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In many service industries, firms offer a portfolio of similar products based on different types of resources. Mis-

matches between demand and capacity can therefore often be managed by using product upgrades. Clearly, it is 

desirable to consider this possibility in the revenue management systems that are used to decide on the ac-

ceptance of requests. To incorporate upgrades, we build upon different dynamic programming formulations from 

the literature and gain several new structural insights that facilitate the control process under certain conditions. 

We then propose two dynamic programming decomposition approaches that extend the traditional decomposi-

tion for capacity control by simultaneously considering upgrades as well as capacity control decisions. While the 

first approach is specifically suited for the multi-day capacity control problem faced, for example, by hotels and 

car rental companies, the second one is more general and can be applied in arbitrary network revenue manage-

ment settings that allow upgrading. Both approaches are formally derived and analytically related to each other. 

It is shown that they give tighter upper bounds on the optimal solution of the original dynamic program than the 

well-known deterministic linear program. Using data from a major car rental company, we perform computa-

tional experiments that show that the proposed approaches are tractable for real-world problem sizes and outper-

form those disaggregated, successive planning approaches that are used in revenue management practice today. 
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Integrated revenue management approaches for  

capacity control with planned upgrades 

Claudius Steinhardt, Jochen Gönsch 

1. Introduction 

Capacity control, which is considered to be the key component of modern revenue management, is 

concerned with the task of optimally selling a fixed perishable capacity within a given time horizon 

by controlling the availability of the products that make use of this capacity (see, e.g., Talluri & van 

Ryzin, 2004). However, traditional capacity control often ignores the fact that many firms in the 

service industry offer several products that are substitutable in the sense that the seller could fulfill a 

certain product request with a more desirable substitute from a prespecified set of alternative prod-

ucts. Examples include airlines selling economy, business, and first class seats and car rental com-

panies offering many types of cars differing in size and features. 

In this paper, we consider the situation when this substitution is provided at the original product’s 

price, which is called an upgrade. It is assumed that customers always accept upgrades to superior 

products if they are offered these at no extra cost. Conversely, if customers are urged to voluntarily 

buy a higher value product – in practice, this usually occurs at the time of fulfillment – this is 

termed an upsell. Upgrading and upselling can be beneficial if the selling firm faces a mismatch 

between supply and demand. This mismatch often occurs when capacity decisions have been de-

termined for the long term, which is usual in traditional revenue management scenarios, while firms 

experience stochastic and seasonal demand. We assume that the capacity mismatch is relatively 

transient or not very pronounced; customers will therefore not strategically adapt to upgrades.  

Two important aspects of upgrading are fairness and scope (see, e.g., Gallego & Stefanescu, 2009). 

Informally, upgrades are defined as fair if upgrade priority is given to customers who purchase 

higher quality products. Specifically, no customer should receive a higher quality upgrade than an-

other who had originally bought a higher quality product. Regarding the scope of upgrades, two 

basic models can be distinguished: Full cascading, which allows upgrades to any higher quality 

product, and limited cascading, which is less flexible as upgrades are allowed only to the next high-

er quality product.  
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The research presented in this paper is motivated by an industry project conducted with a major car 

rental company. In fact, the car rental industry is one of the most important users of upgrades. As 

Geraghty and Johnson (1997) note, it is essential for car rental companies to undertake market seg-

mentation by not only offering different products using the same resources but also by offering 

many different car types. This is especially important as some typical fencing conditions known 

from the airline industry, for example, advanced purchase restrictions, do not seem to work well in 

the car rental business (see, e.g., Carroll & Grimes, 1995). However, by offering many different car 

types, car rental companies cannot directly substitute one type for another but must consider a cer-

tain predefined upgrade hierarchy. The resulting supply-side substitution opportunities are inevita-

ble as, although desirable, there still is no tight integration of fleet management and revenue man-

agement decisions in the car rental industry (see, e.g., Lieberman, 2007). Furthermore, as the differ-

ences in the cost are usually quite small, car rental firms have a common policy to acquire fewer 

economy cars than required and more compact or full-size cars. Through upgrading, the latter cars 

offer more flexibility if the demand situation changes.  

Although the above examples illustrate an obvious need to explicitly incorporate upgrading oppor-

tunities in revenue management’s capacity control process, there is not much theoretical work on 

developing appropriate approaches. Practical implementations usually resort to rather simple heuris-

tics, such as successive planning, which means that upgrade contingents on higher-valued resources 

are determined first and that, subsequently, the new virtual capacity is considered fixed for standard 

capacity control. Therefore, one of the contributions of this paper is the proposition of integrated 

dynamic programming decomposition approaches for capacity control with planned upgrades. Our 

approaches extend the well-known dynamic programming decomposition from traditional capacity 

control to additionally exploit the opportunities of planned upgrades. Furthermore, we show that the 

approaches are applicable to real-world scenarios in car rental revenue management and that they 

outperform common practice procedures, such as the successive planning of upgrade contingents 

and capacity control decisions. 

The paper is structured as follows: Section 2 provides a brief review of related literature. In Section 

3, we present two dynamic programming formulations for capacity control with planned upgrades 

that are adopted from the literature. Based on these formulations, as our first contribution, we theo-

retically derive new structural insights that facilitate the control process under certain conditions 

that often occur in practice, such as single-leg airline capacity control and daily car rental capacity 
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control. Based upon these models and insights, we then propose two different dynamic program-

ming decomposition approaches for capacity control with planned upgrades, which is the second 

contribution of the paper (Section 4). While the first approach is specifically suited for multi-day 

revenue management problems that occur, for example, in the hotel and car rental businesses, the 

second approach is more general and can be applied in arbitrary network revenue management set-

tings. In Section 5, we discuss the computational results from a simulation study based on real-

world data obtained from our car rental industry partner. These results demonstrate the decomposi-

tion approaches’ practical applicability and their relative performance compared to other common 

control procedures, such as successive planning. We conclude with a summary of the key results 

(Section 6). The proofs of all propositions as well as complementary tables with additional infor-

mation on the simulation study are provided in the Online Appendix. 

2. Literature Review 

There is an extensive literature on revenue management in general. For surveys, see, for example, 

Belobaba (1987), Weatherford and Bodily (1992), McGill and van Ryzin (1999), and Chiang, Chen 

and Xu (2007), as well as the textbooks by Talluri and van Ryzin (2004) and Phillips (2005).  

While most revenue management publications consider only one type of resource and thus do not 

mention any supply-side substitution, a few authors have proposed approaches that integrate 

planned upgrades with capacity control. Alstrup, Boas, Madsen and Vidal (1986) present a dynamic 

programming formulation for an overbooking problem, with two types of resources incorporating 

upgrades as well as downgrades. Karaesmen and van Ryzin (2004) also incorporate overbooking 

but propose a two-stage model: In the first stage, optimal booking limits are determined and then 

used for capacity control. In the second stage, just before the service provision, the accepted cus-

tomers are assigned to inventory classes to maximize the net benefit. The latter step is performed by 

a transportation problem’s solution that allows for upgrades as well as downgrades.  

In a more recent publication, Shumsky and Zhang (2009) present a dynamic programming approach 

for capacity control with planned upgrades as well. They consider a non-network setting with a 

number of resources in a hierarchy with a one-to-one relationship between resources and products. 

Furthermore, they assume that in each time period, multiple requests arrive. The total demand of the 

period is observed and then the number of accepted as well as upgraded requests can be determined 

ex post. Their analysis is restricted to limited-cascading planned upgrades: In addition to revenues, 
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they define different types of costs from which it follows that only one step-upgrading is profitable 

at all. Based on these assumptions, Shumsky and Zhang (2009) are able to prove the optimality of 

an upgrade policy that relies on protection levels. In particular, in their setting, at the end of each 

period, it is optimal to first accept as much of each product’s demand as can be served with the cor-

responding resource and then to accept existing additional demand by assigning it to the next-higher 

resource, up to a calculated protection limit. The authors also derive upper and lower bounds on the 

optimal protection limits by restricting the capacity of an arbitrary higher value resource to infinity 

and zero, respectively. In contrast to the approach of Shumsky and Zhang (2009), we consider a 

more traditional revenue management setting that is also considered, e.g., by Gallego and Stefanes-

cu (2009). In particular, we are faced with a successive arrival process in which an acceptance deci-

sion must be made immediately for every single incoming request. Furthermore, we generally con-

sider a multi-day setting, that is, a network structure. In addition, as we do not impose a specific 

cost structure, cascading upgrades are potentially beneficial so that we do not restrict ourselves to 

limited-cascading planned upgrades.  

The paper by Gallego and Stefanescu (2009) is most closely related to our work and therefore ne-

cessities a detailed discussion. The authors introduce two dynamic programming formulations for 

capacity control with planned upgrades in an independent demand setting. The formulations differ 

in terms of the point in time when the final upgrade decision must be made. In what follows, the 

authors concentrate exclusively on a static deterministic linear programming approximation for both 

programs. Basically, this is an extension to the well-known DLP-approximation for standard capaci-

ty control in revenue management. Gallego and Stefanescu show their approximation to give upper 

bounds on the original dynamic programs’ values. For a specific, non-network case of this model, 

the authors show that a fair upgrading solution always exists. Furthermore, they derive conditions 

for the existence of a revenue-optimal non-cascading solution. Our work directly builds upon the 

two dynamic programming formulations presented early in the paper by Gallego and Stefanescu 

(2009). However, differing from their paper, we do not concentrate on the DLP-approximation of 

these formulations but instead work directly with the dynamic programming formulations. In par-

ticular, we directly derive new structural results for the dynamic programming formulations, addi-

tionally assuming a common non-network structure similar to the structure that Gallego and 

Stefanescu assume when analyzing fairness and limited cascading issues in their DLP. Furthermore, 
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we develop new decomposition approaches directly for a dynamic program that includes upgrades 

and is adapted to the multi-day setting in terms of notation.  

Additionally, the literature on revenue management with flexible products is somewhat related to 

our work, because flexible products can, in fact, be considered to be a generalization of upgradeable 

products. A flexible product consists of several alternatives offered by a supplier, who reserves the 

right to assign one of the alternatives to customers at a predefined point in time after purchase. In 

the scientific literature, flexible products were introduced and first investigated by Gallego and Phil-

lips (2004) and Gallego, Iyengar, Phillips and Dubey (2004). Petrick, Steinhardt, Gönsch and Klein 

(2012) undertake comprehensive computational studies that reveal the revenue potential when flex-

ible products are used in settings with uncertain demand forecasts (see also Petrick, Gönsch, Stein-

hardt & Klein, 2010). 

It should be noted that a vast body of literature investigates supply-side substitution from a cost 

perspective in the context of production and inventory management. See, for example, Lang (2009) 

for an overview. 

In the literature on capacity control in the traditional network revenue management setting, a num-

ber of approaches that are used to approximate the problem’s original dynamic programming for-

mulation, which itself is generally computationally intractable, exist. In this context, dynamic pro-

gramming decomposition techniques are specifically related to our research. The standard decom-

position approach, which is used to decompose the traditional network capacity control problem to 

obtain a number of single-leg problems, is well-established in standard software implementations 

and described, for example, in detail by Talluri and van Ryzin (2004). Liu and van Ryzin (2008) are 

the first to adapt the dynamic programming decomposition technique to the choice-based network 

revenue management setting. Their approach has been adopted and discussed in a number of fol-

low-up papers (see, e.g., Miranda Bront, Méndez-Díaz & Vulcano, 2009; Kunnumkal & Topaloglu, 

2010; Meissner & Strauss, 2012). Zhang and Adelman (2009) derive an upper bound that relates the 

single-leg problem’s value to the network value in the choice-based setting. Decomposition heuris-

tics have also been applied in settings that incorporate overbooking (see, e.g., Erdelyi & Topaloglu, 

2009; Erdelyi & Topaloglu, 2010). Further decomposition techniques such as prorating (see, e.g., 

Kemmer, Strauss & Winter, 2011), displacement adjusted virtual nesting (see, e.g., Belobaba, 1987; 

Smith & Penn, 1988), and iterative nesting (see, e.g., Talluri & van Ryzin, 2004, chapter 3.4.5) have 

been described in the literature. Another group of approximations are not based on decomposition 
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but on easier-to-solve network models, such as the DLP model (see, e.g., Glover, 1982), the PNLP 

model (see, e.g., Wollmer, 1986), and the RLP model (see, e.g., Smith & Penn, 1988). Furthermore, 

there are approaches that are based on reinforcement learning and that usually result in simulation-

based heuristics for solving single-leg problems and thus could be used within a decomposition 

scheme (see, e.g., Gosavi, Bandla & Das, 2002; Gosavi, 2004). In addition, there are a number of 

model-based or model-free simulation-based optimization methods that use stochastic gradient me-

thods (see, e.g., Bertsimas & de Boer, 2005; van Ryzin & Vulcano, 2008) or meta-heuristics such as 

simulated annealing (see Gosavi, Ozkaya & Kahraman, 2007) and scatter search (see Klein, 2007). 

Finally, there are also a few articles that specifically discuss the application of revenue management 

approaches in the car rental industry (see, e.g., Edelstein & Melnyk, 1977; Carroll & Grimes, 1995; 

Geraghty & Johnson, 1997; Lieberman, 2007; Haensel, Mederer & Schmidt, 2012). However, most 

of these publications focus on successful implementations of car rental revenue management sys-

tems and the arising challenges, without considering the details of the applied mathematical models 

and techniques. For example, Geraghty and Johnson (1997) underline the relevance of planned up-

grades in the car rental business but only mention that they use a modification of the well-known 

EMSR heuristic without providing any further insight. In a very recent publication, Haensel, Me-

derer and Schmidt (2012) present a stochastic programming approach suited for revenue manage-

ment in the car rental industry but without considering multiple car types. 

3. Model Formulations and Structural Properties 

3.1. Model Formulations 

In this subsection, we restate two general dynamic programming formulations of the revenue man-

agement problem with planned upgrades that have been proposed by Gallego and Stefanescu 

(2009). We consider a firm offering n  products. For each product  1k , ,n , kp
 
denotes its pre-

defined price that is valid throughout the sales horizon. The sales horizon can be sufficiently discre-

tized into T  time periods so that no more than one buying request arrives in each period 

 1t , ,T . Each request asks for one single unit of one of the products, and the common ID as-

sumption holds regarding demand. Note that, in addition to many other fields of relevance, this as-

sumption is particularly valid for the car rental revenue management setting with corporate custom-

ers, which has motivated this research. The probability of a request for product  1k , ,n  is giv-
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en by 
k , and consequently, with probability 

1

1
n

k

k




 , there is no request in a time period. To pro-

vide the products, there exist m  resources. The total capacity of each resource  1q , ,m  is given 

by 
qc , which is a non-negative integer value. The resources’ capacity is grouped in the 1m  vector 

 1

T

mc , ,cc . The products’ capacity consumption is defined by the m n  incidence matrix A . 

Let 
qka  refer to the element at the q-th row and the k-th column of A . Then, 1qka 

 
if resource q  

is used by product k , and 0qka 
 
otherwise. Furthermore, 

ka  denotes the k-th column of A , that 

is, the vector of resources used by one unit of product k . As is common in revenue management, 

capacity is assumed to be fixed, and capacity that remains unused after the sales horizon is worth-

less. We assume that the products can be ordered with respect to a given upgrade hierarchy. The 

firm guarantees that a customer purchasing an upgradeable product  1k ,...,n  at price 
kp  will 

obtain an alternative belonging to a set  k kk  , which consists of the product itself and the 

upgrade possibilities  1k k ,...,n 
 

that can arbitrarily be defined. The buyer of a non-

upgradeable product obtains exactly the product he purchased, that is  k k . To ease notation, 

we omit the index sets for the symbols k  and j  referring to products, q  referring to resources, and 

t  referring to time periods. For example, the notation k  means  1k , ,n  , and 
k

  means 

 1k , ,n

 . Moreover, throughout the paper, we use he  to denote the h -th standard basis vector of the 

H-dimensional vector-space of integer values, without stating the dimension H  wherever it is ob-

vious from the context. The symbol 0 refers to the zero vector. 

In this setting, two different upgrade mechanisms can be considered. Making use of the ad-hoc 

mechanism, the firm must immediately decide to upgrade or not when an upgradeable product is 

sold, whereas the second mechanism postpones this decision until the end of the sales horizon. 

We first consider the case that upgrades are decided ad-hoc at the time of sale. Each possible state 

within the capacity control process can be described by  ,tx , where t denotes the considered time 

period, and the 1m  vector  1

T

mx ,...,xx  denotes the corresponding free resources’ capacity with 

x c . Let  V ,tx  denote the expected revenue-to-go when the current state is  ,tx . Defining the 

opportunity cost  jV ,t x  of assigning one unit of product kj  to a customer requesting k  as 

     j jV ,t V ,t V ,t   x x x a , the expected revenue-to-go can be computed recursively via the 

Bellman equation 

       1 1
k

k k j
j

k

V ,t p min V ,t V ,t



     x x x   (1) 



 8 

with the boundary conditions  0 0V , x  for x 0 , and  0V ,  x  otherwise. Note that the op-

erator  


  is the maximum of zero and the value in brackets. 

Postponing the upgrade decision to the end of the sales horizon necessitates a slightly more com-

plex formulation. The state space must be expanded by a vector of commitments to track sales, as it 

is no longer possible to immediately reduce capacity after the sale of an upgradeable product. Let 

ky  be the non-negative number of requests that have been accepted for product k until the current 

state within the capacity control process, and let  1

T

ny , , yy
 
be the corresponding vector in-

cluding the current commitments for all products. Then, each possible state within the capacity con-

trol process can be described by  , ,tx y , and the expected revenue-to-go is denoted by  V , ,tx y . 

The opportunity cost of selling one unit of product k  is now defined as 

     k kV , ,t V , ,t V , ,t   x y x y x y e . At the end of the sales horizon, all accepted upgradeable 

products y  must be provided with the remaining capacity x . Furthermore, let  denote the set of 

feasible pairs of x  and y as defined by Gallego and Stefanescu (2009); that is,  , x y  holds if 

and only if x 0  and there exists a feasible allocation of upgrades. Then, the expected revenue-to-

go can be calculated by 

       1 1k k k

k

V , ,t p V , ,t V , ,t


    x y x y x y   (2) 

with the boundary conditions  0 0V , , x y  if  , x y  and  0V , ,  x y  otherwise. 

3.2. Structural Properties 

Based upon the formulations presented in the previous subsection, we now derive some new struc-

tural results that have an important impact on the process of capacity control. The analysis focusses 

the case that the consumption matrix A  is equal to the identity matrix I; that is, each unit of product 

k  consumes exactly one unit of resource k  and requires no other resources. Furthermore, we as-

sume a full cascading upgrading model where  k k, ,n . All of these additional assumptions 

are quite common to many fields of application, such as single-leg airline capacity control and daily 

car rental capacity control. Note that Gallego and Stefanescu (2009) make very similar assumptions 

when analyzing the problem’s static linear programming approximation with respect to fairness and 

revenue-optimal limited-cascading solutions. 
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We first state the following important monotonicity result that holds in respect of ad-hoc upgrading 

as defined in model (1): 

Proposition 1. If A I  and  k k, ,n  for all products, then  

    q qV ,t V ,t  x x  for all t , x  with 0q q'x ,x   and q q' . 

Proof. In the Online Appendix A.1, we prove this inequality by induction over t .   □ 

Proposition 1 means that the resources’ opportunity cost is always non-decreasing when moving up 

the upgrade hierarchy. Note that this result is completely independent of the products’ prices. More 

precisely, prices do not need to increase with the product’s position in the upgrade hierarchy.  

Proposition 1 has a straightforward implication for the capacity control process, that is, the process 

of accepting and rejecting incoming requests within the sales horizon. Owing to the opportunity 

cost monotonicity, it is no longer necessary to consider all the potential upgrade possibilities for an 

incoming request to identify the minimum opportunity cost, but only the smallest index available in 

the upgrade hierarchy to which the current request can be upgraded must be identified. If the oppor-

tunity cost of the corresponding resource is less than revenue, the request is accepted and assigned 

to this resource, and if not, it can be rejected, as all larger indices will result in even higher oppor-

tunity cost, as implied by Proposition 1. The following algorithm outlines the resulting optimal ca-

pacity control step when using the ad-hoc upgrading dynamic program in the investigated setting 

( A I  and  k k, ,n ), given that there is an incoming request for product k , the current point 

of time within the sales horizon is t  and the vector of remaining capacity is x :  

Algorithm 1.  

1. For an incoming request k , find product  0jj* min j | j k x    . 

2. If j*  exists and  1k j*p V ,t  x :  

- accept incoming request k  

- upgrade the request to product j*  ( : j* x x e ) 

Otherwise: reject request k  

We next relate the values of models (1) and (2), using the following definition: 

Definition 1.  Given A I  and  k k, ,n , a vector of capacity x  and a vector of commitments 

y  with  , x y , let xy  be the set containing all possible feasible allocations of requests y  on 

capacity x . For each s
xy , let 

( s )
h  be the 1m  vector of remaining capacity after allocation. 
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Let  ( s ) | s 
xy xy

h
 
be the set of all possible remaining capacity vectors. Then, we define the 

function  :
0

m  as follows (
0

m  is the set of all 1m  vectors of non-negative integer values): 

  
( s )

( s )

j

j

, arg max j h


 
  

 


xyh

x y .   (3) 

The intuition of  , x y  is as follows: The function returns a vector of free capacity that remains 

after the allocation of the given commitments y on the given capacity x. The vector is chosen such 

that resources with a larger index in the upgrade hierarchy are preferably kept free whenever possi-

ble. Within the maximization, this is technically achieved by weighting each resource’s remaining 

capacity with its index in the upgrade hierarchy. Algorithmically, a feasible allocation leading to 

 , x y , given  ,x y , can be obtained by successively moving up the product hierarchy from 

1k , ,n , allocating capacity for the commitments 
ky
 
as low in the hierarchy as possible. 

Based on Definition 1, the relationship between models (1) and (2) can be stated as follows: 

Proposition 2. If A I  and  k k, ,n  for all products, then  

 
    V , ,t V , ,tx y x y   for all  t , , x y  

Proof. Without loss of generality, we assume that the control process upgrades requests ad-hoc at 

the time of sale to the available resource with the smallest index, as described in Algorithm 1. The 

idea behind the proof is that if requests that would have led to commitments y  in the postponement 

variant have been accepted, the free capacity is  , x y  – independent of the order in which the 

requests have arrived. The proof can be outlined as follows. First, we show that the postponement 

mechanism and the ad-hoc variant with free capacity  , x y  have an identical set of feasible poli-

cies. By induction over t , we then show the equivalence of the value functions as stated in Proposi-

tion 2. The complete proof is given in the Online Appendix A.2.  □ 

From Proposition 2, it follows that    V , ,T V ,Tc 0 c  because, obviously,  ,c c 0 . Thus, 

Proposition 2 implies the equivalence of models (1) and (2) in the setting under consideration. 

Hence, it is not necessary to postpone any upgrade decisions, but the final resource allocation can 

immediately be performed after acceptance without any loss in the overall revenue. 

Note that both propositions can also be generalized to other resource network structures. For exam-

ple, it is possible to show that they also hold in the airline network capacity control problem under 

the condition that upgrade decisions can be made separately for each leg of connecting flights. 



 11 

4. Dynamic Programming Decomposition Approaches for the 

Multi-Day Capacity Control Problem 

In this section, we focus on multi-day capacity control with planned upgrades, as faced, for exam-

ple, by hotels and car rental companies. We first slightly change the notation used in Section 3 to 

make the modeling approach more comprehensible for this application field (Subsection 4.1). Note 

that we restrict ourselves to considering the ad-hoc variant in which the upgrade decision is made at 

the time of sale. Because the dynamic programming (DP) formulation is intractable for multi-day 

problems of real-world sizes, we subsequently develop dynamic programming decomposition ap-

proaches in Subsections 4.2 and 4.3, which are based on the traditional DP network decomposition 

but allow for the simultaneous consideration of upgrades and capacity control decisions. 

4.1. Multi-Day Upgrade Setting 

A car rental company disposes of the same car types every day, although its capacity may vary. The 

product portfolio encompasses renting various car types for different lengths of time, and pick-up is 

usually possible every day. Likewise, hotels are built with a fixed number of rooms of different 

types and offer accommodation for one or more days. These two examples show a peculiarity found 

in many service industries where the product portfolio and the resource network have a special 

structure. In principle, the same products are offered for provision at different points in time, and 

similarly, constant types of resources are used over time. Providing a product therefore necessitates 

a certain amount of (physical) resources for a specified time interval. To reflect this multi-day set-

ting, which is obviously a special case of the setting described in Section 3, we slightly change the 

notation as follows. 

We now consider a planning horizon of   days and a total of m available resource types. For each 

day  1, ,    of the planning horizon, rc   units of resource type  1r , ,m  are available. C  is 

the m  matrix containing these initial capacity values for the whole planning horizon. Each 

product  1k , ,n  is sold at its price kp  and corresponds to a resource type  1kr , ,m . To 

provide a product, one unit of a resource of type kr  is necessary from the starting day  1ks , ,   

for  0 1k kl ,..., s    days until 1k ks l  . All products are upgradeable, so instead of using 

resources of type kr , the firm can decide to upgrade the request to another type  kr r , ,m , 

which must be the same for all days. Furthermore, let 
( kr )

A denote the m  resource consumption 

matrix of product k  assigned to resource type r  being defined as ( kr ) ( kr )

ia
   A  with 1( kr )

ia   for 
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i r  and 1k k ks s l    , 0( kr )

ia   otherwise. In addition, ( kr )

a denotes the  -th column of 

( kr )
A . As before, the sales horizon is defined by T  time periods, and the probability that a request 

for product k  will arrive in period  1t , ,T  is given by  k t . Similar to in Section 3, to ease 

notation, we omit writing the index sets for the symbols k  referring to products, r  and i  referring 

to resource types,   and   referring to days, and t  to time periods. For example, the notation k  

means  1k , ,n , and 
k

  means 
 1k , ,n

 . 

We consider the case that upgrades are decided at the time of sale. Each possible state within the 

capacity control process can be described by  ,tX , where t denotes the considered time period, 

and the m  matrix  rx X  denotes the corresponding free resources’ capacity with X C . Let 

 V ,tX  denote the expected revenue-to-go when the current state is  ,tX . Furthermore, 

     ( kr )

krV ,t V ,t V ,t   X X X A
 
is the opportunity cost of accepting a request for product k , 

depending on the assigned resource type 
kr r . Then, the expected revenue-to-go can be computed 

recursively through the Bellman equation  

         1 1
k

k k kr
r r

k

V ,t t p min V ,t V ,t



     X X X

 

 (4) 

with the boundary conditions  0 0V , X  for X 0 , and  0V ,  X  otherwise. 

A special case occurs if only one day is considered. Obviously, the upgrade model is a full cascad-

ing one, and with respect to the general model notation introduced in Section 3, A I  either holds 

directly for such a single day setting, or an equivalent formulation can be easily constructed where 

A I  holds. Thus, Propositions 1 and 2 derived in Section 3 apply; that is, a simplified control pro-

cess can be used (see Algorithm 1), and model (4) is completely equivalent to the corresponding 

postponement formulation.  

4.2. Daily DP Decomposition 

Because considering multiple days renders the DP formulation (4) intractable, we first propose a 

decomposition by days, which necessitates only the calculation of less complex single day DPs to 

obtain an approximation of the opportunity costs necessary to perform a price-based control policy. 

The starting point of our considerations is the deterministic linear programming (DLP) formulation 

corresponding to the multi-day DP (4) (see, e.g., Gallego & Stefanescu, 2009): 
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k

DLP

k kr

k r r

V ,t max p z


 X    (5) 

subject to 

 
k

( kr )

i kr i

k r r

a z x 


   for all i  and    (6) 

 
k

kr kt

r r

z D


   for all k   (7) 

 0krz    for all k  and  kr r , ,m  (8) 

The decision variables in this model are 
krz  for all k  and  kr r , ,m , denoting, with respect to 

each product k , the number of requests planned for acceptance and upgrading to r . Similar to the 

traditional DLP without upgrades, constraints (6) and (7) reflect the limitations in capacity and de-

mand, respectively, with 
ktD  denoting the expected aggregated demand-to-come over the remaining 

periods 1t , , .  

Let 
r  be the optimal value of the dual variable associated with the capacity constraint (6) for re-

source type r  on day  . We now choose one day   and relax constraints (6) for all other days us-

ing the associated values of 
r  as Lagrange multipliers. Rearranging the objective function, the 

following formulation is obtained: 

  
k

DLP ( kr )

k r r kr r r

k r r r

V ,t max p a z x   
   

 
  

 
   

 
  X   (9) 

subject to 

 
k

( kr )

i k i

k r r

a z x  


   for all i   (10) 

 
k

kr kt

r r

z D


   for all k   (11) 

 0krz    for all k  and  kr r , ,m  (12) 

As implied by linear programming duality, (9)-(12) has the same optimal objective value as (5)-(8). 

Furthermore, both models have a very similar structure: Ignoring the term r r

r

x 
 




  in the objec-

tive function (9), model (9)-(12) is the DLP formulation for the capacity control problem if capacity 

is only constrained on day   and each product k  yields a revenue of 
( kr )

k r rp a  
 




 , depending 

on the resource type kr r  used to provide it. That is, if a resource that is considered unrestricted 

because it belongs to another day is to be used by a product k , its bid price is subtracted from the 

product’s revenue kp .  



 14 

On the other hand, if we consider capacity only on day   and define revenues as described above, 

the optimal total expected revenue can be calculated by the Bellman equation 

 

     

 

1

1

k

( kr )

k k r r kr
r r

k

V ,t t max p a V ,t

V ,t

     
 

 

 






  
      

  

 

 x x

x

 (13) 

with      ( kr )

krV ,t V ,t V ,t         x x x a and the boundary conditions  0 0V ,  x  if  x 0  

and  0V ,   x  otherwise. Thus, as the DLP formulation of the day   problem is an upper 

bound for the optimal expected revenue  V ,t x , we have    DLP

r r

r

V ,t V ,t x   
 




 X x  

(see Kunnumkal and Topaloglu (2010) for a similar argumentation regarding a different problem). 

Furthermore, the optimal value of the day- -DP  V ,t x  can also be related to the optimal value 

of the original DP  V ,tX , which is expressed by the following proposition. 

Proposition 3. For each day  ,   r r

r

V ,t x   
 




x  is a tighter upper bound on the optimal 

expected revenue  V ,tX  than  DLPV ,tX : 

      DLP

r r

r

V ,t V ,t x V ,t   
 




  X x X  for all  , X , t  . 

Proof. The second inequality follows from the discussion above. The proof of the first inequality is 

based on a reformulation of the DP (4) in terms of an equivalent linear program. The inequality can 

then be shown by induction over t . The complete proof of the first inequality is given in the Online 

Appendix A.3.   □ 

We now define a control mechanism based on the derived dynamic programming decomposition by 

days as follows:  

Algorithm 2. 

1. Solve the multi-day DLP (5)-(8) to derive a set of bid prices  r r,  . 

2. For each day , compute displacement-adjusted revenues krp  for every product 

 1k k kk k | s s l       , that is, for every product that uses capacity on day , de-

pending on the assigned resource type kr r : 
( kr )

kr k r rp p a  
 




  . 

3. Solve a daily DP  dailyV ,t x  for each day  , considering only the subset   of products 

consuming capacity on that day. With      daily daily daily ( kr )

krV ,t V ,t V ,t         x x x a , this 
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daily DP is given by 

         1 1
k

daily daily daily

k kr kr
r r

k

V ,t t max p V ,t V ,t


      





    x x x . 

4. Accept an incoming request for product k  if there exists a resource type 
kr r  with 

 
1

1
k k

k

s l
daily

k kr

s

p V ,t 


 



   x . 

In the case of acceptance, allocate capacity on a resource type
kr* r  with the highest net 

revenue; that is    
1 1

1 1
k k k k

k k

s l s l
daily daily

k kr* k kr k

s s

p V ,t max p V ,t | r r   
 

   

 

  
        

  
 x x . 

 

The algorithm is a straightforward generalization of the standard decomposition heuristic for reve-

nue management without upgradable products (see, e.g., Talluri & van Ryzin, 2004, chapter 3.4.4) 

and can be explained as follows: In Steps 1 to 3, we apply the decomposition technique and calcu-

late a separate daily DP for each day of the planning horizon. Note that by defining  dailyV ,t x , we 

slightly modify the Bellman equation as given by (13). In particular, we eliminate all products that 

do not consume capacity on the respective day  . This modification makes the control process 

more intuitive and, at the same time, does not change the result, as by construction, the opportunity 

cost  daily

krV ,t  x  is always identical to  krV ,t  x . In Step 4, the control step is specified. A 

request is accepted if and only if its revenue is not less than the total opportunity cost it will cause. 

Following the general idea of common DP decomposition heuristics (see, e.g., Talluri & van Ryzin, 

2004, page 107), we use the sum  dailyV ,t 


 x  to approximate the value function  V ,tX . There-

fore, the total opportunity cost is approximated by the sum of the opportunity costs being calculated 

by the separate daily DPs for the days that are associated with the requested products. Due to the 

upgrade option, several possibilities to assign the request may exist, so we consider all possibilities 

and in the case of acceptance, allocate capacity on the resource type with highest net revenue. 

4.3. Single Resource DP Decomposition 

Although the decomposition presented in the previous subsection drastically reduces the size of the 

state space, the problem remains computationally intensive for large instances. To further reduce 

the state space to only one dimension, the approach can be slightly altered to obtain DPs that con-

sider only a single resource’s capacity. 

The starting point is again the relaxation of constraints (6) in (5)-(8) for all days except the one cho-

sen day  . However, we now also choose a resource type i  and further relax the constraints (6) of 
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all the resource types except i . Thus, only the capacity constraint of resource type i  on day   re-

mains. If the term r r i i

r

x x   


   in the objective function is ignored, the resulting LP is again 

the DLP formulation of a capacity control problem. In this problem, capacity is restricted only on 

resource type i  on day  . The demand remains exactly as before; that is, all the products and up-

grade possibilities are considered, even if they do not consume the capacity of the chosen resource 

type i  on the chosen day  . Furthermore, the revenue of product k  is slightly changed to 

( kr ) ( kr )

k r r i ip a a   


   , depending on the resource type 
kr r  used. As before, the bid price of 

every resource used to provide the product but considered unrestricted is subtracted, but this is now 

also done with resource types r i  on day  . The corresponding Bellman equation for this prob-

lem is  

     

 

1

1

k

( kr ) ( kr )

i i k k r r i i kr i i
r r

k

i i

V x ,t t max p a a V x ,t

V x ,t

       


 

  





  
      

  

 

 
 (14) 

with      ( kr )

kr i i i i i iV x ,t V x ,t V x a ,t         
 

and the boundary conditions  0 0i iV x ,    if 

0ix   and  0i iV x ,     otherwise.  

The logic behind the equation is quite intuitive: While in (13), all resources on the considered day 

  have been modeled explicitly, there is now only one single resource – that is, resource type i  on 

day   – which defines the DP’s state space. Nevertheless, the upgrade decision itself is again ex-

plicitly modeled in the DP; the difference is that the upgrade possibilities requiring a different re-

source type r i  on day   are no longer limited in capacity, but instead come at the additional cost 

of the resource’s bid price 
r . 

It is straightforward that a proposition similar to Proposition 3 holds for  i iV x ,t   as well.  

Proposition 4. For each day   and resource type i ,  i i r r i i

r

V x ,t x x     


    is a tighter 

upper bound on the optimal expected revenue  V ,tX  than  DLPV ,tX : 

      DLP

i i r r i i

r

V ,t V x ,t x x V ,t     


    X X  for all  , i , X , t . 

Proof. The proof is very similar to the proof for Proposition 3 and is omitted. 

The next proposition relates the two upper bounds on  V ,tX  obtained by considering all the re-

source types on one day and the bound constructed by using only one resource type on that day. 

Proposition 5.    r r i i

r i

V ,t x V x ,t     


 x

 

for all  , i , X , t . 
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Proof. In the Online Appendix A.4, we prove the inequality by induction over t , making use of the 

fact that all policies that are feasible in the problem  V ,t x , which considers all resource types 

on day  , are also feasible if only resource type i  is considered in  i iV x ,t  . □ 

By combining Propositions 3, 4, and 5, it follows that the daily decomposition provides a tighter 

upper bound on the optimal expected revenue of the multi-day problem than the decomposition to 

single resources: 

        DLP

i i i i r r i i

r r

V ,t V ,t x V x ,t x x V ,t         
  

  


      X x X . (15) 

However, this comes at the cost of the state space remaining multi-dimensional in the daily decom-

position. 

The definition of a control mechanism for the single resource decomposition is very similar to the 

one that was defined for the daily decomposition in the previous subsection:  

Algorithm 3. 

1. Solve the multi-day DLP (5)-(8) to derive a set of bid prices  r r,  . 

2. For each day  and resource type i , compute displacement-adjusted revenues for every 

product  1 and i k k k kk k | s s l r i        , that is, for every product that can poten-

tially use capacity on day  and resource type i, depending on the assigned resource type 

kr r : ( kr ) ( kr )

ikr k r r i ip p a a    


    . 

3. Solve a single resource DP  sin gle

iV ,t x  for each day   and resource type i , considering 

only the subset 
i  of products. With      sin gle sin gle sin gle ( kr )

kr i i i i i i iV x ,t V x ,t V x a ,t          , 

this single resource DP is given by 

     

 

1

1

k
i

sin gle ( kr ) ( kr ) sin gle

i i k k r r i i kr i i
r r

k

sin gle

i i

V x ,t t max p a a V x ,t

V x ,t



       


 

  






  
      

  

 

 
. 

4. Accept an incoming request for product k  if there exists a resource type kr r  with 

 
1

1
k k

k

s l
sin gle

k kr r r

s

p V x ,t 


 



   . 

In the case of acceptance, allocate capacity on a resource type kr* r  with the highest net 

revenue; that is    
1 1

1 1
k k k k

k k

s l s l
sin gle sin gle

k kr* r r k kr r r k

s s

p V x ,t max p V x ,t | r r   
 

   

 

  
        

  
  . 
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While Step 1 remains unchanged, the displacement-adjusted revenues calculated in Step 2 are now 

also resource type specific. In Step 3, independent DPs are calculated for each day and resource 

type. In Step 4, the opportunity costs of the single resource DPs  1sin gle

r r rV x ,t     are used, every-

thing else being unchanged. Within set 
i , we now only need to consider the products that could 

potentially use the current resource type i on day  , either directly or by upgrading. In Step 4, now 

the opportunity costs given by the single resource DPs are summed to calculate the approximation 

of the total opportunity cost. 

It should be noted that although single resource decomposition is presented here in the context of a 

full cascading upgrading model in a multi-day revenue management setting, it can be applied much 

more broadly. In fact, it is not necessary to assume a specific upgrading model or the structure of a 

multi-day revenue management problem, as the approach also works with the general network rev-

enue management problem with arbitrary upgrade hierarchies as given by (1). The approach can 

therefore also be applied to traditional capacity control settings occurring, for example, in the airline 

industry. 

Finally, note that the theoretical results derived in Propositions 3, 4, and 5 already give an indica-

tion of the performance of the decomposition approaches when being applied to control either a real 

or a simulated booking process. As Talluri (2009) points out, “tight bounds are of great interest as it 

appears from empirical studies and practical experience that models that give tighter bounds also 

lead to better controls (better in the sense that they lead to more revenue).” Therefore, what we can 

conclude from our analysis is the following: The fact that our decomposition approaches give tight-

er upper bounds on the optimal revenue than the DLP suggests that the approaches will perform 

better when used to control a booking process. In addition, it is likely that the daily decomposition 

will perform better than the single resource decomposition, because the theoretical bound is tighter. 

Nevertheless, this is something that must be validated within a simulation study, which we perform 

in the following section.  

5. Computational Results 

In this section, we report the results of a simulation study that demonstrates the applicability and 

relative performance of the dynamic programming decomposition approaches derived above. The 

simulations are based on real-world demand and capacity data provided by a major car rental com-

pany. To protect the interests of this company and to guard against the release of sensitive data, we 
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have held back (or modified) certain details. The experiments were conducted on an Intel Xeon pro-

cessor-based server (Xeon 5450 CPU, RAM of 16 GB, operating system Microsoft Windows Serv-

er 2008 Enterprise 64-Bit SP2). The algorithms were coded in C# running on the Microsoft .NET 

Framework 3.5 SP 1 and were linked to the ILOG CPLEX 12.1 64-Bit optimization routines.  

In the study, we analyze a decentralized control approach; that is, capacity control is performed 

separately for each rental station. We limit our investigation to business stations serving corporate 

customers at pre-negotiated rates. At these stations, the available car capacity is only a bottleneck 

on peak-days, which are usually Tuesday and/or Wednesday. Hence, modeling capacity only on 

these days and assuming that capacity is unlimited on the other days of the week can be justified. 

Furthermore, an analysis of historical demand data from the stations under consideration shows that 

the fraction of rentals that require more than six consecutive days is very small and can thus be ig-

nored. In particular, this means that there are no requests that extend over several weeks’ midweek 

peaks, so the simulation study can be performed on a weekly basis, considering only requests that 

require one or both of the midweek peaks.  
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Figure 1: Typical demand pattern 

For each station under consideration, we received unconstrained demand data calculated from his-

torical data averaged over many weeks. The demand data are given by the requested car type, the 

length of rent, snapshot, peaks that would be blocked by the requested rent, the revenue, and the 

variable cost. The car type is from one of the three groups: economy, compact, or full-size. The 

length of rent varies between 1 and 6 days, as described above. Data are available for a total of nine 

snapshots taken at 21, 12, 7, 5, 3, 1.5, 0.75, and 0 days before the rental starts, plus additional walk-

in customers (see Figure 1 for a typical demand pattern over time). The total net revenue varies be-
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tween 25 and 400 Euros, depending on the requested car type and the length of rent. Given these 

data, we calculate the arrival parameters as follows (see, e.g., Subramanian, Stidham Jr. & Lauten-

bacher, 1999):  

1. By combining the snapshots of the different products on a common time axis, subintervals with 

time-homogeneous demand are identified. 

2. Each interval s  is divided into sN  time periods. 

3. The booking probability  k t  for product k , defined by car type, length of rent, revenue, and 

cost in time period t  (in interval s ) is calculated as 

  
# requests for product  in interval 

k

s

k s
t

N
  . 

The number of time periods for interval s is calculated so that 

   1k

k

t  . 

To investigate how the ratio of overall capacity and demand influences the performance of the dif-

ferent methods, we use a parameter   to proportionally scale demand. The value 1   corre-

sponds to the case with the original demand data obtained from our industry partner. A value, for 

example, of 1 1.  , means that we simultaneously scale up the original demand values at all de-

mand snapshots by 10% and then perform the above Steps 1 to 3 to obtain the corresponding arrival 

parameters for the simulation. 

We implement the following methods: 

1. DP: This method implements the multi-day dynamic programming approach incorporating ad-

hoc upgrades as given by equation (4). 

2. DPD-D: This is the daily DP decomposition described in Subsection 4.2. 

3. DPD-S: This is the single resource DP decomposition described in Subsection 4.3. 

4. SUCC: This method is based on successive planning and mimics an upgrade control that is cur-

rently widely used in commercial revenue management software systems. In the first step, virtual 

capacities are determined for each of the different car types by estimating in advance the number of 

upgrades that must be performed. For example, if ten upgrades from economy to compact car are 

required on a certain day, the capacity of compact cars is reduced by ten, and that of economy cars 

is increased by the same number. To realize this step, we use the primal solution of model (5)-(8) 
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and adjust the different car types’ capacities according to the optimal values of the decision varia-

bles. In the second step, the resulting virtual capacity vector is fed into a traditional control method 

without upgrade capabilities, which then performs capacity control over time. In our study, we use a 

traditional deterministic linear programming model (see, e.g., Talluri & van Ryzin, 2004) to deter-

mine bid prices in this step. Both steps are iterated three times during the control process; that is, the 

virtual capacities as well as the bid prices are twice reoptimized according to the current demand 

information and capacity load. 

5. FCFS: This method is a simple first-come-first-served control. Requests are accepted as long as 

they can be fulfilled by the remaining capacity. Upgrades are undertaken if necessary, moving up 

the upgrade hierarchy successively. The revenue obtained by this method is used to judge the rela-

tive performance of the methods described above. 

6. EXPOST: This method calculates the perfect hindsight optimal revenue that can be obtained if 

full information on the incoming demand is used. For each simulation run, a model of type (5)-(8) is 

solved, optimally allocating capacity to the current demand stream’s requests, which are used as the 

RHS of constraints (7) instead of the forecasted demand. The obtained revenue serves as an upper 

bound for all the other methods’ output. 

We generate 200 streams of demand and process each stream using the methods described above, 

given their applicability in the setting under consideration. 

5.1. Example 1: One Peak-Day 

This example analyzes a real-world car rental station of our industry partner disposing of 15 econ-

omy cars, 40 compact cars, and 40 full-size cars. There is one peak in the weekly demand, such that 

there is a bottleneck in capacity only on that day, say, Tuesday. As described above, capacity is 

modeled only on Tuesday and considered unrestricted on all other days. Depending on the demand 

factor  , the sales horizon consists of 103-303 time periods, with an average of 79-232 rental re-

quests. To control the booking process, we use all mechanisms except DPD-D, which is not appli-

cable if only one day is considered. 
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a AVG AVG AVG AVG

0.5 100.00 (98.37; 101.63) 100.00 (98.37; 101.63) 100.00 (98.37; 101.63) 98.42 (96.78; 100.06)

0.6 99.53 (98.20; 100.86) 99.89 (98.52; 101.26) 99.69 (98.35; 101.04) 97.03 (95.65; 98.41)

0.7 93.71 (92.65; 94.78) 99.37 (98.10; 100.65) 97.48 (96.37; 98.60) 95.63 (94.48; 96.78)

0.8 85.43 (84.52; 86.34) 99.32 (98.38; 100.26) 98.64 (97.63; 99.64) 96.34 (95.34; 97.35)

0.9 81.95 (81.13; 82.78) 99.12 (98.20; 100.04) 98.64 (97.75; 99.53) 95.55 (94.69; 96.41)

1.0 77.67 (76.90; 78.44) 99.10 (98.23; 99.96) 98.44 (97.63; 99.25) 93.40 (92.62; 94.19)

1.1 74.72 (73.98; 75.46) 99.09 (98.21; 99.98) 97.65 (96.94; 98.36) 91.94 (91.17; 92.71)

1.2 72.03 (71.30; 72.75) 99.19 (98.34; 100.04) 96.44 (95.82; 97.07) 91.54 (90.74; 92.33)

1.3 69.07 (68.38; 69.76) 99.13 (98.33; 99.93) 94.86 (94.27; 95.46) 91.48 (90.81; 92.14)

1.4 67.83 (67.15; 68.51) 99.07 (98.33; 99.81) 98.36 (97.70; 99.02) 92.85 (92.08; 93.63)

1.5 66.28 (65.61; 66.95) 99.01 (98.30; 99.71) 97.59 (97.02; 98.16) 93.02 (92.36; 93.67)

99% Conf. Int. 99% Conf. Int. 99% Conf. Int. 99% Conf. Int.

% SUCC% DPD-S% DP% FCFS

 

Table 1: Simulated revenues (Example 1)  

Table 1 summarizes the revenues obtained under the different methods relative to EXPOST, along 

with the corresponding 99% confidence intervals. For example, a value of 99.53 means that the 

method under consideration attains 99.53% of the revenue obtained by EXPOST. In addition, Table 

A.1 in the Online Appendix summarizes the load factor, the percentage of requests accepted, and 

the percentage of accepted customers who are upgraded to a higher car type than requested. We 

observe that if capacity is not scarce ( 0 6.  ), all requests are accepted and the mechanisms yield 

almost the same revenue as EXPOST. However, when demand exceeds capacity, revenue manage-

ment becomes relevant, and there are remarkable differences between the mechanisms. For all 

0 6.  , FCFS clearly yields the worst result. When the proportion of upgrades is examined, one 

reason for this becomes obvious: by construction, FCFS does not control availability and uses up-

grades to superior car types extensively to satisfy demand for smaller cars even though there is 

enough higher valued, later-arriving demand to utilize the superior car type to the full. The other 

methods are all more-or-less successful in using capacity for the most valuable requests. While 

SUCC already attains a considerably higher revenue than FCFS, this can be further improved by 

DPD-S and DP, which always yields slightly more than 99% of EXPOST’s revenue, and is – in 

terms of expected revenue – the optimal method in real-world applications where perfect hindsight 

information is not available. The dominance of DP over DPD-S reflects the left inequality of Propo-

sition 4; nevertheless, in most cases, DPD-S performs only slightly worse than DP. Furthermore, it 

turns out that both DP as well as DPD-S perform significantly better than SUCC at the 99% level 

for all values of  . Table A.2 in the Online Appendix summarizes the corresponding confidence 

intervals for the revenue improvements. 
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Additionally, note that from Proposition 2 it directly follows that postponement and ad-hoc upgrad-

ing are equivalent in terms of revenue in this one peak-day setting. The revenue obtained by DP is 

therefore identical to the result we would obtain if we would have postponed the upgrade decision. 

Table 2 shows computational time statistics for DP, DPD-S, and SUCC. With respect to DP, the 

column V shows the time required for calculating the value function for all states, while the column 

control is the time necessary to handle all the customer requests of one demand stream. The third 

and fourth columns present the corresponding values for DPD-S. Here, V also includes the time to 

calculate the displacement adjusted revenues; that is, the time required to solve the dual of the cor-

responding network deterministic linear program. The last column is the total time needed by 

SUCC to process all the requests of one stream. This table mainly clarifies that all methods are 

computationally feasible for the rental station considered here. Certainly, calculating the DP value 

function is very time consuming. However, this is a batch process that the rental company would 

run once. Likewise, the DPD-S value function can be pre-calculated, but this requires only a frac-

tion of the time necessary for DP. The times required to handle a request are rather similar and neg-

ligible in all three methods. 

SUCC

a V

[h:mm:ss]

control 

[s]

V 

[s]

control 

[s]

total 

[s]

0.5 0:33:41 0.187 8.171 0.234 0.171

0.6 0:51:31 0.265 11.750 0.328 0.234

0.7 1:11:05 0.328 21.250 0.375 0.265

0.8 1:29:06 0.421 17.093 0.500 0.296

0.9 1:46:05 0.453 18.359 0.531 0.312

1.0 2:09:41 0.562 21.562 0.625 0.359

1.1 2:31:27 0.625 32.875 0.687 0.375

1.2 2:54:29 0.765 24.671 0.828 0.484

1.3 3:14:49 0.812 27.718 0.843 0.437

1.4 3:27:31 0.953 30.687 1.031 0.546

1.5 3:59:47 0.968 36.546 1.062 0.421

DP DPD-S

 

Table 2: CPU times for DP, DPD-S, and SUCC (Example 1) 

Overall, from our investigation of this example, we can conclude that the proposed decomposition 

approach DPD-S performs particularly well in terms of realized revenue at very low computational 

effort. More precisely, if the computational time becomes an issue for a larger station so that DP is 

no longer applicable, our results indicate that the rental company could safely resort to the less 

time-consuming DPD-S and would still obtain high quality results.  
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5.2. Example 2: Two Peak-Days 

The second example refers to a real-world car rental station where capacity forms a bottleneck on 

two days of the week: Tuesday and Wednesday. Thus, the station’s capacity of 10 economy cars, 25 

compact cars, and 30 full-size cars is modeled explicitly on these two days. Depending on the de-

mand factor  , the sales horizon consists of 99-291 time periods, with an average of 76-223 rental 

requests. Compared to the previous example, the state space of the two-day dynamic program is so 

large that DP is too computationally expensive to be applied here. However, as multiple days are 

considered, DPD-D is applicable in this setting.  

a AVG AVG AVG AVG

0.5 99.73 (98.21; 101.25) 99.86 (98.34; 101.39) 99.79 (98.27; 101.31) 94.68 (93.12; 96.23)

0.6 95.02 (93.77; 96.27) 99.02 (97.63; 100.40) 98.11 (96.81; 99.41) 93.02 (91.60; 94.44)

0.7 88.67 (87.60; 89.75) 98.14 (97.01; 99.27) 95.98 (94.90; 97.05) 93.63 (92.50; 94.76)

0.8 84.61 (83.66; 85.56) 97.72 (96.69; 98.76) 96.84 (95.83; 97.85) 93.16 (92.09; 94.23)

0.9 80.39 (79.50; 81.29) 97.37 (96.39; 98.35) 96.74 (95.77; 97.71) 93.22 (92.19; 94.25)

1.0 77.16 (76.36; 77.97) 97.52 (96.68; 98.36) 95.98 (95.16; 96.80) 92.84 (91.99; 93.70)

1.1 74.39 (73.57; 75.20) 97.46 (96.65; 98.26) 95.23 (94.35; 96.11) 92.68 (91.82; 93.53)

1.2 71.87 (71.04; 72.70) 97.54 (96.69; 98.38) 94.97 (94.04; 95.89) 93.05 (92.25; 93.85)

1.3 70.11 (69.34; 70.88) 97.51 (96.74; 98.27) 97.20 (96.40; 98.01) 93.50 (92.72; 94.28)

1.4 68.78 (68.00; 69.55) 97.41 (96.59; 98.23) 97.08 (96.28; 97.89) 92.85 (92.11; 93.58)

1.5 67.42 (66.69; 68.15) 97.44 (96.64; 98.24) 97.12 (96.31; 97.92) 92.69 (91.89; 93.48)

% FCFS % DPD-D % DPD-S % SUCC

99% Conf. Int. 99% Conf. Int. 99% Conf. Int. 99% Conf. Int.

 

Table 3: Simulated revenue (Example 2) 

Table 3 summarizes the revenues obtained under the different methods with respect to EXPOST. In 

addition, Table A.3 in the Online Appendix summarizes the load factor, the percentage of requests 

accepted, and the percentage of accepted customers who are upgraded. Again, we observe that if 

capacity is not scarce ( 0 5.  ), the mechanisms accept almost all requests and yield similar reve-

nues as EXPOST. When demand is stronger, FCFS quickly becomes far worse than the other mech-

anisms, as it grants upgrades as long as capacity is available. DPD-D constantly attains very good 

revenues, with even the lowest just less than 2.6 percentage points from the EXPOST value.  

Please note that, because both DP decomposition models are shown to give theoretical upper 

bounds on the optimal expected revenue calculated by the DP (Propositions 3 and 4 in Section 4), 

they could be used as reference values as well. For example, for 1 0.  , the tightest bound we ob-

tain from the decomposition models is at 99.10% of the average ex post value and therefore it is 

tighter than the ex post upper bound in this example. The bounds for all values of   are summa-

rized in Table A.4 in the Online Appendix with respect to EXPOST. In this example, the theoretical 
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bounds obtained by DPD-D are always tighter than the one obtained by EXPOST, while DPD-S 

gives tighter and weaker bounds than EXPOST, depending on the specific value of  . Additional-

ly, there are a few cases where the theoretical upper bound is even smaller than the average revenue 

we obtained from our simulation of 200 demand streams (see, e.g., 0 5.  ).   

Furthermore, it turns out that DPD-D, in most cases, yields significantly more revenue than DPD-S 

(see Table A.5 in the Online Appendix, which shows the average improvement of DPD-D over 

DPD-S as well as the confidence intervals at three different levels). This result is consistent with the 

theoretical results from Section 4, which have already indicated that DPD-D performs better than 

DPD-S in terms of total achieved revenue. Only in the case of 0 5.   – that is, if capacity is not 

scarce – is the DPD-D gain not significant, even at the 90% level. Similar to example 1, it also turns 

out that both DPD-S and DPD-D significantly exceed SUCC’s revenue. Table A.6 in the Online 

Appendix summarizes the corresponding confidence intervals for the revenue improvements at the 

99% level.  

SUCC

a V

[h:mm:ss]

control 

[s]

V

 [m:ss]

control 

[s]

total 

[s]

0.5 1:08:48 1.062 0:35.436 1.359 0.593

0.6 1:22:41 1.375 0:39.375 1.625 0.640

0.7 1:50:30 1.828 0:50.921 2.062 0.828

0.8 2:14:39 2.125 1:09.046 2.437 0.765

0.9 2:34:30 2.625 0:57.781 3.000 0.796

1.0 2:52:58 3.078 1:08.171 3.062 0.828

1.1 3:28:01 3.406 1:10.687 3.578 0.906

1.2 3:45:21 4.093 1:38.421 4.734 1.093

1.3 4:11:15 4.937 1:54.562 5.500 1.109

1.4 5:00:52 5.437 1:51.640 5.953 1.218

1.5 4:53:24 6.093 2:16.781 6.343 1.171

DPD-D DPD-S

 

Table 4: CPU times for DPD-D, DPD-S and SUCC (Example 2) 

Table 4 summarizes DPD-D, DPD-S, and SUCC’s computational times. The meaning of the col-

umns has been explained in detail in the previous subsection. Likewise, the main message is that all 

methods are computationally feasible. Calculating the value function is especially time-consuming 

for DPD-D, but this is a batch process that does not need to be executed online when customer re-

quests have to be decided. 

Overall, the numerical investigation of example 2 shows that both decomposition approaches pro-

posed in this paper are applicable and lead to good results. In particular, they both significantly out-

perform SUCC. If computational time is scarce or becomes too long for larger stations, DPD-S is 
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preferable, as it is computationally much less intensive than DPD-D, due to its one-dimensional 

state space (also see Subsection 5.3). These savings in computation time come at the price of signif-

icant revenue losses compared to DPD-D; nonetheless, the revenue is still much higher than the one 

resulting from the application of SUCC. 

5.3. Example 3: More than Two Peak-Days 

In further practical applications, there might exist settings where capacity is scarce on more than 

two consecutive days. Generally, the methods we propose are still applicable in such cases. By con-

struction, both DPD-D as well as DPD-S scale up linearly with the number of scarce resources in 

terms of runtime, everything else being unchanged. For example, if we apply the DPD-D approach 

and need to explicitly model an additional peak-day, there is just another daily DP that must be 

solved separately and that must additionally be considered when the opportunity cost for incoming 

requests is calculated. However, even though runtime scales up linearly, DPD-D will surely often 

become too computationally intensive due to the multidimensional state space of each single daily 

DP.  

In what follows, we give an idea of the computational times when capacity is scarce on more than 

two days. As these types of problems do not exist for our industry partner, we define an artificial 

example as follows: We consider a station with a capacity of 10 economy cars, 20 compact cars, 

and 30 full-size cars. The planning horizon consists of 14 consecutive days. The prices of a one-day 

rental are €50.00 (economy), €62.50 (compact), and €95.00 (full-size). In addition to one-day rent-

als, there are also two-day and three-day rentals that can begin on each day within the planning 

horizon and are priced at 1.9 and 2.5 times the one-day rental price, respectively. To derive demand 

values, we assume an expected demand of 30.5 customers requesting a rental each day. A total of 

55% of this demand is for one-day rentals, 27% for two-day rentals, and 18% for three-day rentals. 

These shares are chosen such that if all demand was accepted, a third of the cars in use at any day 

would be for each length of rent. Regarding the different car types, we assume that demand splits up 

into 25% demand for economy cars, 50% for compact cars, and 25% for full-size cars. On the basis 

of the resulting expected demand values, we assume a time-homogeneous demand arrival process 

for each product and use the procedure described at the beginning of Section 5 to generate requests 

and distribute them over time, which leads to a total of 1,107 time periods.  
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#sdays AVG AVG AVG AVG

1 83.99 (82.96; 85.02) 98.05 (99.33; 96.78) 97.32 (95.96; 98.68) 93.66 (92.41; 94.91)

2 85.91 (85.21; 86.62) 97.73 (96.80; 98.66) 96.12 (95.19; 97.04) 93.23 (92.23; 94.23)

3 86.84 (86.20; 87.48) 97.64 (96.84; 98.43) 96.27 (95.58; 96.95) 93.55 (92.78; 94.33)

4 87.52 (86.99; 88.05) - 96.30 (95.68; 96.92) 93.40 (92.68; 94.12)

5 87.99 (87.50; 88.48) - 96.44 (95.91; 96.97) 93.86 (93.23; 94.50)

6 88.53 (88.10; 88.97) - 96.53 (96.07; 96.99) 94.00 (93.44; 94.56)

7 88.83 (88.46; 89.20) - 96.52 (96.08; 96.95) 94.23 (93.72; 94.75)

8 89.00 (88.63; 89.38) - 96.66 (96.27; 97.06) 94.37 (93.90; 94.84)

9 89.41 (89.05; 89.76) - 96.83 (96.44; 97.22) 94.61 (94.18; 95.04)

10 89.53 (89.20; 89.85) - 96.77 (96.42; 97.11) 94.43 (94.02; 94.84)

11 89.52 (89.20; 89.85) - 96.80 (96.46; 97.14) 94.56 (94.18; 94.95)

12 89.70 (89.41; 89.98) - 96.90 (96.59; 97.21) 94.68 (94.33; 95.03)

13 90.32 (90.05; 90.59) - 97.02 (96.74; 97.30) 94.84 (94.51; 95.16)

14 90.72 (90.43; 91.00) - 96.93 (96.64; 97.22) 94.89 (94.55; 95.24)-  

-  

-  

-  

-  

-  

-  

-  

-  

-  

-  

% FCFS % DPD-D % DPD-S % SUCC

99% Conf. Int. 99% Conf. Int. 99% Conf. Int. 99% Conf. Int.

 

Table 5: Simulated revenue (Example 3)  

We now apply the different capacity control methods as defined in Subsection 5.1. Table 5 summa-

rizes the revenues obtained under the different methods with respect to EXPOST depending on 

#sdays, that is, the number of consecutive days starting from day 1 of the planning horizon that are 

scarce and therefore modeled explicitly in the methods. The experiments that did not complete 

within 48 hours of computation are marked with “-“. As additional information, the load factor, the 

percentage of requests accepted, and the percentage of accepted customers who are upgraded are 

given by Table A.7 in the Online Appendix. 

SUCC

#sdays

V

[hh:mm:ss]

control 

[s]

V 

[h:mm:ss]

control 

[s]

total 

[s]

1 11:59:00.391 11.746 0:10:19.464 12.136 17.144

2 24:15:43.337 11.949 0:17:42.086 12.729 17.035

3 36:29:44.978 11.840 0:22:46.911 12.355 17.191

4 - - 0:28:22.906 12.682 17.160

5 - - 0:34:52.519 12.402 17.550

6 - - 0:40:46.111 12.121 17.222

7 - - 0:47:02.806 12.261 17.472

8 - - 0:51:53.358 12.168 17.830

9 - - 0:58:38.914 12.838 17.612

10 - - 1:05:07.684 12.136 17.378

11 - - 1:11:17.953 12.589 17.737

12 - - 1:20:51.599 12.261 17.971

13 - - 1:29:28.821 12.058 17.222

14 - - 1:36:22.411 12.854 17.924

DPD-D DPD-S

 

Table 6: CPU times for DPD-D, DPD-S and SUCC (Example 3) 

Table 6 summarizes DPD-D, DPD-S, and SUCC’s computational times. As suggested by the theo-

retical analysis, the methods indeed scale linearly with the number of scarce days. However, it also 
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turns out that DPD-D already requires more than 48 hours of computational time when more than 3 

days are scarce, so DPD-S is preferable in these cases. For example, it takes more than 7 days to 

compute DPD-D with 14 scarce days. More generally, the computational example also shows that 

the methods are basically computationally applicable even when a significantly larger number of 

time periods are involved. Everything else being equal, it follows from theory that the number of 

time periods has a linear impact on the computational times of DPD-D and DPD-S. 

6. Conclusions 

In this paper, we address the problem of integrating revenue management’s capacity control with 

upgrade decision making. We derive new structural properties for an integrated dynamic program-

ming formulation (DP) of this problem that was recently proposed by Gallego and Stefanescu 

(2009). Depending on the field of application, these new properties simplify the resulting control 

process under certain conditions, for example, when only one leg or day is considered. In particular, 

we prove the monotonicity of the resources’ opportunity cost, allowing to sequentially search for 

upgrade opportunities in the product hierarchy, and we show the equivalence of ad-hoc upgrading 

and upgrade postponement. 

As the DP is often not applicable to practical problem sizes due to its high-dimensional state space, 

we subsequently propose two different dynamic programming decomposition approaches that allow 

the heuristic solution of real-world, multi-day instances of the problem. The first approach is specif-

ically suited to multi-day revenue management, as found, for example, in the hotel or car rental in-

dustry. This approach decomposes the full network capacity control problem to a series of single-

day problems (DPD-D). The second approach decomposes the network even more and splits the 

problem into one-dimensional single resource dynamic programs (DPD-S). Analytically, we show 

that both decomposition approaches imply tighter upper bounds on the value of the original dynam-

ic program than a static linear approximation with upgrades (DLP). Furthermore, we prove that the 

bound implied by DPD-D is tighter than the one of DPD-S. These theoretical results make it likely 

that both decomposition approaches perform better in applications than the DLP, and it can be ex-

pected that the daily decomposition will perform better than the single resource decomposition, be-

cause the theoretical bound is tighter.  

We run an exhaustive series of computational tests based on real-world data obtained from a major 

car rental company. Our investigations demonstrate that both decomposition approaches perform 
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well in practice and show a remarkably good revenue performance. With respect to the order of the 

obtained revenues compared to DP, our theoretical results are confirmed. Furthermore, we show 

that the new heuristics consistently outperform a standard approach based on successive planning 

and currently widely used to manage the upgrade issue in revenue management software systems. 

Our experiments also verify the practical feasibility of the two different approaches with respect to 

runtime. Clearly, DPD-D is the more time-consuming method. However, the computationally inten-

sive part can be realized in an overnight batch process, which still makes it practically feasible in 

most cases. Nevertheless, if time becomes an issue due to the size of the resource network and the 

capacity, resorting to DPD-S is a good idea, as runtime is not an issue due to the one-dimensional 

state space and the revenue is often not much lower than that of DPD-D. 

The results derived in this paper have remarkable implications for today’s revenue management 

practice when faced with upgrades. The methods investigated in this paper can be very easily im-

plemented and may significantly improve the revenues of especially car rental companies, which 

are usually quite flexible and not committed to specific software systems with given interfaces and 

parameters defined, for example, by distribution systems. Nevertheless, these approaches also ap-

pear to be promising for other applications, as they can be easily adapted to other typical settings 

such as the standard airline case. 
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Proofs of Propositions 

In the following Appendices A.1 to A.4, we present the proofs of the Propositions 1, 2, 3, and 

5 stated in Sections 3 and 4 of the paper. The proof of Proposition 4 is very similar to the 

proof of Proposition 3 and is omitted. Unless otherwise mentioned, we use the mathematical 

notation as defined in Sections 3.1 and 4.1. 

 

A.1. Proof of Proposition 1 

Proposition 1. If A I  and  k k, ,n  for all products, then Equation Section (Next) 

    q qV ,t V ,t  x x  for all t , x  with 0q q'x ,x   and q q' . 

Proof. To simplify the presentation, without loss of generality, we assume with respect to the 

value function (1) that if a request is accepted, the controller chooses the upgrade possibility 

with the smallest index if  1
k

j
j

arg min V ,t


 x  is not unique; that is, if there are several re-

sources with the same minimal opportunity cost. Furthermore, we reformulate the value func-

tion (1) by means of a policy vector  0 1
n

, , ,mu  determined for each stage with the fol-

lowing meaning: if a request for product k  arrives in the current time period, it will be denied 

if 0ku   and accepted and upgraded to resource type 
ku  if 0ku  . To guarantee that the pol-

icy u  is feasible with the remaining capacity x , the vector must satisfy 

          0 0
k

n

k u k| , ,m u u k k         u x u u e x . (A.1) 

Then (1) can be rewritten as 

 
 

      
0 0

1 1 1 1
k

k k

k k u k k

k|u k|u k

V ,t max p V ,t V ,t V ,t  


 

   
             

    
  

u x
x x e x x  (A.2) 

with the boundary condition  0 0V , x . 

From the definition of the opportunity cost, showing    q qV ,t V ,t  x x  is equivalent to 

showing    q q'V ,t V ,t  x e x e . We prove this inequality by induction over t . It holds for 

0t  , because    0 0 0q q'V , V ,   x e x e . Next, assume that the result holds for 1t  . We 

now show that it will then hold for t as well. We consider the optimal policies 
( q )

u  and 
( q')

u  

at stage t  for the problems  qV ,tx e  and  q'V ,tx e , respectively. In the following, we 

show monotonicity component-wise for each of the terms that add up to the term within the 



 

 2 

outer brackets of (A.2). Therefore, we relate the terms product by product. In respect of each 

product k , the following four exhaustive cases can be distinguished: 

1) 0( q ) ( q')

k ku ,u   :  

The relevant terms that need to be related to each other are  1( q )
k

k q u
p V ,t   x e e  and 

 1( q ')
k

k q' u
p V ,t   x e e . Note that, as 

( q )
u  and 

( q')
u  are feasible policies, the capacity 

vectors ( q )
k

q u  x e e
 
and ( q ')

k
q' u  x e e  are non-negative. Now, if 

( q ) ( q')

k ku u  , by the induc-

tion hypothesis it follows that  1( q )
k

k q u
p V ,t   x e e  1( q )

k
k q' u

p V ,t    x e e
 

 1( q')
k

k q' u
p V ,t    x e e . If 

( q ) ( q')

k ku u  , it follows by contradiction that 
( q )

ku q'   as 

otherwise 
( q')

ku 
 would be equal to the smaller 

( q )

ku 
 according to the induction hypothesis. 

Furthermore, 
( q')

ku q   according to the induction hypothesis and because of the availability 

of resource q . In total, it follows that  1( q )
k

k q u
p V ,t   x e e  1k q q'p V ,t    x e e

 

 1( q')
k

k q' u
p V ,t    x e e  where the inequality on the right follows from the induction hy-

pothesis. 

2) 0( q )

ku   , 0( q')

ku   : 

The relevant terms are  1qV ,t x e  and  1( q')
k

k q' u
p V ,t   x e e . We have 

 1qV ,t x e  1q'V ,t  x e  1( q')
k

k q' u
p V ,t    x e e , where the left-hand inequality 

follows from the induction hypothesis and the right-hand inequality follows from the fact that 

the request k  is accepted and upgraded to 
( q')

ku 
 in the optimal policy 

( q')
u . 

3) 0( q )

ku   , 0( q')

ku   : 

The relevant terms are  1( q )
k

k q u
p V ,t   x e e  and  1q'V ,t x e . We have 

 1( q )
k

k q u
p V ,t   x e e  1( q )

k
k q' u

p V ,t    x e e  1q'V ,t  x e , where the left-hand 

inequality follows from the induction hypothesis and the right-hand inequality follows from 

the fact that request k  is not accepted in the optimal policy 
( q')

u . 

4) 0( q ) ( q')

k ku u   :  

The relevant terms are  1qV ,t x e  and  1q'V ,t x e  so    1 1q q'V ,t V ,t    x e x e  

follows directly following from the induction hypothesis. 

Additionally, the last addend within the outer brackets of (A.2) has to be considered. The ar-

gumentation is identical to 4).  

Overall, monotonicity has been shown component-wise, so that in total, we obtain  
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0 0

1 1 1 1
k

k k

q

k k q u k q k q

k|u k|u k

V ,t

max p V ,t V ,t V ,t  


 

 

   
               

    
  

u x

x e

x e e x e x e

 
      

 

0 0

1 1 1 1
k

k k

k k q' u k q' k q'

k|u k|u k

q'

max p V ,t V ,t V ,t

V ,t

  


 

   
                

    

 

  
u x

x e e x e x e

x e

. 

□ 

A.2. Proof of Proposition 2 

Proposition 2. If A I  and  k k, ,n  for all products, then 

      V , ,t V , ,tx y x y   for all t ,  , x y  

Proof. The proof is based on alternative formulations of the Bellman equations  V , ,tx y  and 

 V ,tx , making use of a common decision vector  0 1
n

,u . If a request for product k  ar-

rives in the current time period, it will be denied if 0ku   and accepted if 1ku  . For 

 V , ,tx y , to be feasible with remaining capacity x  and the vector of commitments y , u  

must satisfy 

       0 1
n

k k, | , , u k       u x y u u x y e .  (A.3) 

Then, (2) can be rewritten as 

 
 

    
1 1

1 1 1
k k

k k k k
,

k|u k|u

V , ,t max p V , ,t V , ,t 


 

 
        

 
 

u x y
x y x y e x y  (A.4) 

with the boundary condition  0 0V , , x y . 

For  V ,tx  to guarantee that the policy u  is feasible with the remaining capacity x , the vec-

tor must satisfy 

       0 1
n

k j| , j k |u k        u x u u e x .
 

 (A.5) 

Using (A.5) as well as Proposition 1, (1) can be rewritten as 

 
     

1 1

1 1 1
j

j
k k

k k kmin j k|
k|u k|u

V ,t max p V ,t V ,t 
 

 

     
             

     
 e xu x

x x e x  (A.6) 

with the boundary condition  0 0V , x . 
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We first show     , , x y x y . Let us consider an arbitrary vector   ,u x y . 

Assume that there exists a vector-component k with 1ku  ; that is, request k  can be accepted 

in the ad-hoc DP. It then directly follows that k  can also be accepted in the postponement DP, 

as all requests including the new one for k  can be assigned to resources in exactly the same 

way as the ad-hoc allocation does. As this is true for any arbitrary component k with 1ku  , 

u is also a valid decision vector for the postponement DP and therefore is included in  ,x y . 

This shows that   , x y  , x y .  

Let us now consider an arbitrary vector  ,u x y . Assume that there exists a vector-

component k with 1ku  ; that is, request k  can be accepted in the postponement DP. Then 

there are feasible allocations with remaining free capacity  , x y  and  k, x y e . Owing to 

the acceptance of k , the overall remaining capacity will decrease by one; that is 

   1 kj j
j j

, ,    c y c y e .  

By contradiction, we show that    kj j
, , j   c y c y e , that is, no resource within the 

feasible allocation after the acceptance of k  has more remaining capacity than before. Sup-

pose that a resource j  with    kj j
, , 

 
 c y c y e  exists. Then, clearly, at least one request 

k   that used capacity on j  prior to the acceptance of k  must now be assigned to another 

resource j . Regarding these resources j  and j , two cases can be distinguished. If 

j j  , this downgrade of k  , leading to an increase in ( s )

j

j

j h
 

by j j  , could also have 

been performed before accepting k  and, thus, ( s )

j

j

j h  was not maximal. If j j  , similar-

ly, just this upgrade of k   leads to a decrease in ( s )

j

j

j h
 

by j j  , compared to if k  had 

been accepted in the same way just without the upgrade of k  . Thus, ( s )

j

j

j h  is not maxi-

mal if k   is upgraded. Together, this shows that no resource’s remaining capacity increases 

due to the acceptance of k  and, as overall remaining capacity decreases by one, it follows that 

exactly one resource’s capacity is decreased by one, while the remaining capacity of all other 

resources is unchanged.  

In what follows, let j  denote the resource whose capacity is decreased by one in the feasible 

allocation. Then, again by contradiction, it follows that j k  . Suppose j k  . By definition, 

a request for k  cannot be downgraded to j , but must use capacity on some j k  . Hence, 

there must be another request for a product k j   that used capacity on j k   in the previ-

ous allocation, leading to  , x y , which can be downgraded to j . However, this downgrade 
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of k  , which itself leads to an increase in ( s )

j

j

j h
 

by j j  , could also have been per-

formed before accepting the request for k . Thus, ( s )

j

j

j h  was not maximal, which contra-

dicts the definition of  , x y  and therefore proves j k  . 

From the definition of  , x y , it follows that   0j
j min j k | ,   x y , so, in total, we 

have 

    k j, ,    x y e x y e  with   0j
j min j k | ,   x y .  (A.7) 

According to Algorithm 1, ad-hoc DP could also accept the request k and could assign it to 

this resource q j . As this argumentation is true for any arbitrary component k with 1ku  , 

u is also a valid decision vector for the ad-hoc DP and therefore is included in   , x y . 

This shows that     , , x y x y , which completes the proof of  

     , , x y x y .    (A.8) 

We now perform induction over t . From (A.4), (A.6), and (A.8) it follows that the assump-

tion holds for 0t   for all  , x y : 

  
    

  
1 1

0 0
k k

k k k k
, ,

k|u k|u

V , , max p max p V , ,


  
 

 

   
u x y u x y

x y x y . 

Next, we assume the result holds for 1t   and show that it holds for t . From (A.7), (A.8), and 

the induction hypothesis we have 

 
 

    
1 1

1 1 1
k k

k k k k
,

k|u k|u

V , ,t max p V , ,t V , ,t 


 

 
       

 
 

u x y
x y x y e x y  

  
    

1 1

1 1 1
k k

k k k k
,

k|u k|u

max p V , ,t V , ,t


 


 

 
       

 
 

u x y
x y e x y  

  
 

  
  

0
1 1

1 1 1
jjk k

k k kmin j k| ,,
k|u k|u

max p V , ,t V , ,t


   


 
 

     
             

      
 x yu x y

x y e x y

    V , ,t for all , x y x y . 

□ 
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A.3. Proof of Proposition 3 

Proposition 3. For each day  ,   r r

r

V ,t x   
 




x  is a tighter upper bound on the opti-

mal expected revenue  V ,tX  than  DLPV ,tX : 

      DLP

r r

r

V ,t V ,t x V ,t   
 




  X x X

 

for all  , X , t  . 

Proof. The second inequality follows from the discussion in Section 4.2. The proof of the first 

inequality is based on ideas presented in Adelman (2007) and Zhang and Adelman (2009). 

Similar to the proof of Proposition 1, we make use of a decision vector  0 1
n

, , ,mu  for 

each remaining capacity X . If a request for product k  arrives in the current time period, it is 

denied if 0ku   and accepted and upgraded to resource type 
ku  if 0ku  . To guarantee that 

the decision u  is feasible with the remaining capacity X , the vector must satisfy 

          0 0 k
n ( ku )

k k k| , ,m u u r k         u X u u A X . (A.9) 

Using this set of feasible decision vectors  X , we reformulate the DP (4) in terms of an 

equivalent linear program (see, e.g., Powell, 2007, p. 63): 

    V ,t min V ,tX X    (A.10) 

subject to 

 
          

0 0

1 1 1k

k k

( ku )

k k k

k|u k|u

V ,t t p V ,t t V ,t 
 

 
       

 
 X X A X   

   for all  t , , X u X  (A.11) 

with decision variables   0V ,t ,t X X . 

We now substitute   r r

r

V ,t x   
 




x  for  V ,tX  into (A.10)-(A.11) and obtain 

     r r

r

V ,t min V ,t x   
 




 X x    (A.12) 

subject to 

 

       

   

0

0

1

1 1

k k

k

k

( ku ) ( ku )

r r k k r r r

r k|u r

k r r

k|u r

V ,t x t p V ,t x a

t V ,t x

         
   

   
 

  

 

  

 

 
       

 

  
     

  

  

 

x x a

x

 

 

  for all  t , , X u X  (A.13) 

with decision variables   0V ,t ,t   x x . 
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Based on these linear reformulations, we now prove Proposition 3 by induction over t  for an 

arbitrary day   as follows. For 1t  , we note from (A.13) that 

     

 

0

0

1 1

1 1

k

k

k

( ku )

r r k k r r r

r k|u r

k r r

k|u r

V , x p x a

x

      
   

 
 

  

 

  

 

 
    

 

  
   

  

  

 

x

 for all  , X u X .  

Since this holds for all  u X , we have 

 
 

   
0

1 1 1
k

r r k k

r k|u

V , x max p V ,   
 

 


 

   
u X

x X  for all  , X u X ,  

where the right-hand equality follows from (A.10) and (A.11). This shows that the result 

holds for 1t  . Next, we assume it holds for 1t   and show that it then holds for t . From 

(A.13) and the induction hypothesis, we have 

       

    

0

0

1

1 1

k

k

k

( ku )

r r k k

r k|u

k

k|u

V ,t x t p V ,t

t V ,t

    
 

 



 



    

 
   
 

 



x X a

X

 for all  , X u X .  

From the reformulation given by (A.10) and (A.11) for period t , we obtain 

    r r

r

V ,t x V ,t   
 




 x X   for all X .  

□ 

 

A.4. Proof of Proposition 5 

Proposition 5.    r r i i

r ì

V ,t x V x ,t     


 x  for all  , i , X , t . 

Proof. We restate  V ,t x  and  i iV x ,t   using a decision vector u . We have 

 

 
 

   

   

0

0

1

1 1

k k

k k

k

k

( ku ) ( ku )

k k u u

k|u

k

k|u

V ,t max t p a V ,t

t V ,t



      
 

 

 




 



  
      

  

  
    

  

 



u x
x x a

x  
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with          0 0 k
n ( ku )

k k k| , ,m u u r k           u x u u a x  and 

 

 
 

   

   

0

0

1

1 1

k k k

k k
i

k

k

( ku ) ( ku ) ( ku )

i i k k u u i i i i i
x

k|u

k i i

k|u

V x ,t max t p a a V x a ,t

t V x ,t



        


 

  








  
       

  

  
    

  

 



u

 

with          0 0 k
n ( ku )

i k i i k kx | , ,m u a x u r k           u u u .

 

Obviously,    ix x  for all x . Through induction over t , the proof is now as fol-

lows. For 1t  , we have 

 
 

 
0

1 1 k

k k

k

( ku )

r r k k u u r r

r ì k|u r i

V , x max p a x


       
 

   


   

   
     

   
   

u x
x  

 
 

 
0

1 k

k k

k

( ku )

k k u u r r

k|u r i

max p a x


   
 

  


  

   
    

   
  

u x

 

 
 

   
0

1 1k k

k k
i

k

( ku ) ( ku )

k k u u i i i i
x

k|u

max p a a V x ,


     


  




   
     

   
 

u

   for all  , i , X . 

This shows that the result holds for 1t  . Next, we assume it holds for 1t   and show that it 

then holds for t .  

  r r

r ì

V ,t x   


x  

 
       

0 0

1 1 1k k

k k

k k

( ku ) ( ku )

k k u u k r r

k|u k|u r i

max t p a V ,t t V ,t x


        
 

   


   

    
           

     
   

u x
x a x

 
   

   

0

0

1

1 1

k k

k k

k

k

( ku ) ( ku )

k k u u r r

k|u r i

k r r

k|u r i

max t p a x V ,t

t V ,t x



      
 

   

  

 


  

 

  
       

  

  
      

   

  

 

u x
x a

x

 

 
   

   

0

0

1

1 1

k k k

k k k k

k

k

( ku ) ( ku ) ( ku )

k k u u u u r r

k|u r i

k r r

k|u r i

max t p a a x V ,t

t V ,t x



        


   

   

 


 

 

  
        

  

  
      

   

  

 

u x
x a

x

 

 
     

   

0

0

1

1 1

k k k k

k k k

k

k

( ku ) ( ku ) ( ku ) ( ku )

k k u u i u r r r

k|u r i

k r r

k|u r i

max t p a a V ,t x a

t V ,t x



         


   

   

 


 

 

  
         

  

  
      

   

  

 

u x
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x
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Using the induction hypothesis, we get 

 
 

   

     

0

0

1

1 1

k k k

k k
i

k

k

( ku ) ( ku ) ( ku )

r r k k u u i i i i i
x

r i k|u

k i i i

k|u

V ,t x max t p a a V x a ,t

t V x ,t V x ,t



          


   

   




 



  
        

  

  
     

  

  



u
x

 

□ 

 

 

Supplement to Computational Results 

 

a % LF % AR % Upg % LF % AR % Upg % LF % AR % Upg % LF % AR % Upg

0.5 76.09 100.00 8.32 76.09 100.00 8.32 76.09 100.00 8.32 74.54 97.72 6.52

0.6 91.16 99.41 16.93 91.03 99.27 16.58 91.16 99.41 16.87 88.22 95.88 13.97

0.7 97.02 91.02 19.39 95.91 89.95 15.21 96.97 90.97 17.48 95.15 89.01 15.06

0.8 98.44 78.09 19.90 97.91 77.66 12.22 96.75 76.72 13.48 96.94 76.69 9.98

0.9 98.85 72.31 20.30 98.29 71.89 14.85 98.13 71.77 14.63 97.86 71.44 9.26

1.0 99.47 65.42 20.40 98.74 64.94 16.25 98.52 64.79 17.93 98.92 65.03 9.40

1.1 99.84 59.60 20.60 99.06 59.13 13.94 99.22 59.23 16.35 99.33 59.26 7.17

1.2 99.94 54.78 20.80 99.24 54.39 11.21 99.37 54.47 14.86 99.55 54.54 5.63

1.3 100.00 49.46 20.97 99.36 49.15 8.28 99.51 49.22 13.17 99.32 49.08 6.58

1.4 100.00 46.95 20.99 99.55 46.74 6.63 99.42 46.67 7.84 99.35 46.64 1.58

1.5 100.00 43.73 20.61 99.64 43.57 4.47 99.70 43.59 6.68 99.43 43.44 1.34

DPD-S SUCCFCFS DP

 

Table A.1: Load factor, accepted requests, and upgrades (Example 1) 

 

a AVG AVG

0.5 1.61 (1.19; 2.02) 1.61 (1.19; 2.02)

0.6 2.74 (2.33; 3.16) 2.95 (2.55; 3.34)

0.7 1.94 (1.54; 2.33) 3.92 (3.47; 4.36)

0.8 2.38 (1.96; 2.79) 3.09 (2.69; 3.49)

0.9 3.23 (2.84; 3.62) 3.73 (3.31; 4.16)

1.0 5.39 (4.93; 5.85) 6.09 (5.62; 6.56)

1.1 6.20 (5.71; 6.69) 7.78 (7.21; 8.34)

1.2 5.36 (4.81; 5.92) 8.36 (7.73; 9.00)

1.3 3.70 (3.27; 4.13) 8.36 (7.76; 8.96)

1.4 5.93 (5.39; 6.47) 6.69 (6.14; 7.25)

1.5 4.92 (4.45; 5.39) 6.44 (5.96; 6.92)4.92 4.4469 5.39 6.44 5.9608 6.92

%DPD-S %DP

99% Conf. Int. 99% Conf. Int.

 

Table A.2: Revenue improvements over SUCC (Example 1)  
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a % LF % AR % Upg % LF % AR % Upg % LF % AR % Upg % LF % AR % Upg

0.5 80.83 99.67 12.97 80.72 99.50 12.76 80.85 99.66 12.95 74.81 91.94 6.33

0.6 90.80 93.32 17.52 89.86 91.86 15.18 89.12 92.39 18.40 83.54 86.36 8.24

0.7 94.35 82.65 18.77 93.97 81.06 14.45 93.33 82.71 17.40 90.67 79.43 9.40

0.8 96.59 74.84 19.37 95.17 73.33 12.46 95.53 73.16 15.06 93.50 71.62 8.00

0.9 97.85 67.38 19.97 95.99 66.87 10.46 95.62 67.10 11.89 94.85 66.40 6.27

1.0 98.63 61.67 19.95 96.73 60.85 8.16 96.73 61.20 10.50 95.59 61.07 5.17

1.1 99.07 56.61 20.66 97.12 55.42 7.05 96.40 56.36 9.27 95.71 57.02 3.50

1.2 99.35 52.08 20.69 97.60 51.23 6.41 96.87 52.40 8.41 97.04 53.07 3.10

1.3 99.53 48.34 21.15 97.71 47.49 5.89 97.20 47.57 8.36 97.37 48.56 1.72

1.4 99.52 44.96 21.33 97.52 44.45 5.94 97.02 44.43 7.90 97.57 45.45 1.74

1.5 99.65 41.92 21.41 97.92 42.13 6.07 97.61 42.09 7.79 98.00 42.77 1.55

FCFS DPD-D DPD-S SUCC

 

Table A.3: Load factor, accepted requests, and upgrades (Example 2) 

 

a % DPD-D Bound % DPD-S Bound

0.5 98.98 99.27

0.6 98.33 99.22

0.7 99.12 100.13

0.8 99.41 100.52

0.9 98.66 99.84

1.0 99.10 100.03

1.1 98.95 99.88

1.2 99.17 99.93

1.3 99.32 100.37

1.4 99.55 100.40

1.5 99.28 99.94
 

Table A.4: Theoretical upper bounds (Example 2) 

 

a AVG

0.5 0.07 (-0.05; 0.20) (-0.02; 0.17) (0.00; 0.15)

0.6 0.92 (0.61; 1.24) (0.68; 1.16) (0.72; 1.12)

0.7 2.26 (1.82; 2.69) (1.93; 2.59) (1.98; 2.54)

0.8 0.91 (0.60; 1.22) (0.68; 1.15) (0.71; 1.11)

0.9 0.65 (0.34; 0.97) (0.42; 0.89) (0.45; 0.85)

1.0 1.60 (1.26; 1.95) (1.34; 1.87) (1.39; 1.82)

1.1 2.34 (1.86; 2.83) (1.97; 2.71) (2.03; 2.65)

1.2 2.71 (2.24; 3.18) (2.35; 3.06) (2.41; 3.01)

1.3 0.31 (0.09; 0.53) (0.14; 0.48) (0.17; 0.45)

1.4 0.34 (0.13; 0.54) (0.18; 0.49) (0.21; 0.47)

1.5 0.33 (0.13; 0.53) (0.18; 0.48) (0.21; 0.46)

99% Conf. Int. 95% Conf. Int. 90% Conf. Int.

 

Table A.5: Revenue improvement of DPD-D over DPD-S (Example 2) 
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a AVG AVG

0.5 5.40 (4.82; 5.99) 5.48 (4.92; 6.04)

0.6 5.47 (4.92; 6.02) 6.44 (5.93; 6.96)

0.7 2.51 (2.00; 3.01) 4.82 (4.30; 5.35)

0.8 3.95 (3.45; 4.45) 4.90 (4.45; 5.35)

0.9 3.78 (3.26; 4.29) 4.45 (4.04; 4.87)

1.0 3.38 (2.92; 3.83) 5.04 (4.59; 5.48)

1.1 2.75 (2.10; 3.40) 5.16 (4.61; 5.70)

1.2 2.05 (1.46; 2.65) 4.82 (4.32; 5.32)

1.3 3.96 (3.47; 4.45) 4.28 (3.81; 4.76)

1.4 4.56 (4.05; 5.07) 4.91 (4.40; 5.43)

1.5 4.77 (4.25; 5.30) 5.12 (4.61; 5.64)

%DPD-S %DPD-D

99% Conf. Int. 99% Conf. Int.

 

Table A.6: Revenue improvement over SUCC (Example 2)  

 

#sdays % LF % AR % Upg % LF % AR % Upg % LF % AR % Upg % LF % AR % Upg

1 97.30 70.40 27.35 96.18 69.63 23.70 95.34 69.03 25.58 94.92 67.57 15.95

2 97.40 71.27 26.92 96.11 70.79 15.99 95.27 70.79 17.54 94.36 69.20 15.86

3 96.83 71.20 26.98 95.57 71.90 16.03 95.71 73.94 19.25 93.57 71.05 16.51

4 96.81 71.07 27.22 -   -   -   95.83 73.43 19.79 93.17 71.10 15.92

5 96.54 71.04 27.40 -   -   -   95.48 73.99 19.51 93.32 71.24 17.04

6 96.53 71.20 27.60 -   -   -   95.60 74.07 19.89 93.22 71.60 16.69

7 96.66 71.03 27.44 -   -   -   95.46 74.06 19.32 93.64 71.38 17.25

8 96.53 70.93 27.49 -   -   -   95.46 74.01 19.43 93.42 71.63 16.89

9 96.58 71.10 27.55 -   -   -   95.45 74.39 19.23 93.66 71.82 17.50

10 96.50 71.07 27.71 -   -   -   95.40 74.25 19.38 93.30 71.82 17.07

11 96.41 70.98 27.82 -   -   -   95.23 74.37 19.15 93.42 71.85 17.60

12 96.44 71.14 27.97 -   -   -   95.41 74.39 19.27 93.47 72.03 17.42

13 96.23 71.63 28.23 -   -   -   95.11 75.02 19.41 93.26 72.46 17.95

14 94.77 72.85 28.10 -   -   -   93.92 75.99 20.51 92.04 73.52 18.39

FCFS DPD-D DPD-S SUCC

 

Table A.7: Load factor, accepted requests, and upgrades (Example 3)  
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