93.

[3] Bertsimas D, Popescu I. Revenue management in a dynamic network environment. Transportation Science
2003;37(3):257-77.

[4] Smith BC, Penn CW. Analysis of alternative origin-destination control strategies. In: AGIFORS Annual
Symposium Proceedings 28, New Seabury, 1988. p. 113-21.

[5] Williamson EL. Airline network seat control. Ph.D. Thesis, Massachusetts Institute of Technology, Cam-
bridge, 1992.

[6] Simpson RW. Using network flow techniques to find shadow prices for market and seat inventory control.
Memorandum M89-1, Flight Transportation Laboratory, Massachusetts Institute of Technology, Cam-
bridge, 1989.

[7] Talluri KT, Van Ryzin GJ. A randomized linear programming method for computing network bid prices.
Transportation Science 1999;33(2):207-16.

[8] De Boer SV, Freling R, Piersma N. Mathematical programming for network revenue management revi-
sited. European Journal of Operational Research 2002;137(1):72-92.

[9] Adelman D. Dynamic bid-prices in revenue management. Operations Research 2007;55(4):647-61.

[10] Topaloglu H. Using Lagrangian relaxation to compute capacity-dependent bid prices in network revenue
management. Operations Research 2009;57(3):637-49.

[11] Bertsimas D, De Boer SV. Simulation-based booking limits for airline revenue management. Operations
Research 2005;53(1):90-106.

[12] Van Ryzin GJ, Vulcano G. Simulation-based optimization of virtual nesting controls for network revenue
management. Operations Research 2008;56(4):865-80.

[13] Klein R. Network capacity control using self-adjusting bid-prices. OR Spectrum 2007;29(1):39-60.

[14] Topaloglu H. A stochastic approximation method to compute bid prices in network revenue management
problems. INFORMS Journal on Computing 2008;20(4):596-610.

 33

[15] Gallego G, Iyengar G, Phillips R, Dubey A. Managing flexible products on a network. CORC Technical
Report Tr-2004-01, IEOR Department, University of Columbia, 2004.

[16] Gallego G, Phillips R. Revenue management of flexible products. Manufacturing and Service Operations
Management 2004;6(4):321-37.

[17] Petrick A, Steinhardt C, Gönsch J, Klein R. Using flexible products to cope with demand uncertainty in
revenue management. Working Paper, Chair of Mathematical Methods, Institute of Statistics and Econo-
mic Theory, University of Augsburg, 2009.

[18] Bartodziej P, Derigs U. On an experimental algorithm for revenue management for cargo airlines. In:
Ribeiro CC, Martins SL, editors. Proceedings of the 3rd International Workshop on Experimental and Ef-
ficient Algorithms (WEA), Lecture Notes in Computer Science, vol. 3059. Berlin: Springer, 2004. p. 57-
71.

[19] Bartodziej P, Derigs U, Zils M. O&D revenue management in cargo airlines - a mathematical program-
ming approach. OR Spectrum 2007;29(1):105-21.

[20] Kimms A, Klein R. Revenue Management im Branchenvergleich. Zeitschrift für Betriebswirtschaft
2005;75(Special Issue 1):1-30.

[21] Spengler T, Rehkopf S, Volling T. Revenue management in make-to-order manufacturing - an application
to the iron and steel industry. OR Spectrum 2007;29(1):157-71.

[22] Kimms A, Müller-Bungart M. Revenue management for broadcasting commercials: the channel's problem
of selecting and scheduling advertisements to be aired. International Journal of Revenue Management
2007;1(1):28-44.

[23] Talluri KT. Airline revenue management with passenger routing control: a new model with solution ap-
proaches. International Journal of Services Technology and Management 2001;2(1/2):102-15.

[24] Talluri KT, Van Ryzin GJ. The theory and practice of revenue management. New York: Springer, 2004.

[25] Chen VCP, Günther D, Johnson EL. Routing considerations in airline yield management. In: Ciriani TA,
Fasano G, Gliozzi S, Tadei R, editors. Operations Research in Space and Air. Boston: Kluwer, 2003.
p. 333-50.

[26] Jiang Y. Price discrimination with opaque products. Journal of Revenue and Pricing Management
2007;6:118-34.

[27] Bertsekas DP. Dynamic programming and optimal control, volume 1. 3rd edn, Belmont: Athena Scientif-
ic, 2005.

[28] Kimms A, Müller-Bungart M. Simulation of stochastic demand data streams for network revenue man-
agement problems. OR Spectrum 2007;29(1):5-20.

